Cornelissen T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol. 2011;40(2):155–63.
Article
CAS
PubMed
Google Scholar
Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008;11(12):1351–63.
Article
PubMed
Google Scholar
Buckley LB, Kingsolver JG. The demographic impacts of shifts in climate means and extremes on alpine butterflies. Funct Ecol. 2012;26(4):969–77.
Article
Google Scholar
Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30(3):258–70.
Article
CAS
PubMed
Google Scholar
Robinson EA, Ryan GD, Newman JA. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 2012;194(2):321–36.
Article
CAS
PubMed
Google Scholar
Hunter MD. Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Agric For Entomol. 2001;3(3):153–9.
Article
Google Scholar
Stiling P, Cornelissen T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chang Biol. 2007;13(9):1823–42.
Article
Google Scholar
Ryan GD, Rasmussen S, Newman JA. Global atmospheric change and trophic interactions: are there any general responses? In: Baluska F, Ninkovic V, editors. Plant communication from an ecological perspective. Berlin: Springer-Verlag; 2010. p. 179–214.
Chapter
Google Scholar
Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci USA. 2008;105(13):5129–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR. Climate change: resetting plant-insect interactions. Plant Physiol. 2012;160(4):1677–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gherlenda AN, Crous KY, Moore BD, Haigh AM, Johnson SN, Riegler M. Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant Soil. 2016;399:29–39.
Article
CAS
Google Scholar
Whitfeld TJS, Novotny V, Miller SE, Hrcek J, Klimes P, Weiblen GD. Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology. 2012;93(sp8):S211–22.
Article
Google Scholar
Lee MA, Manning P, Walker CS, Power SA. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem. Oecologia. 2014;176(4):1173–85.
Article
PubMed
Google Scholar
Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA. 2005;102(50):18052–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zak DR, Pregitzer KS, Kubiske ME, Burton AJ. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett. 2011;14(12):1220–6.
Article
PubMed
Google Scholar
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA. 2010;107(45):19368–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson DW. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology. 2006;87(1):64–75.
Article
PubMed
Google Scholar
Duursma RA, Gimeno TE, Boer MM, Crous KY, Tjoelker MG, Ellsworth DS. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Glob Chang Biol. 2016;22:1666–76.
Article
PubMed
Google Scholar
Paine TD, Steinbauer MJ, Lawson SA. Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol. 2011;56:181–201.
Article
CAS
PubMed
Google Scholar
FAO. Global forest resources assessment 2010. Rome: Food and Agriculture Organization of the United Nations; 2010.
Google Scholar
Ohmart C, Edwards P. Insect herbivory on Eucalyptus. Annu Rev Entomol. 1991;36(1):637–57.
Article
Google Scholar
Keith DA. Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT. Hurstville: New South Wales Department of Environment and Conservation; 2004.
Google Scholar
Landsberg J, Ohmart C. Levels of insect defoliation in forests: patterns and concepts. Trends Ecol Evol. 1989;4(4):96–100.
Article
Google Scholar
Loney P, McArthur C, Sanson G, Davies N, Close D, Jordan G. How do soil nutrients affect within-plant patterns of herbivory in seedlings of Eucalyptus nitens? Oecologia. 2006;150(3):409–20.
Article
PubMed
Google Scholar
Close DC, McArthur C, Hagerman AE, Fitzgerald H. Differential distribution of leaf chemistry in eucalypt seedlings due to variation in whole-plant nutrient availability. Phytochemistry. 2005;66(2):215–21.
Article
CAS
PubMed
Google Scholar
Rapley LP, Allen GR, Potts BM. Genetic variation in Eucalyptus globulus in relation to susceptibility from attack by the southern eucalypt leaf beetle. Chrysophtharta agricola. Aust J Bot. 2004;52(6):747–56.
Article
Google Scholar
Nahrung HF, Duffy MP, Lawson SA, Clarke AR. Natural enemies of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) in south-eastern Queensland eucalypt plantations. Aust J Ecol. 2008;47(3):188–94.
Google Scholar
Boege K, Marquis RJ. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol. 2005;20(8):441–8.
Article
PubMed
Google Scholar
McKiernan AB, Hovenden MJ, Brodribb TJ, Potts BM, Davies NW, O’Reilly-Wapstra JM. Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environ Exp Bot. 2014;105:55–64.
