Ramirez J-M, Folkow LP, Blix AS. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol. 2007;69:113–43.
Article
CAS
PubMed
Google Scholar
Campbell TW. Avian hematology and cytology. Ames: Iowa State University Press; 1995.
Google Scholar
O’Brien EL, Morrison BL, Johnson LS. Assessing the effects of haematophagous ectoparasites on the health of nestling birds: haematocrit vs haemoglobin levels in house wrens parasitized by blow fly larvae. J Avian Biol. 2001;32:73–6.
Article
Google Scholar
Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002;11:1545–54.
Article
PubMed
Google Scholar
Owen J, Moore F. Seasonal differences in immunological condition of three species of thrushes. Condor. 2006;108:389–98.
Article
Google Scholar
Hahn S, Buer S, Dimitrov D, Emmenegger T, Ivanova K, Zehtindjiev P, Buttemer WA. Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc R Soc B. 2017;285:2307.
Google Scholar
Gylfe A, Bergström S, Lundström J, Olsen B. Reactivation of borrelia infection in birds. Nature. 2000;403:724–5.
Article
CAS
PubMed
Google Scholar
Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological “hot spot” for influenza viruses. Proc R Sci Lond B. 2010;277:3373–9.
Article
Google Scholar
Powlesland RG. Effects of haematophagous mite Ornithonyssus bursa on nestling starlings in New Zealand. NZ J Zool. 1977;4:85–94.
Article
Google Scholar
Chapman BR, George JE. The effects of ectoparasites on cliff swallow growth and survival. In: Loye JE, Zuk M, editors. Bird–parasite interactions. Ecology, evolution and behaviour. Oxford: Oxford University Press; 1991. p. 69–92.
Google Scholar
Whitworth TW, Bennett GF. Pathogenicity of larval Protocalliphora (Diptera: Calliphoridae) parasitizing nestling birds. Can J Zool. 1992;70:2184–91.
Article
Google Scholar
Krams IA, Suraka V, Rantala MJ, Sepp T, Mierauskas P, Vrublevska J, Krama T. Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds. J Zool. 2013;291:34–41.
Article
Google Scholar
Marzal A, de Lope F, Navarro C, Møller AP. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia. 2005;142:541–5.
Article
PubMed
Google Scholar
Merino S, Moreno J, Sanz JJ, Arriero E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Sci Lond B. 2000;267:2507–10.
Article
CAS
Google Scholar
Tomás G, Merino S, Moreno J, Morales J, Martínez-de la Puente J. Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Funct Ecol. 2007;21:125–33.
Article
Google Scholar
Asghar M, Hasselquist D, Hansson D, Zehtindjiev P, Westerdahl H, Bensch S. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science. 2015;347:436–8.
Article
CAS
PubMed
Google Scholar
Valkiūnas G, Zickus T, Shapoval AP, Iezhova TA. Effect of Haemoproteus belopolskyi (Haemosporida: Haemoproteidae) on body mass of the blackcap Sylvia atricapilla. J Parasitol. 2006;92:1123–5.
Article
PubMed
Google Scholar
Dawson RD, Bortolotti GR. Effects of hematozoan parasites on condition and return rates of American Kestrels. Auk. 2000;117:373–80.
Article
Google Scholar
Rooyen J, Lalubin F, Glaziot O, Christe P. Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasit Vectors. 2013;6:139.
Article
PubMed
PubMed Central
Google Scholar
Wood MJ, Cosgrove CL, Wilkin TA, Knowles SC, Day KP, Sheldon BC. Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Mol Ecol. 2007;16:3263–73.
Article
CAS
PubMed
Google Scholar
Lachish S, Knowles SC, Alves R, Wood MJ, Sheldon BC. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J Anim Ecol. 2011;80:1207–16.
Article
PubMed
Google Scholar
LaPointe DA, Goff ML, Atkinson CT. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai’i to avian malaria, Plasmodium relictum. J Parasitol. 2005;91:843–9.
Article
PubMed
Google Scholar
Hasselquist D, Nilsson J-A. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav. 2012;83:1303–12.
Article
Google Scholar
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. TREE. 1996;11:317–21.
CAS
PubMed
Google Scholar
Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, et al. Climate change and the resurgence of malaria in the East African highlands. Nature. 2002;415:905–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okanga S, Cumming GS, Hockney PAR. Avian malaria prevalence and mosquito abundance in the western Cape, South Africa. Malaria J. 2013;12:370.
