Oerke EC. Crop losses to pests. J Agric Sci. 2006;144:31–43.
Article
Google Scholar
Hatfield J, Takle G, Grotjahn R, Holden P, Izaurralde RC, Mader T, et al. Ch. 6: Agriculture. In: Melillo JM, Richmond TC, Yohe GW, editors. Climate change impacts in the United States: the third national climate assessment. U.S. global change research program. 2014. p. 150–174. doi:10.7930/J02Z13FR.
Porter JH, Parry ML, Carter TR. The potential effects of climatic change on agricultural insect pests. Agric For Meteorol. 1991;57:221–40.
Article
Google Scholar
Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, et al. Will extreme climatic events facilitate biological invasions? Front Ecol Environ. 2012;10:249–57.
Article
Google Scholar
Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F. Will climate change promote future invasions? Glob Change Biol. 2013;19:3740–8.
Article
Google Scholar
Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc Biol Sci. 2007;274:2531–7.
Article
PubMed
PubMed Central
Google Scholar
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hubner S, et al. What we still don’t know about invasion genetics. Mol Ecol. 2015;24:2277–97.
Article
PubMed
Google Scholar
Steck GJ, Dixon W, Dean D. Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophiladae), a new pest to North America. Pest Alerts. 2009; DACS-P-01674. http://www.freshfromflorida.com/pi/pest-alerts/pdf/drosophila-suzukii.pdf.
Cini A, Ioriatti C, Anfora G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol. 2012;65:149–60.
Google Scholar
Goodhue RE, Bolda M, Farnsworth D, Williams JC, Zalom FG. Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs. Pest Manag Sci. 2011;67:1396–402.
Article
CAS
PubMed
Google Scholar
Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integ Pest Mngmt. 2011;2:1–7.
Article
Google Scholar
Burrack HJ, Smith JP, Pfeiffer DG, Koeher G, Laforest J. Using volunteer-based networks to track Drosophila suzukii (Diptera: Drosophilidae) an invasive pest of fruit crops. J Integ Pest Mngmt. 2012;4:1–5.
Article
Google Scholar
Asplen MK, Anfora G, Biondi A, Choi D, Chu D, Daane KM, et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci. 2015;88:469–94.
Article
Google Scholar
Bolda MP, Goodhue RE, Zalom FG. Spotted wing drosophila: potential economic impact of a newly established pest. Agric Resour Econ Update. 2010;13:5–8.
Google Scholar
Isaacs R, Hahn N, Tritten B, Garcia C. Spotted wing drosophila: a new invasive pest of Michigan fruit crops. East Lansing: Michigan State University Extension; 2010. p. E3140.
Google Scholar
Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, et al. Linking genomics and ecology to unveil the complex evolution of an invasive Drosophila pest. Genome Biol Evol. 2013;5:745–57.
Article
PubMed
PubMed Central
Google Scholar
Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci. 2011;67:1368–74.
Article
CAS
PubMed
Google Scholar
Jakobs R, Gariepy TD, Sinclair BJ. Adult plasticity of cold tolerance in a cool-temperate population of Drosophila suzukii. J Insect Physiol. 2015;79:1–9.
Article
CAS
PubMed
Google Scholar
Teets NM, Denlinger DL. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol. 2013;38:105–16.
Article
CAS
Google Scholar
Koštál V, Simunkova P, Kobelkova A, Shimada K. Cell cycle arrest as a hallmark of insect diapause: changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Insect Biochem Mol Biol. 2009;39:875–83.
Article
PubMed
Google Scholar
Hahn DA, Denlinger DL. Energetics of insect diapause. Annu Rev Entomol. 2011;56:103–21.
Article
CAS
PubMed
Google Scholar
Nylin S. Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration. Physiol Entomol. 2013;38:96–104.
Article
PubMed
PubMed Central
Google Scholar
Bean DW, Dalin P, Dudley TL. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl. 2012;5:511–23.
Article
PubMed
PubMed Central
Google Scholar
Urbanski J, Mogi M, O’Donnell D, DeCotiis M, Toma T, Armbruster P. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat. 2012;179:490–500.
Article
PubMed
Google Scholar
Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M. Seasonal gene expression kinetics between diapauses phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep. 2015;5:11197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt PS, Matzkin LM, Ippolito M, Eanes WF. Geographic variation in diapauses incidence, life history traits and climatic adapation in Drosophila melanogaster. Evolution. 2005;59:1721–32.
Article
PubMed
Google Scholar
Schmidt PS, Paaby AB. Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution. 2008;62:1204–15.
Article
PubMed
Google Scholar
Kimura MT. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distribution. Oecologia. 2004;140:442–9.