Article
CAS
Google Scholar
Moore BD, Wallis IR, Wood JT, Foley WJ. Foliar nutrition, site quality, and temperature influence foliar chemistry of tallowwood (Eucalyptus microcorys). Ecol Monogr. 2004;74(4):553–68.
Article
Google Scholar
Silvestre AJD, Cavaleiro JAS, Delmond B, Filliatre C, Bourgeois G. Analysis of the variation of the essential oil composition of Eucalyptus globulus Labill. from Portugal using multivariate statistical analysis. Ind Crops Prod. 1997;6(1):27–33.
Article
CAS
Google Scholar
Goodger JQD, Choo TYS, Woodrow IE. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia. 2007;153(4):799–808.
Article
PubMed
Google Scholar
Henery ML, Wallis IR, Stone C, Foley WJ. Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Oecologia. 2008;156(4):847–59.
Article
CAS
PubMed
Google Scholar
Steinbauer MJ, Burns AE, Hall A, Riegler M, Taylor GS. Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence? Oecologia. 2014;176(4):1061–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coley PD. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Change. 1998;39(2–3):455–72.
Article
Google Scholar
Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M. Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia. 2015;177(2):607–17.
Article
PubMed
Google Scholar
Murray TJ, Ellsworth DS, Tissue DT, Riegler M. Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Glob Chang Biol. 2013;19:1407–16.
Article
CAS
PubMed
Google Scholar
Murray TJ, Tissue DT, Ellsworth DS, Riegler M. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia. 2013;171(4):1025–35.
Article
CAS
PubMed
Google Scholar
Myers BA, Williams RJ, Fordyce I, Duff GA, Eamus D. Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia? Aust J Ecol. 1998;23(4):329–39.
Article
Google Scholar
Pook EW, Gill AM, Moore PHR. Long-term variation of litter fall, canopy leaf area and flowering in a Eucalyptus maculata forest on the south coast of New South Wales. Aust J Bot. 1997;45(5):737–55.
Article
Google Scholar
Tozer M. The native vegetation of the Cumberland Plain, western Sydney: systematic classification and field identification of communities. Cunninghamia. 2003;8(1):1–75.
Google Scholar
Benson DH. The natural vegetation of the Penrith 1:100 000 map sheet. Cunninghamia. 1992;2(4):541–96.
Google Scholar
Drake JE, Macdonald CA, Tjoelker MG, Crous KY, Gimeno TE, Singh BK, Reich PB, Anderson IC, Ellsworth DS. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob Chang Biol. 2015;22:380–90.
Article
PubMed
Google Scholar
Bannerman SM, Hazelton PA. Soil landscapes of the Penrith 1:100,000 sheet map and report. Sydney: Soil Conservation Service of NSW; 1990.
Google Scholar
Crous KY, Ósvaldsson A, Ellsworth DS. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil. 2015;391:293–305.
Article
CAS
Google Scholar
Lewin KF, Nagy J, Nettles WR, Cooley DM, Rogers A. Comparison of gas use efficiency and treatment uniformity in a forest ecosystem exposed to elevated [CO2] using pure and prediluted free-air CO2 enrichment technology. Glob Chang Biol. 2009;15(2):388–95.
Article
Google Scholar
Lowman MD. Herbivory in Australian forests-a comparison of dry sclerophyll and rain forest canopies. Proc Linn Soc NSW. 1995;115:77–87.
Google Scholar
Lowman MD. Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Aust J Ecol. 1985;10(1):7–24.
Article
Google Scholar
Paul GS, Montagnini F, Berlyn GP, Craven DJ, Van Breugel M, Hall JS. Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama. New For. 2012;43(1):69–87.
Article
Google Scholar
Unsicker SB, Mody K. Influence of tree species and compass bearing on insect folivory of nine common tree species in the West African savanna. J Trop Ecol. 2005;21(2):227–31.
Article
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D. nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-122. 2015. https://cran.r-project.org/package=nlme. Accessed 19 Aug 2015.
R Development Core Team. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2015. https://www.R-project.org. Accessed 3 July 2015.
Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C. Central European hardwood trees in a high-CO2 future: synthesis of an 8 year forest canopy CO2 enrichment project. J Ecol. 2013;101(6):1509–19.
