Reed DH: Extinction risk in fragmented habitats. Animal Conserv. 2004, 7: 181-191.
Google Scholar
Zhu L, Zhang S, Gu X, Wei F: Significant genetic boundaries and spatial dynamics of giant pandas occupying fragmented habitat across southwest China. Mol Ecol. 2011, 20: 1122-1132.
PubMed
Google Scholar
Gottelli D, Sillero-Zubiri C, Marino J, Funk SM, Wang J: Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Animal Conserv. 2012, 16: 234-247.
Google Scholar
Miller BF, DeYoung RW, Campbell TA, Laseter BR, Ford WM, Miller KV: Fine-scale genetic and social structuring in a central Appalachian white-tailed deer herd. J Mammal. 2010, 91: 681-689.
Google Scholar
Wolf JBW, Trillmich F: Beyond habitat requirements: individual fine-scale site fidelity in a colony of the Galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia. 2007, 152: 553-567.
PubMed
Google Scholar
Mirimin L, Miller R, Dillane E, Berrow SD, Ingram S, Cross TF, Rogan E: Fine-scale population genetic structuring of bottlenose dolphins in Irish coastal waters. Animal Conserv. 2011, 14: 342-353.
Google Scholar
Surridge AK, Ibrahim KM, Bell DJ, Webb NJ, Rico C, Hewitt GM: Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol Ecol. 1999, 8: 299-307.
CAS
PubMed
Google Scholar
Lowther AD, Harcourt RG, Goldsworthy SD, Stow A: Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Anim Behav. 2012, 83: 691-701.
Google Scholar
Mills L, Schwartz MK, Tallmon DA, Lair K: Measuring and interpreting connectivity for mammals in coniferous forests. Mammal Community Dynamics, Management and Conservation in the Coniferous Forests of Western North America. Edited by: Zabel CJ, Anthony RG. 2003, Cambridge: Cambridge University Press, 587-613.
Google Scholar
Lowe WH, Allendorf FW: What can genetics tell us about population connectivity?. Mol Ecol. 2010, 19: 3038-3051.
PubMed
Google Scholar
Andreasen AM, Stewart KM, Longland WS, Beckmann JP, Forister ML: Identification of source-sink dynamics in mountain lions of the Great Basin. Mol Ecol. 2012, 21: 5689-5701.
PubMed
Google Scholar
Ukkonen P: The early history of seals in the northern Baltic. Ann Zool Fenn. 2002, 39: 187-207.
Google Scholar
Kokko H, Helle E, Lindström J, Ranta E, Sipilä T, Courchamp F: Backcasting population sizes of ringed and grey seals in the Baltic and Lake Saimaa during the 20th century. Ann Zool Fenn. 1999, 36: 65-73.
Google Scholar
Sipilä T: Conservation biology of Saimaa ringed seal (Phoca hispida saimensis) with reference to other European seal populations. 2003, University of Helsinki: PhD Thesis
Google Scholar
Metsähallitus, Natural Heritage Services: Saimaannorppa (Saimaa ringed seal, in Finnish). [http://www.metsa.fi/sivustot/metsa/fi/Luonnonsuojelu/Lajitjaluontotyypit/Uhanalaisetelaimet/Saimaannorppa/Sivut/Saimaannorppa.aspx],
Palo JU, Hyvärinen H, Helle E, Mäkinen HS, Väinölä R: Postglacial loss of microsatellite variation in the landlocked Lake Saimaa ringed seal. Conserv Genet. 2003, 4: 117-128.
CAS
Google Scholar
Valtonen M, Palo JU, Ruokonen M, Kunnasranta M, Nyman T: Spatial and temporal variation in genetic diversity of an endangered freshwater seal. Conserv Genet. 2012, 13: 1231-1245.
Google Scholar
Kuusisto E: Basin and balances. Saimaa, a Living Lake. Edited by: Kuusisto E. 1999, Helsinki: Tammi
Google Scholar
Niemi M, Auttila M, Viljanen M, Kunnasranta M: Movement data and their application for assessing the current distribution and conservation needs of the endangered Saimaa ringed seal. Endangered Species Res. 2012, 19: 99-108.
