Our findings are consistent with the view emerging from the field of macroecology, and from ecology in general, that much apparent local community structure may be attributed to processes that act on much larger scales than the immediate local community, and influence local communities through the dispersal of individuals across the wider landscape [14–16, 20, 22, 23]. They are also in keeping with findings from both sides of a long-running debate over the use of null models in the analysis of community structure [24–29]; although the effects of species interactions can be readily demonstrated using null models for pairs of species or narrowly defined guilds, these effects have been hard to detect when analysis is carried out at the level of the whole community [30] although more powerful recent analyses have succeeded [31, 32]. To us this indicates that whole community structure is largely dominated by the influence of the regional species pool; with local processes adding the finer detail. Null models that reflect this can generate much of the structure observed in local assemblages.
Both the random draw and locally neutral models reproduce the Eastern Wood assemblage with a surprising degree of accuracy when it is considered that Eastern Wood comprises just 0.0014% of the British deciduous/mixed woodland of which the regional pool consists [statistic from [19]]. When differences in the number of species selected are accounted for, the accuracies of the random draw and neutral models, in terms of correctly predicting the identities of the species inhabiting Eastern Wood, are almost identical (Table 1), as are species' mean predicted abundances (see Additional file 1). This is to be expected, as both models use the same regional source pool and the expected abundance of a given species in a replicate of either model is determined by its relative abundance in the source pool. Differences between the models arise because the local recruitment present in the neutral model allows species to spend a greater proportion of time away from their expected local population size, and to drift away from this expected population size to a greater degree.
The neutral model's superiority as a null model comes not then from closer estimates of mean species abundances, or a greater mean percentage correspondence in species composition, but rather from a more accurate representation of temporal patterns of species' presence and abundance in the local community. A replicate of the random draw model consists of 29 independent samples of 340 individuals from the regional pool: there is no continuity between communities from one year to the next. A replicate of the neutral model on the other hand consists of 29 annual communities that are correlated through time as a result both of shared individuals (as only part of the community is replaced each year) and local recruitment (new individuals are assigned to species according the local relative abundances of species already present in the local community). Species that are relatively rare in the regional pool appear less frequently in the neutral model (in fewer replicates) because there are fewer immigration events from the regional pool, and hence lower annual and 29-year species richnesses. When these rare species do immigrate from the regional pool, they can persist for a number of years because the entire community is not replaced each year. They can also increase in local abundance because replacements are made from the local community, where the rare species in question has a temporarily elevated relative abundance and hence an increased probability of selection (see also Hubbell 2001).
The abundances of all species show reduced year-to-year variability within replicates of the neutral model due to the temporal correlation in community composition described above. However, their abundances between replicates are more variable for the same reason. Whereas in the random draw model any unusually high or low abundances are averaged out over 29 independent samples, in the neutral model if a species is unusually abundant in one year, it is likely to remain so in subsequent years (e.g. Figure 3). It is this realistic level of inter-replicate variation, brought about by the incorporation of basic demographic rates, that makes the neutral model a better candidate for a null model of woodland bird communities in England. We would not expect two woodlands to have identical avifaunas, and neither would we expect the same woodland to contain the same avifauna during separate time periods. Therefore, the best null model is not one that generates a mean avifauna identical to that of any one specific woodland, but rather a model that will produce a distribution of expectations within which the majority of woodland avifaunas fall.
The values for the proportion of immigrants, m = 0.34, and the death rate, d = 0.22, used to calibrate the neutral model were those that resulted in accurate estimates of annual and 29-year species richness. These values can be thought of as an average for all the species present in the woodland (see also below), and since most estimates of such parameters are for individual species, it is therefore difficult to assess to what degree they are realistic. Nevertheless, reported annual death rates for small-bodied bird species are usually greater than the 0.22 used here: 0.35–0.70 for small bodied land-birds [33], and a mean of 0.48 with range 0.37–0.71 for European passerines [34]. Likewise, the two reported estimates that we found in the literature of the proportion of new recruits to woodlands that were immigrants were also higher than the 0.34 used here, albeit that both referred to great tits, Parus major: 0.46 in Wytham Wood [35] and 0.69 ± 0.15 (1 S.D.) on Vlieland Island, Holland [[36]: cited in Gill, 1999].