Article
CAS
Google Scholar
Johnson PCD. Extension of Nakagawa and Schielzeth’s R2 GLMM to random slopes models. Methods Ecol Evol. 2014;5(9):944–6.
Article
PubMed
PubMed Central
Google Scholar
Barton K. MuMIn: Multi-Model Inference. R package version 1.15.1. 2015. https://cran.r-project/package=MuMIn. Accessed 3 July 2015.
Nahrung HF, Dunstan PK, Allen GR. Larval gregariousness and neonate establishment of the eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos. 2001;94(2):358–64.
Article
Google Scholar
Moles AT, Westoby M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos. 2000;90(3):517–24.
Article
Google Scholar
Fox LR, Morrow PA. Estimates of damage by herbivorous insects on Eucalyptus trees. Aust J Ecol. 1983;8(2):139–47.
Article
Google Scholar
Nooten SS, Hughes L. Patterns of insect herbivory on four Australian understory plant species. Aust J Ecol. 2013;52(4):309–14.
Google Scholar
Landsberg J, Gillieson DS. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust J Ecol. 1995;20(2):299–315.
Article
Google Scholar
Adams JM, Zhang Y. Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J Ecol. 2009;97(5):933–40.
Article
Google Scholar
Lopaticki G. The response of eucalypt arthropod communities to varying resource availability and habitat complexity BSc Honours thesis. Penrith: University of Western Sydney; 2010.
Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 2005;167(1):207–18.
Article
CAS
PubMed
Google Scholar
Stiling P, Cattell M, Moon DC, Rossi A, Hungate BA, Hymus G, Drake B. Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Glob Chang Biol. 2002;8(7):658–67.
Article
Google Scholar
Hamilton JG, Zangerl AR, Berenbaum MR, Pippen J, Aldea M, DeLucia EH. Insect herbivory in an intact forest understory under experimental CO2 enrichment. Oecologia. 2004;138(4):566–73.
Article
PubMed
Google Scholar
Couture JJ, Meehan TD, Kruger EL, Lindroth RL. Insect herbivory alters impact of atmospheric change on northern temperate forests. Nature Plants. 2015;1(3):150–60.
Article
Google Scholar
Meehan TD, Couture JJ, Bennett AE, Lindroth RL. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. New Phytol. 2014;204(2):397–407.
Article
CAS
PubMed
Google Scholar
Gherlenda AN, Esveld JL, Hall AAG, Duursma RA, Riegler M. Boom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2. Glob Chang Biol. 2016. doi:10.1111/gcb.13334.
PubMed
Google Scholar
Hall AAG, Gherlenda AN, Hasegawa S, Johnson SN, Cook JM, Riegler M. Anatomy of an outbreak: the biology and population dynamics of a Cardiaspina psyllid species in an endangered woodland ecosystem. Agric For Entomol. 2015;17:292–301.
Article
Google Scholar
Reich PB. Key canopy traits drive forest productivity. Proc Biol Sci. 2012;279:2128–34.
Article
PubMed
PubMed Central
Google Scholar
Walker AP, Hanson PJ, De Kauwe MG, Medlyn BE, Zaehle S, Asao S, Dietze M, Hickler T, Huntingford C, Iversen CM. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: model performance at ambient CO2 concentration. J Geophys Res: Biogeo. 2014;119(5):937–64.
Article
CAS
Google Scholar
Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165(2):351–72.
Article
PubMed
Google Scholar
De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang YP, Luo Y, Jain AK, El-Masri B, Hickler T. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 2014;203(3):883–99.
Article
PubMed
PubMed Central
Google Scholar
Boulanger Y, Gray DR, Cooke BJ, De Grandpré L. Model-specification uncertainty in future forest pest outbreak. Glob Chang Biol. 2016;22(4):1595–607.
Article
PubMed
Google Scholar
Steinbauer MJ. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Austral For. 2001;64(1):32–7.
Article
Google Scholar
IPCC (ed.). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.
Gherlenda AN, Moore BD, Haigh AM, Johnson SN, Riegler M. Data from: insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecol. 2016. doi:10.4225/35/57e49ec6dd3eb.
PubMed
PubMed Central
Google Scholar