Google Scholar
Niemi M, Auttila M, Valtonen A, Viljanen M, Kunnasranta M: Haulout patterns of Saimaa ringed seals and their response to boat traffic during the moulting season. Endangered Species Res. 2013, 22: 115-124.
Google Scholar
Niemi M, Auttila M, Viljanen M, Kunnasranta M: Home range, survival, and dispersal of endangered Saimaa ringed seal pups: implications for conservation. Mar Mamm Sci. 2013, 29: 1-13.
Google Scholar
Valtonen M, Palo JU, Aspi J, Ruokonen M, Kunnasranta M, Nyman T: Data from: Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. Dryad Digit Repository. 2014,http://dx.doi.org/10.5061/dryad.5j754,
Google Scholar
Gemmell NJ, Allen PJ, Goodman SJ, Reed JZ: Interspecific microsatellite markers for the study of pinniped populations. Mol Ecol. 1997, 6: 661-666.
CAS
PubMed
Google Scholar
Pastor T, Garza JC, Allen P, Amos W, Aguilar A: Low genetic variability in the highly endangered Mediterranean monk seal. J Hered. 2004, 95: 291-300.
CAS
PubMed
Google Scholar
Allen PJ, Amos W, Pomeroy PP, Twiss SD: Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol Ecol. 1995, 4: 653-662.
CAS
PubMed
Google Scholar
Twiss SD, Poland VF, Graves JA, Pomeroy PP: Finding fathers: spatio-temporal analysis of paternity assignment in grey seals (Halichoerus grypus). Mol Ecol. 2006, 15: 1939-1953.
CAS
PubMed
Google Scholar
Davis C, Gelatt T, Siniff D, Strobeck C: Dinucleotide microsatellite markers from the Antarctic seals and their use in other pinnipeds. Mol Ecol Notes. 2002, 2: 203-208.
CAS
Google Scholar
Coltman D, Bowen W, Wright J: PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol. 1996, 5: 161-163.
CAS
PubMed
Google Scholar
Goodman SJ: Dinucleotide repeat polymorphisms at seven anonymous microsatellite loci cloned from the European harbour seal (Phoca vitulina vitulina). Anim Genet. 1997, 28: 308-322.
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004, 4: 535-538.
CAS
Google Scholar
Chapuis M-P, Estoup A: Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007, 24: 621-631.
CAS
PubMed
Google Scholar
Smith TG: Population dynamics of the ringed seal in the Canadian Eastern Arctic. Bull Fisher Res Board Canada. 1973, 181: 1-55.
Google Scholar
Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010, 10: 564-567.
PubMed
Google Scholar
Rousset F: GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008, 8: 103-106.
PubMed
Google Scholar
Kalinowski ST: Counting alleles with rarefaction: private alleles and hierarchial sampling designs. Conserv Genet. 2004, 5: 539-543.
CAS
Google Scholar
Amos W, Worthington Wilmer J, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T: The influence of parental relatedness on reproductive success. Proc Biol Sci. 2001, 268: 2021-2027.
CAS
PubMed
PubMed Central
Google Scholar
Waples RS, Do C: LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour. 2008, 8: 753-756.
PubMed
Google Scholar
Jorde PE, Ryman N: Unbiased estimator for genetic drift and effective population size. Genetics. 2007, 177: 927-935.
PubMed
PubMed Central
Google Scholar
Waples RS: A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989, 121: 379-391.
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution. 1984, 38: 1358-1370.
Google Scholar
Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992, 131: 479-491.
CAS
PubMed
PubMed Central
Google Scholar
Jost L: GST and its relatives do not measure differentiation. Mol Ecol. 2008, 17: 4015-4026.
PubMed
Google Scholar
Heller R, Siegismund HR: Relationship between three measures of genetic differentiation GST, DEST and G’ST: how wrong have we been?. Mol Ecol. 2009, 18: 2080-2083.
