Süss J, Schrader C. Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa: Teil I: Zecken und Viren. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz. 2004;47:392–404.
Article
PubMed
Google Scholar
Rauter C, Hartung T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a meta-analysis. Appl Environ Microbiol. 2005;71:7203–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn RR. Global mapping of ecosystem disservices: the unspoken reality that nature sometimes kills us. Biotropica. 2010;42:555–7.
Article
Google Scholar
Decocq G, Andrieu E, Brunet J, Chabrerie O, De Frenne P, De Smedt P, et al. Ecosystem services from small forest patches in agricultural landscapes. Curr For Rep. 2016;2:30–44.
Google Scholar
World Health Organization. The vector-borne human infections of Europe: their distribution and burden on public health. Copenhagen: WHO Regional Office for Europe; 2004. http://apps.who.int/iris/handle/10665/107548.
Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites Vectors. 2012;5:1–15.
Article
Google Scholar
Korotkov Y, Kozlova T, Kozlovskaya L. Observations on changes in abundance of questing Ixodes ricinus, castor bean tick, over a 35-year period in the eastern part of its range (Russia, Tula region). Med Vet Entomol. 2015;29:129–36.
Article
PubMed
Google Scholar
Estrada-Peña A. Ticks as vectors: taxonomy, biology and ecology. Rev Sci Tech. 2015;34:53–65.
Article
PubMed
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6:1–11.
Article
PubMed
PubMed Central
Google Scholar
Pfäffle M, Littwin N, Muders SV, Petney TN. The ecology of tick-borne diseases. Int J Parasitol. 2013;43:1059–77.
Article
PubMed
Google Scholar
Schwarz A, Maier WA, Kistemann T, Kampen H. Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. Int J Hyg Environ Health. 2009;212:87–96.
Article
PubMed
Google Scholar
Lauterbach R, Wells K, Hara RBO, Elisabeth KVK, Renner SC. Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests. PLoS ONE. 2013;8:1–7.
Article
Google Scholar
Tagliapietra V, Rosà R, Arnoldi D, Cagnacci F, Capelli G, Montarsi F, et al. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet Parasitol. 2011;183:114–24.
Article
CAS
PubMed
Google Scholar
Tack W, Madder M, Baeten L, De Frenne P, Verheyen K. The abundance of Ixodes ricinus ticks depends on tree species composition and shrub cover. Parasitology. 2012;139:1273–81.
Article
CAS
PubMed
Google Scholar
Haddad NM, Brudvig LA, Clobert J, Davis KF, Gonzales A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1:1–9.
Article
Google Scholar
Estrada-Peña A, Venzal JM, Sánchez Acedo C. The tick Ixodes ricinus: distribution and climate preferences in the western Palaearctic. Med Vet Entomol. 2006;20:189–97.
Article
PubMed
Google Scholar
Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32:979–89.
Article
PubMed
Google Scholar
Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA. Microhabitats reduce animal’s exposure to climate extremes. Global Change Biol. 2014;20:495–503.
Article
Google Scholar
Gray JS. A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Exp Appl Acarol. 1985;1:35–44.
Article
CAS
PubMed
Google Scholar
Falco RC, Fish D. Horizontal Movement of adult Ixodes dammini (Acari: Ixodidae) attracted to CO2-baited traps. J Med Entomol. 1991;28:726–9.
Article
CAS
PubMed
Google Scholar
Schulze TL, Jordan RA. Influence of meso- and microscale habitat structure on focal distribution of sympatric Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 2005;42:285–94.
Article
PubMed
Google Scholar
Kollmann J, Buschor M. Edges effects on seed predation by rodents in deciduous forests of northern Switzerland. Plant Ecol. 2002;164:249–61.
Article
Google Scholar
Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr. 2013;40:1649–63.
Article
Google Scholar
Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett. 2011;14:101–12.
Article
PubMed
Google Scholar
Flowerdew JR, Ellwood SA. Impacts of woodland deer on small mammal ecology. Forestry. 2001;74:277–87.
Article
Google Scholar
Šálek M, Červinka J, Pavluvčík P, Poláková S, Tkadlec E. Forest-edge utilization by carnivores in relation to local and landscape habitat characteristics in central European farmland. Mamm Biol Z Für Säugetierkd. 2014;79:176–82.
Article
Google Scholar
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006;21:178–85.
Article
PubMed
Google Scholar
Estrada-Peña A. The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography. 2003;5:661–71.
Article
Google Scholar
Tack W, Madder M, Baeten L, Vanhellemont M, Gruwez R, Verheyen K. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For Ecol Manag. 2012;265:30–6.
Article
Google Scholar
Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, et al. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasites Vectors. 2016;9:1–18.
Article
Google Scholar
Liira J, Sepp T, Parrest O. The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manag. 2007;250:34–46.
Article
Google Scholar
Graae BJ, Sunde PB. The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography. 2000;23:720–31.
Article
Google Scholar
Wirth C, Gleixner G, Heimann M, editors. Old-growth forests: function, fate, and value. Berlin: Springer; 2009.
Google Scholar
Mejlon HA, Jaenson TGT. Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol. 1997;21:747–54.
Article
Google Scholar
Lindström A, Jaenson TGT. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in Southern Sweden. J Med Entomol. 2003;40:375–8.
Article
PubMed
Google Scholar
Randolph SE, Storey K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol. 1999;36:741–8.
Article
CAS
PubMed
Google Scholar
Nakazawa T. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul Ecol. 2015;57:347–54.