Using values for m and d that are closer to these observed values does not result in wildly inaccurate estimates of species richness (Figure 1). Nevertheless, we used values that produced the best fit as there is reason to believe that estimates of required immigration rate and death rate will be systematically underestimated by the model. The real species pool from which Eastern Wood receives immigrants is spatially structured: species distributions are patchy at the national scale [37]. Related to this, the species compositions of woodlands become more distinct the further they are apart [38]. Frequency distributions of both natal and breeding dispersal distance are highly right-skewed [39] so that an immigrant to a real woodland is much more likely to have come from a nearby woodland with a similar species composition, than from a distant one with a more distinct species composition. A limitation of both the random draw and locally neutral models is that they use a non-spatial regional species pool, such that either the species populations are assumed to be evenly distributed across the region for which the species pool is compiled (in this case Britain), or immigrants are equally likely to arrive from all points across the region. A given number of immigrant individuals probably produce more new species in the non-spatial model than they would if spatial structure in the pool was taken into account, because they are drawn with equal probability from the whole of Britain, rather than preferentially from local, similar, woodlands. This will have the effect of lowering both the death rate and proportion of immigrants required by the model to produce the observed species richnesses.
Whilst the locally neutral model seems to provide an acceptable first order explanation for the observed community structure of the Eastern Wood breeding bird community, it makes at least two assumptions that seem hard to justify in the context of a bird assemblage comprising species from different feeding guilds and trophic levels. First, this neutral model, along with those of Hubbell and Bell [40–42], operate under what Hubbell has termed "zero-sum dynamics". This means that there is a hard upper limit to the total number of individuals that can be present in the community – in this case, 340. Once this limit is reached, any increase in the abundance of one species must be offset by corresponding decreases in the abundance of one or more other species: changes in abundance summed across all species must equal zero. Hence, if a particular species is unusually abundant in one replicate sample of individuals, it follows that the other species must have correspondingly lower abundances. The biological interpretation of zero-sum dynamics is that all species in the community are competing for a common resource, such as food or nesting sites. This seems unlikely in an assemblage such as the avifauna of Eastern Wood, which contains species with lifestyles as different as hawks (Accipitridae), woodpeckers (Picidae) and tits (Paridae). Nevertheless, all random draw based methods that select a predetermined number of individuals for generating a null community contain the same assumption. Therefore, the neutral model is no less justifiable than more conventional random draw null model techniques in this respect.
The second unlikely assumption of neutral models is that all the species have equal per capita demographic rates of birth, death and migration. Interspecific differences in the birth and death rates of British birds are well documented [e.g. [34, 43–45]], while differences in species longevity and site fidelity suggest that migration rates may also differ between species. However, while this assumption may be unrealistic, it is an intentional feature of the neutral modelling approach. Neutral models are defined as treating all species as identical on a per capita basis [42]. It is this that makes them 'null', with respect to interspecific differences in the interaction of individuals with their local environment, both abiotic and biotic. The question here is less whether or not this assumption is likely to be true (it is not), but more whether it leads to unrealistic predictions of community structure. That it does not suggests that interspecific variation in demographic rates is not an important influence on community structure, and that the assumption of 'average' rates is sufficient.
It is important to be clear at what spatial and temporal scales and at what level of habitat specificity these models are indeed neutral. The definition of a woodland species pool is an admission that habitat features are important determinants of species composition. Only those species known to breed in woodland in Britain have been included. Thus, at a very low resolution of habitat classification the model does recognise species differences, as it excludes all those not known to breed in woodland. It is at higher resolutions of habitat classification that the model is neutral. There are many documented examples of species with associations to particular types of woodland or woodland feature [46]. It is this type of association that is excluded from the model.
Both the locally neutral and random draw models take as their major input estimates, gained through fieldwork, of the British breeding population sizes of those species present in the regional pool. The processes that have led to those species obtaining the abundances they have are not controlled for in the model. There is therefore a risk that the very processes with respect to which the model is supposed to be null are actually intrinsic to the data upon which the model is built. This is the "Narcissus effect" [47] whereby null models are constructed by sampling from a regional pool that is already post-competitive: that is, the effects of competition are already reflected in the abundances of the species present in the pool, and in those species that are absent from the pool, the 'ghosts of competition past' [48]. Therefore, whilst the model is neutral with regard to processes occurring at the scale of the local community it is not necessarily so with regard to processes occurring at the regional level.
In assessing the success or otherwise of the neutral model developed here, the conclusion drawn depends on what it is that we seek to achieve in pursuing this line of research. If the aim were to develop a model that could accurately predict the particular community structure of Eastern Wood, then success would have to be judged as limited. The neutral model is only marginally better at this than the random draw model. Moreover, the greater success of the neutral model derives in part because its abundance predictions are less precise, providing more variation within which to encompass the values observed for species in Eastern Wood. However, it is just this variation that would seem to make the neutral model a superior candidate for a first order model of the structure of woodland bird communities in Britain in general.