Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341:514–9.
Article
CAS
PubMed
Google Scholar
Altman FP. Tetrazolium salts and formazans. Prog Histochem Cyto. 1976;9:3–51.
Google Scholar
Amarasekare P, Savage V. A framework for elucidating the temperature dependence of fitness. Am Nat. 2012;179:178–91.
Article
PubMed
Google Scholar
Ben-Horin T, Lenihan HS, Lafferty KD. Variable intertidal temperature explains why disease endangers black abalone. Ecology. 2012;94:161–8.
Article
Google Scholar
Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci. 1998;95:9031–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger L, Hyatt AD, Speare R, Longcore JE. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org. 2005;68:51–63.
Article
Google Scholar
Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 2016;19:89–99.
Article
Google Scholar
Boyle DG, Hyatt AD, Daszak P, Berger L, Longcore JE, Porter D, Hengstberger SG, Olsen V. Cryo-archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. Dis Aquat Org. 2003;56:59–64.
Article
CAS
Google Scholar
Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg. 2013;88:689–97.
Article
PubMed
PubMed Central
Google Scholar
Cohen JM, Venesky MD, Sauer EL, Civitello DJ, McMahon TA, Roznik EA, Rohr JR. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol Lett. 2017;20:184–93.
Article
PubMed
Google Scholar
Cohen JM, Civitello DJ, Venesky MD, McMahon TA, Rohr JR. An interaction between climate change and infectious disease drove widespread amphibian declines. Global Change Biol. 2019;25:927–37.
Article
Google Scholar
Cohen JM, McMahon TA, Ramsay C, Roznik EA, Sauer EL, Bessler S, Civitello DJ, Delius BK, Halstead N, Knutie SA, Nguyen KH. Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis prevalence are moderated by life stage, body size, elevation and latitude. Ecol Lett. 2019;22:817–25.
Article
PubMed
Google Scholar
Cunningham JD. Additional observations on the ecology of the Yosemite toad. Bufo canorus Herpetologica. 1963;19:56–61.
Google Scholar
Daskin JH, Alford RA, Puschendorf R. Short-term exposure to warm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis. PLoS ONE. 2011;6:e26215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daversa DR, Monsalve-Carcaño C, Carrascal LM, Bosch J. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians. PeerJ. 2018;6:e4698.
Article
PubMed
PubMed Central
Google Scholar
Demas GE, Nelson RJ. Ecoimmunology. New York: Oxford University Press; 2012.
Google Scholar
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. Climate extremes: observations, modeling, and impacts. Science. 2000;289:2068–74.
Article
CAS
PubMed
Google Scholar
Fargues J, Luz C. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus. J Invertebr Pathol. 2000;75:202–11.
Article
CAS
PubMed
Google Scholar
Fellers GM, Cole RA, Reinitz DM, Kleeman PM. Amphibian chytrid fungus (Batrachochytrium dendrobatidis) in coastal and montane California, USA anurans. Herp Cons Biol. 2011;6:383–94.
Google Scholar
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–204.
Article
CAS
PubMed
Google Scholar
Garner TW, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, Weldon C, Fisher MC, Bosch J. Mitigating amphibian chytridiomycosis in nature. Phil Trans R Soc B. 2016;371:20160207.
Article
PubMed
PubMed Central
Google Scholar
Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol. 2007;21:394–407.
Article
Google Scholar
Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, Alford RA. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol. 2017;31:2274–86.
Article
Google Scholar
Greenspan SE, Bower DS, Webb RJ, Berger L, Rudd D, Schwarzkopf L, Alford RA. White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Dev Comp Immunol. 2017;77:280–6.
Article
CAS
PubMed
Google Scholar
Griffin DH. Fungal physiology. 2nd ed. New York: Wiley-Liss; 1994.
Google Scholar
Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J, Schmidt BR, Bosch J. Mitigating disease impacts in amphibian populations: capitalizing on the thermal optimum mismatch between a pathogen and its host. Front Ecol Evol. 2019;7:254.
