Gallai N, Salles JM, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68:810–21.
Article
Google Scholar
Hung K-LJ, Kingston JM, Albrecht M, Holway DA, Kohn JR. The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc B Biol Sci. 2018. https://doi.org/10.1098/rspb.2017.2140.
Article
Google Scholar
Aizen MA, Harder LD. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol. 2009;19:915–8.
Article
CAS
Google Scholar
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, et al. Drivers of colony losses. Curr Opin Insect Sci. 2018;26:142–8.
Article
Google Scholar
McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. Curr Opin Insect Sci. 2015;8:121–9.
Article
Google Scholar
vanEngelsdorp D, Caron D, Hayes J, Underwood R, Henson M, Rennich K, et al. A national survey of managed honey bee 2010–2011 winter colony losses in the USA: results from the Bee Informed Partnership. J Apic Res. 2012;51:115–24. https://doi.org/10.3896/IBRA.1.51.1.14.
Article
Google Scholar
Gray A, Brodschneider R, Adjlane N, Ballis A, Brusbardis V, Charrière J-D, et al. Loss rates of honey bee colonies during winter 2017/2018 in 36 countries participating in the COLOSS survey, including effects of forage sources. J Apic Res. 2019;58:479–85. https://doi.org/10.1080/00218839.2019.1615661.
Article
Google Scholar
Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc R Soc B Biol Sci. 2017;284:20171711. https://doi.org/10.1098/rspb.2017.1711.
Article
CAS
Google Scholar
Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol. 2015;17:969–83.
Article
CAS
Google Scholar
López JH, Krainer S, Engert A, Schuehly W, Riessberger-Gallé U, Crailsheim K. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci Rep. 2017. https://doi.org/10.1038/srep40853.
Article
PubMed
PubMed Central
Google Scholar
Klein S, Cabirol A, Devaud J-M, Barron AB, Lihoreau M. Why bees are so vulnerable to environmental stressors. Trends Ecol Evol. 2016;32:268–78.
Article
Google Scholar
Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol. 2013;50:868–80.
Article
Google Scholar
Vanengelsdorp D, Meixner MD. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol. 2010;103:80–95.
Article
Google Scholar
van Dooremalen C, Cornelissen B, Poleij-Hok-Ahin C, Blacquière T. Single and interactive effects of Varroa destructor, Nosema spp., and imidacloprid on honey bee colonies (Apis mellifera). Ecosphere. 2018. https://doi.org/10.1002/ecs2.2378.
Article
Google Scholar
Straub L, Williams GR, Vidondo B, Khongphinitbunjong K, Retschnig G, Schneeberger A, et al. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci Rep. 2019;9:8159. https://doi.org/10.1038/s41598-019-44207-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genersch E, von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, et al. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie. 2010;41:332–52. https://doi.org/10.1051/apido/2010014.
Article
CAS
Google Scholar
Chauzat MP, Jacques A, EPILOBEE consortium, Laurent M, Bougeard S, Hendrikx P, et al. Risk indicators affecting honeybee colony survival in Europe: one year of surveillance. Apidologie. 2016;47:348–78.
Article
Google Scholar
Mill AC, Rushton SP, Shirley MDF, Smith GC, Mason P, Brown MA, et al. Clustering, persistence and control of a pollinator brood disease: epidemiology of American foulbrood. Environ Microbiol. 2014;16:3753–63.
Article
Google Scholar
Ebeling J, Knispel H, Hertlein G, Fünfhaus A, Genersch E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl Microbiol Biotechnol. 2016;100:7387–95. https://doi.org/10.1007/s00253-016-7716-0.
Article
CAS
PubMed
Google Scholar
Genersch E. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J Invertebr Pathol. 2010;103(SUPPL. 1):S10–9. https://doi.org/10.1016/j.jip.2009.06.015.
Article
PubMed
Google Scholar
Hasemann L. How long can spores of American foulbrood live? Am Bee J. 1961;101:298–9.