Article
Google Scholar
Valdés A, Lenoir J, Gallet-Moron E, Andrieu E, Brunet J, Chabrerie O, et al. The contribution of patch-scale conditions is greater than that of macroclimate in explaining local plant diversity in fragmented forests across Europe: drivers of herbaceous species diversity in fragmented forests. Global Ecol Biogeogr. 2015;24:1094–105.
Article
Google Scholar
Tack W, Madder M, De Frenne P, Vanhellemont M, Gruwez R, Verheyen K. The effects of sampling method and vegetation type on the estimated abundance of Ixodes ricinus ticks in forests. Exp Appl Acarol. 2011;54:285–92.
Article
PubMed
Google Scholar
Babos S. Die Zeckenfauna Mitteleuropas. Budapest: Akadémiai Kiadó; 1964.
Google Scholar
McElhinny C, Gibbons P, Brack C, Bauhus J. Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag. 2005;218:1–24.
Article
Google Scholar
Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY—a global database of plant traits. Global Change Biol. 2011;17:2905–35.
Article
Google Scholar
Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol. 2008;96:1266–74.
Article
Google Scholar
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.
Article
CAS
PubMed
Google Scholar
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
Article
Google Scholar
Hulme PE, Kollmann J. Seed predator guilds, spatial variation in post-dispersal seed predation and potential effects on plant demography: a temperate perspective. In: Forget P-M, Lambert JE, Hulme PE, Vander Wall SB, editors. Seed fate-predation dispersal seedling establishment. Wallingford: CABI Pub; 2005.
Google Scholar
Vesterdal L, Raulund-Rasmussen K. Forest floor chemistry under seven tree species along a soil fertility gradient. Can J For Res. 1998;28:1636–47.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. http://www.r-project.org.
Revelle W. psych: procedures for psychological, psychometric, and personality research. 2016. https://cran.r-project.org/web/packages/psych/index.html.
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest—tests in linear mixed effects models; 2016. https://cran.r-project.org/web/packages/car/index.html.
Breheny P, Burchett W. Visualization of regression models using visreg, vol. 10. Lexington: University of Kentucky; 2012.
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2009. http://ggplot2.org.
Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev. 2011;6:135–47.
Article
Google Scholar
Ehrmann S. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes—documentation of R-code. doi:10.5281/zenodo.854658. https://github.com/EhrmannS/2017_BMC-Ecol_Environmental-Drivers-of-Ixodes. Accessed 30 Aug 2017.
Perret J-L, Rais O, Gern L. Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol. 2004;41:361–5.
Article
PubMed
Google Scholar
De Frenne P, Rodriguez-Sanchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, et al. Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci. 2013;110:18561–5.
Article
PubMed
PubMed Central
Google Scholar
von Arx G, Dobbertin M, Rebetez M. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol. 2012;166–167:144–55.
Article
Google Scholar
Brugger K, Boehnke D, Petney T, Dobler G, Pfeffer M, Silaghi C, et al. A density map of the Tick-Borne Encephalitis and Lyme Borreliosis Vector Ixodes ricinus (Acari: Ixodidae) for Germany. J Med Entomol. 2016;53:1–11.
Article
Google Scholar
De Frenne P, Verheyen K. Weather stations lack forest data. Science. 2016;351:667–700.
Article
Google Scholar
Lenoir J, Hattab T, Pierre G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography. 2017;40:253–66.
Article
Google Scholar
Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003;34:487–515.
Article
Google Scholar
Morellet N, Moorter B, Cargnelutti B, Angibault J-M, Lourtet B, Merlet J, et al. Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landsc Ecol. 2011;26:999–1010.
Article
Google Scholar
Fahrig L. Non-optimal animal movement in human-altered landscapes. Funct Ecol. 2007;21:1003–15.
Article
Google Scholar
Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 2006;4:e145.
Article
PubMed
PubMed Central
Google Scholar
Dobson ADM, Taylor JL, Randolph SE. Tick (Ixodes ricinus) abundance and seasonality at recreational sites in the UK: hazards in relation to fine-scale habitat types revealed by complementary sampling methods. Ticks Tick-Borne Dis. 2011;2:67–74.
Article
PubMed
Google Scholar
Kuijper DPJ, Cromsigt JPGM, Churski M, Adam B, Jedrzejewska B, Jedrzejewski W. Do ungulates preferentially feed in forest gaps in European temperate forest? For Ecol Manag. 2009;258:1528–35.
Article
Google Scholar
Heinze E, Boch S, Fischer M, Hessenmöller D, Klenk B, Müller J, et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For Ecol Manag. 2011;261:288–96.
Article
Google Scholar
Haskell JP, Ritchie ME, Olff H. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature. 2002;418:527–30.
Article
CAS
PubMed
Google Scholar
Kurtenbach K, De Michelis S, Etti S, Schäfer SM, Sewell H-S, Brade V, et al. Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2002;10:74–9.
Article
CAS
PubMed
Google Scholar
Ruyts SC, Ampoorter E, Coipan EC, Baeten L, Heylen D, Sprong H, et al. Diversifying forest communities may change Lyme disease risk: extra dimension to the dilution effect in Europe. Parasitol. 2016;143:1–10.
Article
Google Scholar
ECDC VBORNET. Ixodes ricinus-January 2016 known distribution. Tick species-distribution Maps. 2016. http://ecdc.europa.eu/en/healthtopics/vectors/vector-maps/Pages/VBORNET-maps-tick-species.aspx.