Article
Google Scholar
Huey RB, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool. 1979;19:357–66.
Article
Google Scholar
Karlstrom EL. The toad genus Bufo in the Sierra Nevada of California: ecological and systematic relationships. Berkeley: PhD dissertation, University of California; 1962.
Google Scholar
Lafferty KD. The ecology of climate change and infectious diseases. Ecology. 2009;90:888–900.
Article
PubMed
Google Scholar
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci. 2011;108:7460–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang CT, Grasso RL, Nelson-Paul JJ, Vincent KE, Lind AJ. Fine-scale habitat characteristics related to occupancy of the Yosemite toad. Anaxyrus canorus. Copeia. 2017;105:120–7.
Article
Google Scholar
Lindauer AL, Voyles J. Out of the frying pan, into the fire? Yosemite toad (Anaxyrus canorus) susceptibility to Batrachochytrium dendrobatidis after development under drying conditions. Herp Cons Biol. 2019;14:185–98.
Google Scholar
Lindauer A, May T, Rios-Sotelo G, Sheets C, Voyles J. Quantifying Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans viability. EcoHealth. 2019;23:1–5.
Google Scholar
Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69:581–93.
Article
CAS
PubMed
Google Scholar
Longcore JE, Pessier AP, Nichols DK. Batrachochytrium dendrobatidis gen et sp. nov., a chytrid pathogenic to amphibians. Mycologia. 1999;91:219–27.
Article
Google Scholar
Maier PA. Evolutionary past, present, and future of the Yosemite toad (Anaxyrus canorus): A total evidence approach to delineating conservation units. San Diego: Ph.D. dissertation, Department of Evolutionary Biology, University of California Riverside and San Diego State University; 2018.
Google Scholar
Martin TL, Huey RB. Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat. 2008;171:E102–18.
Article
PubMed
Google Scholar
May RM, Anderson RM. Population biology of infectious diseases: part II. Nature. 1979;280:455.
Article
CAS
PubMed
Google Scholar
Mitchell KM, Churcher TS, Garner TW, Fisher MC. Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction. Proc R Soc Lond B Biol Sci. 2008;275:329–34.
Article
Google Scholar
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, Rohr JR, Ryan SJ, Savage V, Shocket MS, Sippy R. Thermal biology of mosquito-borne disease. Ecol Lett. 2019. https://doi.org/10.1111/ele.13335.
Article
PubMed
PubMed Central
Google Scholar
Mosher BA, Huyvaert KP, Bailey LL. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen. Oecologia. 2018;188:319–30.
Article
PubMed
Google Scholar
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1982;65:55–63.
Article
Google Scholar
Mullally DP, Cunningham JD. Aspects of the thermal ecology of the Yosemite toad. Herpetologica. 1956;12:57–67.
Google Scholar
Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KP, Harris RN. Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol. 2012;38:958–65.
Article
PubMed
Google Scholar
Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci. 2010;107:15135–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB. Temperature variation makes ectotherms more sensitive to climate change. Global Chang Biol. 2013;19:2373–80.
Article
Google Scholar
Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, et al. Climate change 2014: synthesis report. Geneva: Intergovernmental Panel on Climate Change (IPCC); 2014.
Google Scholar
Pessier AP, Nichols DK, Longcore JE, Fuller MS. Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White’s tree frogs (Litoria caerulea). J Vet Diagn Investig. 1999;11:194–9.
Article
CAS
Google Scholar
Pinheiro JC, Bates DM. Mixed-effects models in S and S-Plus. NY: Springer; 2000.
Book
Google Scholar
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. (2018) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme.
Piotrowski JS, Annis SL, Longcore JE. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia. 2004;96:9–15.
Article
PubMed
Google Scholar
Plytycz B, Jozkowicz A. Differential effects of temperature on macrophages of ectothermic vertebrates. J Leukocyte Biol. 1994;56:729–31.