Google Scholar
Lindström A, Korpela S, Fries I. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. J Invertebr Pathol. 2008;99:82–6.
Article
Google Scholar
Spivak M, Reuter GS. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie. 2001;32:555–65. https://doi.org/10.1051/apido:2001103.
Article
Google Scholar
Wilson-Rich N, Spivak M, Fefferman NH, Starks PT. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol. 2009;54:405–23. https://doi.org/10.1146/annurev.ento.53.103106.093301.
Article
CAS
PubMed
Google Scholar
Bailey L, Ball B. Honey bee pathology. 2nd ed. Amsterdam: Elsevier; 1991.
Google Scholar
Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32:199–214. https://doi.org/10.1051/apido:2001122.
Article
Google Scholar
Datta S, Bull JC, Budge GE, Keeling MJ. Modelling the spread of American foulbrood in honeybees. J R Soc Interface. 2013;10:20130650–20130650. https://doi.org/10.1098/rsif.2013.0650.
Article
PubMed
PubMed Central
Google Scholar
Gillard M, Charriere JD, Belloy L. Distribution of Paenibacillus larvae spores inside honey bee colonies and its relevance for diagnosis. J Invertebr Pathol. 2008;99:92–5.
Article
CAS
Google Scholar
Erban T, Ledvinka O, Kamler M, Nesvorna M, Hortova B, Tyl J, et al. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis/631/158/855/631/326/2565/855/38/23/38/22/38/47 article. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-05076-8.
Article
CAS
Google Scholar
Fries I, Lindström A, Korpela S. Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera). Vet Microbiol. 2006;114:269–74.
Article
Google Scholar
Lindström A, Fries I. Sampling of adult bees for detection of American foulbrood (Paenibacillus larvae subsp larvae) spores in honey bee (Apis mellifera) colonies. J Apic Res. 2005;44:82–6. https://doi.org/10.1080/00218839.2005.11101154.
Article
Google Scholar
Forsgren E, Laugen AT. Prognostic value of using bee and hive debris samples for the detection of American foulbrood disease in honey bee colonies. Apidologie. 2014;45:10–20.
Article
Google Scholar
Nordström S, Forsgren E, Fries I. Comparative diagnosis of American foulbrood using samples of adult honey bees and honey. Apic Sci. 2002;46:5–13.
Google Scholar
Goodwin RM, Perry JH, Haine HM. A study on the presence of Bacillus larvae spores carried by adult honey bees to identify colonies with clinical symptoms of American foulbrood disease. J Apic Res. 1996;35:118–20.
Article
Google Scholar
Del Hoyo ML, Basualdo M, Lorenzo A, Palacio MA, Rodriguez EM, Bedascarrasbure E. Effect of shaking honey bee colonies affected by American foulbrood on Paenibacillus larvae larvae spore loads. J Apic Res. 2001;40:65–9.
Article
Google Scholar
Lindström A. Distribution of Paenibacillus larvae spores among adult honey bees (Apis mellifera) and the relationship with clinical symptoms of American foulbrood. Microb Ecol. 2008;56:253–9. https://doi.org/10.1007/s00248-007-9342-y.
Article
PubMed
Google Scholar
Gende L, Satta A, Ligios V, Ruiu L, Buffa F, Fernandez N, et al. Searching for an American foulbrood early detection threshold by the determination of paenibacillus larvae spore load in worker honey bees. Bull Insectol. 2011;64:229–33.
Google Scholar
de Graaf DC, Alippi AM, Antúnez K, Aronstein KA, Budge G, De Koker D, et al. Standard methods for American foulbrood research. J Apic Res. 2013;52:1–28. https://doi.org/10.3896/IBRA.1.52.1.11.
Article
Google Scholar
Jatulan EO, Rabajante JF, Banaay CGB, Fajardo AC, Jose EC. A mathematical model of intra-colony spread of American foulbrood in European honeybees (Apis mellifera L.). PLoS ONE. 2015;10:1–13.