CAS
PubMed
Google Scholar
Meirmans PG, Hedrick PW: Assessing population structure: FST and related measures. Mol Ecol Resour. 2011, 11: 5-18.
PubMed
Google Scholar
Peakall R, Smouse PE: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006, 6: 288-295.
Google Scholar
Peakall R, Smouse P: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012, 1: 6-8.
Google Scholar
Pennings PS, Achenbach A, Foitzik S: Similar evolutionary potentials in an obligate ant parasite and its two host species. J Evol Biol. 2011, 24: 871-886.
CAS
PubMed
PubMed Central
Google Scholar
Pennings PS, Achenbach A, Foitzik S: Data from: Similar evolutionary potentials in an obligate ant parasite and its two host species. Dryad Digital Repository. 2011, doi:10.5061/dryad.8134.2
Google Scholar
Charif D, Lobry J: SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Edited by: Bastolla U, Porto M, Roman HE, Vendruscolo M. 2007, New York: Springer Verlag, 207-232.
Google Scholar
Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004, 20: 289-290.
CAS
PubMed
Google Scholar
R Core Team: R: A language and environment for statistical computing. 2013, Vienna, Austria: R Foundation for Statistical Computing, [http://www.R-project.org/],
Google Scholar
Belkhir K, Borsa P, Chikhi L, Raufuste N, Bonhomme F: GENETIX 4.0.5.2., software under WindowsTM for the genetics of the populations. 2004, Montpellier, France: Laboratory genome, populations, interactions, CNRS UMP 5000, University of Montpellier II
Google Scholar
McCune B, Mefford MJ: PC-ORD, multivariate analysis of ecological data, Version 5.33. 2006, Gleneden Beach, Oregon, USA: MjM Software
Google Scholar
Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945-959.
CAS
PubMed
PubMed Central
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009, 9: 1322-1332.
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005, 14: 2611-2620.
CAS
PubMed
Google Scholar
Earl DA, VonHoldt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2011, 4: 359-361.
Google Scholar
Chen C, Durand E, Forbes F, François O: Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes. 2007, 7: 747-756.
Google Scholar
Durand E, Jay F, Gaggiotti OE, François O: Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol. 2009, 26: 1963-1973.
CAS
PubMed
Google Scholar
Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007, 23: 1801-1806.
CAS
PubMed
Google Scholar
Rosenberg NA: Distruct: a program for the graphical display of population structure. Mol Ecol Notes. 2003, 4: 137-138.
Google Scholar
Hardy OJ, Vekemans X: SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002, 2: 618-620.
Google Scholar
Hardy OJ: Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol. 2003, 12: 1577-1588.
PubMed
Google Scholar
Loiselle BA, Sork VL, Nason J, Graham C: Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot. 1995, 82: 1420-1425.
Google Scholar
Vekemans X, Hardy OJ: New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004, 13: 921-935.
CAS
PubMed
Google Scholar
Hardy OJ, Vekemans X: SPAGeDi 1.3: a Program for Spatial Pattern Analysis of Genetic Diversity. User’s Manual. 2009
Google Scholar
Wilson GA, Rannala B: Bayesian inference of recent migration rates using multilocus genotypes. Genetics. 2003, 163: 1177-1191.
PubMed
PubMed Central
Google Scholar
González-Suárez M, Flatz R, Aurioles-Gamboa D, Hedrick PW, Gerber LR: Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Mol Ecol. 2009, 18: 1088-1099.
PubMed
Google Scholar
Ennos RA: Estimating the relative rates of pollen and seed migration among plant populations. Heredity. 1994, 72: 250-259.
Google Scholar
Slatkin M, Excoffier L: Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity. 1996, 76: 377-383.
PubMed
Google Scholar
Kopatz A, Eiken H, Hagen S, Ruokonen M, Esparza-Salas R, Schregel J, Kojola I, Smith M, Wartiainen I, Aspholm P, Wikan S, Rykov A, Makarova O, Polikarpova N, Tirronen K, Danilov P, Aspi J: Connectivity and population subdivision at the fringe of a large brown bear (Ursus arctos) population in North Western Europe. Conserv Genet. 2012, 13: 681-692.