Article
Google Scholar
Medeiros MC, Ricklefs RE, Brawn JD, Hamer GL. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors. Parasitology. 2015;142:1612–20.
Article
CAS
PubMed
Google Scholar
Ishtiaq F, Bowden CGR, Jhala YV. Seasonal dynamics in mosquito abundance and temperature do not influence avian malaria prevalence in the Himalayan foothills. Ecol Evol. 2017;7:8040–57.
Article
PubMed
PubMed Central
Google Scholar
Cosgrove CL, Wood MJ, Sheldon BC. Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol. 2008;77:540–8.
Article
PubMed
Google Scholar
Dunn J, Goodman SJ, Benton TG, Hamer KC. Active blood parasite infection during the non-breeding season: an overlooked issue in declining populations? BMC Ecol. 2013;13:30.
Article
PubMed
PubMed Central
Google Scholar
Dixit S, Joshi V, Barve S. Bird diversity of the Amrutganga Valley, Kedarnath, Uttarakhand, India with an emphasis on the elevational distribution of species. Check List. 1874;2016:12.
Google Scholar
Barve S, Dhondt AA, Mathur VB, Ishtiaq F, Cheviron ZA. Life history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds. Proc R Sci Lond B. 2016;283:20162201.
Article
Google Scholar
Valkiūnas G, Iezhova TA, Loiseau C, Sehgal RN. Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds. J Parasitol. 2009;95:1512–5.
Article
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning, a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004;90:797–802.
Article
CAS
PubMed
Google Scholar
Dumbacher JP, Pratt TK, Fleischer RC. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence. Mol Phyl Evol. 2003;29:540–9.
Article
CAS
Google Scholar
Bensch S, Hellgen O, Perez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour. 2009;9:1353–8. http://mbioserv4.mbioekol.lu.se/avianmalaria/index.html.
Ishtiaq F, Rao M, Huang X, Bensch S. Estimating prevalence of avian haemosporidians in natural populations—a comparative study on screening protocols. Parasit Vectors. 2017. https://doi.org/10.1186/s13071-017-2066-z.
PubMed
PubMed Central
Google Scholar
Asghar M, Hasselquist D, Bensch S. Are chronic avian haemosporidian infections costly in wild birds? J Avian Biol. 2011;42:530–7.
Article
Google Scholar
Godfrey RD, Fedynich AM, Pence DB. Quantification of haematozoa in blood smears. J Wildl Dis. 1987;23:558–65.
Article
PubMed
Google Scholar
Rasmussen PC, Anderton JC. Birds of South Asia. The ripley guide. Washington and Barcelona: Smithsonian Institution and Lynx Edicions; 2005.
Google Scholar
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS. Generalized linear mixed models: a practical guide for ecology and evolution. TREE. 2009;24:127–35.
PubMed
Google Scholar
Therneau T. Coxme: mixed effects Cox models. 2012. R package version 2.2-3. https://cran.r-project.org/web/packages/coxme/coxme.pdf. Accessed 27 Feb 2018.
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
PubMed
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.
Article
CAS
PubMed
Google Scholar
Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D. Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol. 2007;76:112–22.
Article
PubMed
Google Scholar
Barton K. MuMIn: multi-model inference. R package version 1.0. 0. 2012. http://cran.r-project.org/package=MuMin. Accessed 27 Feb 2018.
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 2011;65:23–35.
Article
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information—theoretic approach. 2nd ed. New York: Springer; 2002.
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
Google Scholar
Beaudoin RL, Applegate JE, David DE, McLean RG. A model for the ecology of avian malaria. J Wildl Dis. 1971;7:5–13.
Article
CAS
PubMed
Google Scholar
Cranston PS, Ramsdale CD, Snow KP, White GB. Adults, larvae and pupae of British mosquitoes (Culicidae). Ambleside: Freshwater Biological Association; 1987.
Google Scholar
Applegate JE, Beaudoin RL. Mechanism of spring relapse avian malaria: effect of gonadotrophin and corticosterone. J Wildl Dis. 1970;6:443–7.