Article
Google Scholar
Pie MR, Rosengaus RB, Traniello JFA. Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol. 2004;226:45–51.
Article
Google Scholar
Locke B, Fries I. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie. 2011;42:533–42. https://doi.org/10.1007/s13592-011-0029-5.
Article
Google Scholar
Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85:411. https://doi.org/10.1017/S0031182000055360.
Article
PubMed
Google Scholar
Stephan JG, Low M, Stenberg JA, Björkman C. Predator hunting mode and host plant quality shape attack-abatement patterns of predation risk in an insect herbivore. Ecosphere. 2016;7:e01541. https://doi.org/10.1002/ecs2.1541.
Article
Google Scholar
Ezenwa VO, Worsley-Tonks KEL. Social living simultaneously increases infection risk and decreases the cost of infection. Proc R Soc B Biol Sci. 2018;285:20182142. https://doi.org/10.1098/rspb.2018.2142.
Article
Google Scholar
Schmid-Hempel P. Parasites and their social hosts. Trends Parasitol. 2017;33:453–62.
Article
Google Scholar
Tarpy DR. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc B Biol Sci. 2003;270:99–103. https://doi.org/10.1098/rspb.2002.2199.
Article
Google Scholar
Simone-Finstrom M, Walz M, Tarpy DR. Genetic diversity confers colony-level benefits due to individual immunity. Biol Lett. 2016;12:20151007. https://doi.org/10.1098/rsbl.2015.1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cremer S, Armitage SAO, Schmid-Hempel P. Social Immunity. Curr Biol. 2007;17:R693–702. https://doi.org/10.1016/j.cub.2007.06.008.
Article
CAS
PubMed
Google Scholar
Nunn CL, Jordan F, McCabe CM, Verdolin JL, Fewell JH. Infectious disease and group size: more than just a numbers game. Philos Trans R Soc B Biol Sci. 2015;370:20140111–20140111. https://doi.org/10.1098/rstb.2014.0111.
Article
Google Scholar
Tranter C, Lefevre L, Evison SEF, Hughes WOH. Threat detection: contextual recognition and response to parasites by ants. Behav Ecol. 2015;26:396–405.
Article
Google Scholar
Hoggard SJ, Wilson PD, Beattie AJ, Stow AJ. The effectiveness of antimicrobial defenses declines with increasing group size and genetic similarity. Ann Entomol Soc Am. 2013;106:53–8.
Article
Google Scholar
Donkersley P, Rhodes G, Pickup RW, Jones KC, Power EF, Wright GA, et al. Nutritional composition of honey bee food stores vary with floral composition. Oecologia. 2017;185:749–61. https://doi.org/10.1007/s00442-017-3968-3.
Article
PubMed
PubMed Central
Google Scholar
Walton A, Dolezal AG, Bakken MA, Toth AL. Hungry for the queen: honey bee nutritional environment affects worker pheromone response in a life-stage dependent manner. Funct Ecol. 2018. https://doi.org/10.1111/1365-2435.13222.
Article
Google Scholar
Genersch E, Ashiralieva A, Fries I. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol. 2005;71:7551–5. https://doi.org/10.1128/aem.71.11.7551-7555.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wedenig M, Riessberger-Gallé U, Crailsheim K. A substance in honey bee larvae inhibits the growth of Paenibacillus larvae larvae. Apidologie. 2003;34:43–51. https://doi.org/10.1051/apido:2002043.
Article
Google Scholar
Brødsgaard CJ, Hansen H, Ritter W. Progress of Paenibacillus larvae larvae infection in individually inoculated honey bee larvae reared singly in vitro, in micro colonies, or in full-size colonies. J Apic Res. 2000;39:19–27.
Article
Google Scholar
Dakin SC, Tibber MS, Greenwood JA, Kingdom FAA, Morgan MJ. A common visual metric for approximate number and density. Proc Natl Acad Sci. 2011;108:19552–7. https://doi.org/10.1073/pnas.1113195108.