Article
PubMed
Google Scholar
Mitsui H, Beppu K, Kimura MT. Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Ent Sci. 2010;13:60–7.
Article
Google Scholar
Koštál V, Korbelová J, Rozsypal J, Zahradníčková H, Cimlová J, Tomčala A, et al. Long-term cold acclimation extends survival time at 0 °C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS One. 2011;6:e25025.
Article
PubMed
PubMed Central
Google Scholar
Vesala L, Salminen TS, Koštál V, Zahradníčková H, Hoikkala A. Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. J Exp Biol. 2012;215:2891–7.
Article
CAS
PubMed
Google Scholar
Hariharan R, Hoffman JM, Thomas AS, Soltow QA, Jones DP, Promislow DE. Invariance and plasticity in the Drosophila melanogaster metabolomics network in response to temperature. BMC Syst Biol. 2014;8:139.
Article
PubMed
PubMed Central
Google Scholar
Pedersen KS, Kristensen TN, Loeschcke V, Petersen BO, Duus JO, Nielsen NC, et al. Metabolic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics. 2008;180:1233–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overgaard J, Malmendal A, Sorensen JG, Bundy JG, Loeschcke V, Nielson NC, Holmstrup M. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J Insect Physiol. 2007;53:1218–32.
Article
CAS
PubMed
Google Scholar
Ohtsu TM, Kimura T, Katagiri C. How Drosophila species acquire cold tolerance. Eur J Biochem. 1998;252:608–11.
Article
CAS
PubMed
Google Scholar
Burton V, Mitchell HK, Young P, Petersen NS. Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Bio. 1988;8:3550–2.
Article
CAS
Google Scholar
Ragland GJ, Denlinger DL, Hahn DA. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. PNAS. 2010;107:14909–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vesala L, Salminen TS, Laiho A, Hoikkala A, Kankare M. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Mol Biol. 2012;21:107–18.
Article
CAS
PubMed
Google Scholar
Harris RM, McQuillan P, Hughes L. A test of the thermal melanism hypothesis in the wingless grasshopper Phaulacridium vittatum. J Insect Sci. 2013;13:51.
Article
PubMed
PubMed Central
Google Scholar
Trullas SC, van Wyk JH, Spotila JR. Thermal melanism in ectotherms. J Therm Bio. 2007;32:235–45.
Article
Google Scholar
Kutch IC, Sevgill H, Wittman T, Fedorka KM. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J Exp Biol. 2014;217:3664–9.
Article
PubMed
Google Scholar
Fedorka KM, Lee V, Winterhalter WE. Thermal environment shapes cuticle melanism and melanin-based immunity in the ground cricket Allonemobius socius. Evol Ecol. 2013;27:521–31.
Article
Google Scholar
Parkash R, Singh S, Ramniwas S. Seasonal changes in humidity level in the tropics impact body color polymorphism and desiccation resistance in Drosophila jambulina—Evidence for melanism-desiccation hypothesis. J Insect Physiol. 2009;55:358–68.
Article
CAS
PubMed
Google Scholar
Nielsen ME, Papaj DR. Effects of developmental change in body size on ectotherm body temperature and behavioral thermoregulation: caterpillars in a heat-stressed environment. Oecologia. 2015;77:171–9.
Article
Google Scholar
Czarnoleski M, Cooper BS, Kierat J, Angilletta MJ. Flies developed small bodies and small cells in warm and in thermally fluctuating environments. J Exp Biol. 2013;216:2896–901.
Article
PubMed
PubMed Central
Google Scholar
Ghosh SM, Testa ND, Shingleton AW. Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc R Soc B. 2013;280:1–8.
Article
Google Scholar
Angilletta MJ Jr, Dunham AE. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat. 2003;162:332–42.
Article
PubMed
Google Scholar
Partridge L, Barrie B, Fowler K, French V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution. 1994;48:1269–76.
Article
Google Scholar
Karan D, Morin JP, Moreteau B, David JR. Body size and developmental temperature in Drosophila melanogaster: analysis of body weight reaction norm. J Therm Biol. 1998;23:301–9.
Article
Google Scholar
Atkinson D, Sibly RM. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol. 1997;12:235–9.
Article
CAS
PubMed
Google Scholar
Shelomi M. Where are we now? Bergmann’s rule sensu lato in insects. Am Nat. 2012;180:511–9.
Article
PubMed
Google Scholar
Moczek AP. Phenotypic plasticity and diversity in insects. Philos Trans R Soc Lond B Biol Sci. 2010;365(1540):593–603.