Google Scholar
Palo JU, Mäkinen HS, Helle E, Stenman O, Väinölä R: Microsatellite variation in ringed seals (Phoca hispida): genetic structure and history of the Baltic Sea population. Heredity. 2001, 86: 609-617.
CAS
PubMed
Google Scholar
Davis CS, Stirling I, Strobeck C, Coltman DW: Population structure of ice-breeding seals. Mol Ecol. 2008, 17: 3078-3094.
PubMed
Google Scholar
Martinez-Bakker ME, Sell SK, Swanson BJ, Kelly BP, Tallmon DA: Combined genetic and telemetry data reveal high rates of gene flow, migration, and long-distance dispersal potential in Arctic ringed seals (Pusa hispida). PLoS One. 2013, 8: e77125-
CAS
PubMed
PubMed Central
Google Scholar
Schultz JK, Baker JD, Toonen RJ, Bowen BW: Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi). J Hered. 2009, 100: 25-33.
CAS
PubMed
Google Scholar
Han J-B, Sun F-Y, Gao X-G, He C-B, Wang P-L, Ma Z-Q, Wang Z-H: Low microsatellite variation in spotted seal (Phoca largha) shows a decrease in population size in the Liadong Gulf colony. Ann Zool Fenn. 2010, 47: 15-27.
Google Scholar
Sanvito S, Dueñes Meza A, Schramm Y, Cruz Hernández P, Esquer Garrigos Y, Galimberti F: Isolation and cross-species amplification of novel microsatellite loci in a charismatic marine mammal species, the northern elephant seal (Mirounga angustirostris). Conserv Genet Res. 2012, 5: 93-96.
Google Scholar
Garner A, Rachlow JL, Hicks JF: Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol. 2005, 19: 1215-1221.
Google Scholar
Casas-Marce M, Soriano L, López-Bao JV, Godoy JA: Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol. 2013, 22: 5503-5515.
CAS
PubMed
Google Scholar
Ellegren H, Primmer CR, Sheldon BC: Microsatellite "evolution": directionality or bias?. Nat Genet. 1995, 11: 360-361.
CAS
PubMed
Google Scholar
Aspi J, Roininen E, Ruokonen M, Kojola I, Vilà C: Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol. 2006, 15: 1561-1576.
CAS
PubMed
Google Scholar
Ortego J, Yannic G, Shafer ABA, Mainguy J, Festa-Bianchet M, Coltman DW, Côté SD: Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol. 2011, 20: 1601-1611.
PubMed
Google Scholar
England PR, Luikart G, Waples RS: Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conserv Genet. 2010, 11: 2425-2430.
Google Scholar
Palstra FP, Ruzzante DE: Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?. Mol Ecol. 2008, 17: 3428-3447.
PubMed
Google Scholar
Mondol S, Bruford MW, Ramakrishnan U: Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc Biol Sci. 2013, 280: 20130496-doi: 10.1098/rspb.2013.0496
PubMed
PubMed Central
Google Scholar
Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C: Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Climate Change. 2012, 2: 285-288.
Google Scholar
Ansmann IC, Parra GJ, Lanyon JM, Seddon JM: Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia. Mol Ecol. 2012, 21: 4472-4485.
PubMed
Google Scholar
DiLeo MF, Rouse JD, Dávila JA, Lougheed SC: The influence of landscape on gene flow in the eastern massasauga rattlesnake (Sistrurus c. catenatus): insight from computer simulations. Mol Ecol. 2013, 22: 4483-4498.
PubMed
Google Scholar
Graves JA, Helyar A, Biuw M, Jüssi M, Jüssi I, Karlsson O: Microsatellite and mtDNA analysis of the population structure of grey seals (Halichoerus grypus) from three breeding areas in the Baltic Sea. Conserv Genet. 2009, 10: 59-68.