Article
PubMed
Google Scholar
Jiménez J. Effect of sample size, plot size, and counting time on estimates of avian diversity and abundance in a Chilean rainforest. J F Ornithol. 2000;71:66–87. https://doi.org/10.1648/0273-8570-71.1.66.
Article
Google Scholar
Mattila HR, Otis GW. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol Entomol. 2007;32:496–505. https://doi.org/10.1111/j.1365-2311.2007.00904.x.
Article
Google Scholar
Winston ML. The Biology of the honey bee. Cambridge: Harvard University Press; 1987.
Google Scholar
vanEngelsdorp D, Hayes J, Underwood RM, Pettis JS. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J Apic Res. 2010;49:7–14. https://doi.org/10.3896/IBRA.1.49.1.03.
Article
Google Scholar
Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010;41:278–94. https://doi.org/10.1051/apido/2010012.
Article
Google Scholar
Dolezal AG, Toth AL. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci. 2018;26:114–9. https://doi.org/10.1016/j.cois.2018.02.006.
Article
PubMed
Google Scholar
Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA. Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol. 1998;44:125–34. https://doi.org/10.1007/s002650050523.
Article
Google Scholar
Döke MA, McGrady CM, Otieno M, Grozinger CM, Frazier M. Colony size, rather than geographic origin of stocks, predicts overwintering success in honey bees (Hymenoptera: Apidae) in the Northeastern United States. J Econ Entomol. 2019;112:525–33. https://doi.org/10.1093/jee/toy377.
Article
PubMed
Google Scholar
Natsopoulou ME, McMahon DP, Paxton RJ. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav Ecol Sociobiol. 2016;70:1019–31. https://doi.org/10.1007/s00265-015-2019-5.
Article
PubMed
Google Scholar
Stephan JG, Lamei S, Pettis JS, Riesbeck K, de Miranda JR, Forsgren E. Honeybee-specific lactic acid bacterium supplements have no effect on American foulbrood-infected honeybee colonies. Appl Environ Microbiol. 2019;85:1–12. https://doi.org/10.1128/AEM.00606-19.
Article
Google Scholar
Dynes TL, Berry JA, Delaplane KS, Brosi BJ, De Roode JC. Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS ONE. 2019;14:1–16.
Article
Google Scholar
Delaplane KS, van der Steen J, Guzman-Novoa E. Standard methods for estimating strength parameters of Apis mellifera colonies. J Apic Res. 2013. https://doi.org/10.3896/IBRA/1.52.1.03.
Article
Google Scholar
Pettis JS, Rose R, Chaimanee V. Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera) colonies in Northern Thailand. PLoS ONE. 2017;12:e0188063.
Article
Google Scholar
Pettis JS, Feldlaufer MF. Efficacy of lincomycin and tylosin in controlling American foulbrood in honey bee colonies. J Apic Res. 2005;44:106–8.
Article
CAS
Google Scholar
Kruschke JK, Aguinis H, Joo H. The time has come: Bayesian methods for data analysis in the organizational sciences. Organ Res Methods. 2012;15:722–52.
Article
Google Scholar
McElreath R. Statistical rethinking: a Bayesian course with examples in R and Stan. J Educ Behav Stat. 2015. https://doi.org/10.3102/1076998616659752.
Article
Google Scholar
Kruschke JK. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. 2nd ed. Amsterdam: Elsevier; 2014. https://doi.org/10.1016/B978-0-12-405888-0.09999-2.
Book
Google Scholar
Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, Version 2.17.0. 2017. http://mc-stan.org/.
R Core Team. R: A language and environment for statistical computing. 2017. https://www.r-project.org.
Stephan JG, de Miranda JR, Forsgren E. Data_Rcode for: American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks between disease and colony development. BMC Ecology. 2020. https://doi.org/10.5281/zenodo.3672367.
Article
PubMed
PubMed Central
Google Scholar