Article
CAS
PubMed
Google Scholar
Sherry TW, Johnson MD, Strong AM. Does winter food limit populations of migratory birds? In: Greenberg R, Marra PP, editors. Birds of two worlds the ecology and evolution of migration. Baltimore: Johns Hopkins University Press; 2005. p. 414–25.
Google Scholar
Strong AM, Sherry TW. Habitat-specific effects of food abundance on the condition of ovenbirds wintering in Jamaica. J Anim Ecol. 2000;69:883–95.
Article
PubMed
Google Scholar
Brown DR, Sherry TW. Food supply controls the body condition of a migrant bird wintering in the tropics. Oecologia. 2006;149:22–32.
Article
PubMed
Google Scholar
Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB. Implications of temperature variations for malaria parasite development across Africa. Sci Rep. 2013;3:1300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudaniec R, Kleindorfer S, Fessl B. Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin’s small groundfinch (Geospiza fuliginosa). Austral Ecol. 2006;31:88–94.
Article
Google Scholar
Colombelli-Négrel D, Kleindorfer S. In superb fairy wrens (Malurus cyaneus), nuptial males have more blood parasites and higher haemoglobin concentration than eclipsed males. J Zool. 2008;56:117–21.
Google Scholar
Schoenle LA, Kernbach M, Haussmann MF, Bonier F, Moore IT. An experimental test of the physiological consequences of avian malaria infection. J Anim Ecol. 2017;86:1483–96.
Article
PubMed
Google Scholar
Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, et al. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo–Papuan region. Mol Ecol. 2004;13:3829–44.
Article
PubMed
Google Scholar
Loiseau C, Harrigan RJ, Bichet C, Julliard R, Garnier S, Lendvai AZ, et al. Predictions of avian Plasmodium expansion under climate change. Sci Rep. 2013;3:1126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tangpukdee N, Krudsood S, Kano S, Wilairatana P. Falciparum malaria parasitemia index for predicting severe malaria. Int J Lab Hematol. 2012;34:320–7.
Article
CAS
PubMed
Google Scholar
Koncan RM, Clark DT. Anemia in ducks infected with Leucocytozoon simondi. J Protozool. 1966;13:465–8.
Article
Google Scholar
Maley GJM, Desser SS. Anemia in Leucocytozoon simondii infections. I. Quantification of anemia, gametocytemia, and osmotic fragility of erythrocytes in naturally infected Pekin ducklings. Can J Zool. 1977;55:355–8.
Article
CAS
PubMed
Google Scholar
Valkiũnas G. Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press; 2005.
Google Scholar
Okell LC, Bousema T, Griffin JT, Ouédrago AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.
Article
PubMed
PubMed Central
Google Scholar
Bennett GF, Peirce MA, Ashford RW. Avian haematozoa: mortality and pathogenicity. J Nat Hist. 1993;27:993–1001.
Article
Google Scholar
van Riper IIIC, van Riper SG, Goff ML, Laird M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Mon. 1986;56:327–44.
Article
Google Scholar
Atkinson CT, Dusek RJ, Woods KL, Iko WM. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis. 2000;36:197–204.
Article
CAS
PubMed
Google Scholar
Belo NO, Rodríguez-Ferraro A, Braga EM, Ricklefs RE. Diversity of avian haemosporidians in arid zones of northern Venezuela. Parasitology. 2012;139:1021–8.
Article
PubMed
Google Scholar
Palinauskas V, Valkiūnas GN, Bolshakov CV, Bensch S. Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol. 2008;120:372–80.
Article
PubMed
Google Scholar
Galen SC, Witt CC. Diverse avian malaria and other haemosporidian parasites in Andean house wrens: evidence for regional co-diversification by host-switching. J Avian Biol. 2014;45:374–86.
Article
Google Scholar
Garamszegi LZ. Climate change increases the risk of malaria in birds. Glob Change Biol. 2011;17:1751–9.
Article
Google Scholar
Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Nat Acad Sci USA. 2010;107:15135–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shrestha UB, Gautam S, Bawa KS. Widespread climate change in the himalayas and associated changes in local ecosystems. PLoS ONE. 2012;7(5):e36741.
Article
CAS
PubMed
PubMed Central
Google Scholar
del Hoyo J, Elliot A, Sartagal J, Christie DA, De Juana E. Handbook of the birds of the world alive. Barcelona: Lynx Edicions. 2014. http://www.hbw.com. Accessed 5 Mar 2018.