CAS
Google Scholar
Andersen LW, Lydersen C, Frie AK, Rosing-Asvid A, Hauksson E, Kovacs K: A population on the edge: genetic diversity and population structure of the world’s northernmost harbour seals (Phoca vitulina). Biol J Linn Soc. 2011, 102: 420-439.
Google Scholar
Schultz JK, Baker JD, Toonen RJ, Harting AL, Bowen BW: Range-wide genetic connectivity of the Hawaiian monk seal and implications for translocation. Conserv Biol. 2011, 25: 124-132.
PubMed
Google Scholar
Dickerson BR, Ream RR, Vignieri SN, Bentzen P: Population structure as revealed by mtDNA and microsatellites in northern fur seals, Callorhinus ursinus, throughout their range. PLoS One. 2010, 5: e10671-
PubMed
PubMed Central
Google Scholar
Kokko H, Lindström J, Ranta E, Sipilä T, Koskela J: Estimating the demographic effective population size of the Saimaa ringed seal (Phoca hispida saimensis Nordq.). Animal Conserv. 1998, 1: 47-54.
Google Scholar
Hoelzel AR, Campagna C, Arnbom T: Genetic and morphometric differentiation between island and mainland southern elephant seal populations. Proc Biol Sci. 2001, 268: 325-332.
CAS
PubMed
PubMed Central
Google Scholar
Hoffman JI, Matson CW, Amos W, Loughlin TR, Bickham JW: Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller’s sea lion (Eumetopias jubatus). Mol Ecol. 2006, 15: 2821-2832.
CAS
PubMed
Google Scholar
Greenwood PJ: Mating systems, philopatry and dispersal in birds and mammals. Anim Behav. 1980, 28: 1140-1162.
Google Scholar
Herreman JK, Blundell GM, McDonald DB, Ben-David M: Asymmetrical male-mediated gene flow between harbor seal (Phoca vitulina) populations in Alaska. Can J Zool. 2009, 87: 498-507.
CAS
Google Scholar
Frankham R: Stress and adaptation in conservation genetics. J Evol Biol. 2005, 18: 750-755.
CAS
PubMed
Google Scholar
Pauls SU, Nowak C, Bálint M, Pfenninger M: The impact of global climate change on genetic diversity within populations and species. Mol Ecol. 2013, 22: 925-946.
PubMed
Google Scholar
Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Nygård T, Volke V, Vilà C, Ellegren H: Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett. 2006, 2: 316-319.
PubMed
PubMed Central
Google Scholar
Zhang B, Li M, Zhang Z, Goossens B, Zhu L, Zhang S, Hu J, Bruford MW, Wei F: Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"?. Mol Biol Evol. 2007, 24: 1801-1810.
CAS
PubMed
Google Scholar
Kekkonen J, Wikström M, Brommer JE: Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS One. 2012, 7: e43482-
CAS
PubMed
PubMed Central
Google Scholar
Apps CD, McLellan BN: Factors influencing the dispersion and fragmentation of endangered mountain caribou populations. Biol Conserv. 2006, 130: 84-97.
Google Scholar
Proctor MF, Paetkau D, Mclellan BN, Stenhouse GB, Kendall KC, Mace RD, Kasworm WF, Servheen C, Lausen CL, Gibeau ML, Wakkinen WL, Haroldson MA, Mowat G, Apps CD, Ciarniello LM, Barclay RMR, Boyce MS, Schwartz CC, Strobeck C: Population fragmentation and inter-ecosystem movements of grizzly bears in western Canada and the northern United States. Wildlife Monogr. 2012, 180: 1-46.
Google Scholar
Slatkin M: Gene flow and the geographic structure of natural populations. Science. 1987, 236: 787-792.
CAS
PubMed
Google Scholar
Cushman SA, Shirk A, Landguth EL: Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol. 2012, 27: 369-380.
Google Scholar
Sacks BN, Mitchell BR, Williams CL, Ernest HB: Coyote movements and social structure along a cryptic population genetic subdivision. Mol Ecol. 2005, 14: 1241-1249.
CAS
PubMed
Google Scholar