Article
Google Scholar
R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ. Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol. 2006;20:819–28.
Article
Google Scholar
Raffel TR, Romansic JM, Halstead NT, McMahon TA, Venesky MD, Rohr JR. Disease and thermal acclimation in a more variable and unpredictable climate. Nat Clim Change. 2013;3:146.
Article
Google Scholar
Reece SE, Ramiro RS, Nussey DH. Plastic parasites: sophisticated strategies for survival and reproduction? Evol Appl. 2009;2:11–23.
Article
PubMed
PubMed Central
Google Scholar
Richards-Zawacki CL. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc R Soc Lond B Biol Sci. 2010;277:519–28.
Article
Google Scholar
Rohr JR, Dobson AP, Johnson PT, Kilpatrick AM, Paull SH, Raffel TR, Thomas MB. Frontiers in climate change–disease research. Trends Ecol Evol. 2011;26:270–7.
Article
PubMed
PubMed Central
Google Scholar
Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol. 2002;26:471–9.
Article
CAS
PubMed
Google Scholar
Rollins-Smith LA, Woodhams DC, Reinert LK, Vredenburg VT, Briggs CJ, Nielsen PF, Conlon JM. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev Comp Immunol. 2006;30:831–42.
Article
CAS
PubMed
Google Scholar
Rollins-Smith LA, Woodhams DC. Amphibian immunity: Staying in tune with the environment. In: Demas GE, Nelson RJ, editors. Ecoimmunology. New York: Oxford University Press; 2012. p. 92–143.
Google Scholar
Rowley JJ, Alford RA. Hot bodies protect amphibians against chytrid infection in nature. Sci Rep. 2013;3:1515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–63.
Article
CAS
PubMed
Google Scholar
Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125.
Article
Google Scholar
Stearns SC. Trade-offs in life-history evolution. Funct Ecol. 1989;3:259–68.
Article
Google Scholar
Stevenson LA, Alford RA, Bell SC, Roznik EA, Berger L, Pike DA. Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE. 2013;8:e73830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson RM, Beardall J, Beringer J, Grace M, Sardina P. Means and extremes: building variability into community-level climate change experiments. Ecol Lett. 2013;16:799–806.
Article
PubMed
Google Scholar
Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF. Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol. 2015;31:149–59.
Article
PubMed
Google Scholar
Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI. Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc Lond B Biol Sci. 2014;281:20132612.
Article
Google Scholar
Voyles J. Phenotypic profiling of Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians. Fungal Ecol. 2011;4:196–200.
Article
Google Scholar
Voyles J, Johnson LR, Briggs CJ, Cashins SD, Alford RA, Berger L, Skerratt LF, Speare R, Rosenblum EB. Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians. Ecol Evol. 2012;2:2241–9.
Article
PubMed
PubMed Central
Google Scholar
Voyles J, Vredenburg VT, Tunstall TS, Parker JM, Briggs CJ, Rosenblum EB. Pathophysiology in mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS ONE. 2012;7:e35374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voyles J, Johnson LR, Rohr J, Kelly R, Barron C, Miller D, Minster J, Rosenblum EB. Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia. 2017;184:363–73.
Article
PubMed
PubMed Central
Google Scholar
Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci. 2010;107:9689–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watters JL, McMillin SL, Marhanka EC, Davis DR, Farkas JK, Kerby JL, Siler CD. Seasonality in Batrachochytrium dendrobatidis detection in amphibians in central Oklahoma, USA. J Zoo Wildl Med. 2019;50:492–7.
Article
PubMed
Google Scholar
Woodhams DC, Alford RA, Marantelli G. Emerging disease of amphibians cured by elevated body temperature. Dis of Aquat Org. 2003;55:65–7.
Article
Google Scholar
Woodhams DC, Vredenburg VT, Simon MA, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN. Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv. 2007;138:390–8.
Article
Google Scholar
Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA. Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology. 2008;89:1627–39.
Article
PubMed
Google Scholar