Article
PubMed
PubMed Central
Google Scholar
Stephens AR, Asplen MK, Hutchison WD, Venette RC. Cold hardiness of winter-acclimated Drosophila
suzukii (Diptera: Drosophilidae) adults. Environ Entomol. 2015;44(6):1619–26.
Article
CAS
PubMed
Google Scholar
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.
Article
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Kanzawa T. Researctrh into the fruit-fly Drosophila suzukii Matsumura (preliminary report). Kofu: Agricultural Experiment Station; 1935. p. 42.
Google Scholar
Hodek I. Adult diapause in Coleoptera. Psyche. 2012;. doi:10.1155/2012/249081.
Google Scholar
Wang Z, Liu R, Wang A, Du L, Deng X. Phototoxic effect of UVR on wild type, ebony and yellow mutants of Drosophila melanogaster: life span, fertility, courtship and biochemical aspects. Sci China Ser C Life Sci Chin Acad Sci. 2008;51:885–93.
Article
CAS
Google Scholar
Bastide H, Yassin A, Johanning EJ, Pool JE. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol Biol. 2014;14:179.
Article
PubMed
PubMed Central
Google Scholar
Stillman JH. Acclimation capacity underlies susceptibility to climate change. Science. 2003;301(5629):64.
Article
Google Scholar
Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, et al. Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One. 2014;9:e106909.
Article
PubMed
PubMed Central
Google Scholar
Tochen S, Dalton DT, Wiman NG, Hamm C, Shearer PW, Walton VM. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol. 2014;43:501–10.
Article
PubMed
Google Scholar
Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R. On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res. 2015;5(1):41–8.
Google Scholar
Nyamukondiwa C, Terblanche JS. Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. Physiol Entomol. 2010;35(3):255–64.
Article
Google Scholar
Bao B, Xu W. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genom. 2011;12:224.
Article
CAS
Google Scholar
Baker DA, Russell S. Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genom. 2009;10:242.
Article
Google Scholar
Gaudet G, Forano E, Dauphin G, Delort A. Futile cycling in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation. Eur J Biochem. 1992;207:155–62.
Article
CAS
PubMed
Google Scholar
Staples JF, Koen EL, Laverty TM. ‘Futile Cycle’ enzymes in the flight muscles of North American bumblebees. J Exp Bio. 2004;207:749–54.
Article
CAS
Google Scholar
Boggs CL. Understanding insect life histories and senescence through a resource allocation lens. Func Ecol. 2009;23(1):27–37.
Article
Google Scholar
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, et al. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol. 2008;8:182.
Article
Google Scholar
Clark MS, Thorne MAS, Purac J, Burns G, Hillyard G, Popovic ZD, et al. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genom. 2009;10:328.
Article
Google Scholar
Parkash R, Kalra B, Sharma V. Changes in cuticular lipids, water loss and desiccation resistance in a tropical Drosophilid: analysis of variation between and within populations. Fly. 2008;2:189–97.
Article
PubMed
Google Scholar
AgriMet cooperative agricultural weather network. http://www.usbr.gov/pn/agrimet/webarcread.html. Accessed 8 Sept 2015.
Astronomical application department of the USA. Naval observatory. http://www.aa.usno.navy.mil/data/docs/Dur_OneYear.php. Accessed 8 Feb 2016.
Robertson FW, Reeve ECR. Studies in quantitative inheritance. I. The effects of selection for wing and thorax length in Drosophila melanogaster. J Genet. 1952;50:416–48.
Article
Google Scholar
Sokoloff A. Morphological variation in natural and experimental populations of Drosophila pseudoobscura and Drosophila persimilis. Evolution. 1966;20:49–71.
Article
Google Scholar
Gilchrist GW, Huey RB, Serra L. Rapid evolution of wing size clines in Drosophila subobscura. Genetica. 2001;112–113:273–86.
Article
PubMed
Google Scholar
Pegueroles G, Papaceit M, Quintana A, Guillén A, Prevosti A, Serra L. An experimental study of evolution in progress: clines for quantitative traits in colonizing and Palearctic populations of Drosophila. Evol Ecol. 1995;9:453–65.
Article
Google Scholar
SAS Institute. SAS user’s guide. Version 9.4. Cary: SAS Institute; 2014.
Google Scholar
Zar JH. Biostatistical Analysis. Englewood Cliffs: Prentice Hall; 1984.
Google Scholar
Chiu JC, Jiang X, Zhao L, Hamm CA, Cridland JM, Saelao P, et al. Genome of Drosophila suzukii, the spotted wing Drosophila. G3 (Bethesda). 2013;3:2257–71.
Article
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goff L, Trapnell C, Kelley D. cummeRbund: analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data. R package version 2.10.0. 2013.