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Abstract 

Background: Spatial conservation prioritisation (SCP) is a set of computational tools designed to support the 
efficient spatial allocation of priority areas for conservation actions, but it is subject to many sources of uncertainty 
which should be accounted for during the prioritisation process. We quantified the sensitivity of an SCP application 
(using software Zonation) to possible sources of uncertainty in data‑poor situations, including the use of different sur‑
rogate options; correction for sampling bias; how to integrate connectivity; the choice of species distribution model‑
ling (SDM) algorithm; how cells are removed from the landscape; and two methods of assigning weights to species 
(red‑list status or prediction uncertainty). Further, we evaluated the effectiveness of the Egyptian protected areas for 
conservation, and spatially allocated the top priority sites for further on‑the‑ground evaluation as potential areas for 
protected areas expansion.

Results: Focal taxon (butterflies, reptiles, and mammals), sampling bias, connectivity and the choice of SDM algo‑
rithm were the most sensitive parameters; collectively these reflect data quality issues. In contrast, cell removal rule 
and species weights contributed much less to overall variability. Using currently available species data, we found the 
current effectiveness of Egypt’s protected areas for conserving fauna was low.

Conclusions: For SCP to be useful, there is a lower limit on data quality, requiring data‑poor countries to improve 
sampling strategies and data quality to obtain unbiased data for as many taxa as possible. Since our sensitivity analysis 
may not generalise, conservation planners should use sensitivity analyses more routinely, particularly relying on more 
than one combination of SDM algorithm and surrogate group, consider correction for sampling bias, and compare 
the spatial patterns of predicted priority sites using a variety of settings. The sensitivity of SCP to connectivity param‑
eters means that the responses of each species to habitat loss are important knowledge gaps.

Keywords: Data‑poor countries, Protected areas, Sampling bias, Spatial conservation prioritisation, Species 
distribution models, Zonation
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Background
Biological diversity is declining, with many species fac-
ing extinction in response to multiple interacting anthro-
pogenic factors [1–5]. Protected areas (PAs) represent a 

core response strategy, currently covering about 15% of 
the global land area [6]. However, PAs are often bedev-
illed by lack of resources and trained personnel, isola-
tion, and poor management [4, 7–9]. They are declared 
on expert opinion or on aesthetic value, neither of which 
is likely to ensure biodiversity persistence [10–12]. As a 
consequence of political opportunity rather than conser-
vation assessment, many PAs are biased towards remote, 
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uneconomic and low-cost areas, regardless of their biodi-
versity value [13, 14].

The Convention on Biological Diversity (CBD) agreed 
a Strategic Plan for Biodiversity 2011–2020, including 
the Aichi targets [15], two of which address threatened 
species (target 12) and an expansion of the global PA net-
work to cover at least 17% of terrestrial land and 10% of 
coastal and marine areas by 2020 (target 11). Implement-
ing these requires substantial effort to avoid creating PAs 
that exist purely as legal fictions (‘paper parks’: [16]). PAs 
should be ecologically representative, effectively man-
aged, well connected, and based on sound science to 
include biodiversity and ecosystem services [15].

A spatially explicit suitability assessment for PAs needs 
to consider at least the following elements: (1) indicator 
taxa; (2) distribution data; and (3) connectivity of sites 
to facilitate movement. Ecologically coherent PAs aim to 
maximise representation and persistence of a wide range 
of habitats, ecosystems and species [3, 10, 13]. Since it is 
impossible to conserve all species and habitats simulta-
neously, limited conservation resources should be strate-
gically and effectively prioritised [3].

Spatial conservation prioritisation (SCP) uses compu-
tational tools to prioritise areas for conservation actions 
[13]. It requires comprehensive, high-resolution, up-to-
date data on the distribution of biodiversity, but such 
data are usually incomplete or do not exist at all, mak-
ing it challenging to develop reliable assessments in 
data-poor countries [1, 8]. Such analyses are frequently 
performed using biodiversity surrogates, i.e. well-studied 
taxa representing biodiversity as a whole [13, 17]. Surro-
gates vary in their representativeness [3, 7, 18], and their 
choice is more often driven by data availability than eco-
logical appropriateness [19].

Potential distribution maps from species distribu-
tion models (SDMs) are frequently used in conservation 
planning to overcome the lack of adequate surveys [20]. 
SDMs are statistical models that relate data on species 
presence (and absence) to the environment to predict 
potential distribution [21]. Despite their computational 
convenience, SDMs are subject to multiple sources of 
uncertainty [20, 22]: location, detectability, spatial auto-
correlation, algorithm, and environmental predictors. 
Spatial sampling bias inherent in opportunistic presence-
only data (the typical case in data-poor situations) can 
also lead to biased estimates of suitability [23], for exam-
ple towards easily accessible areas [24]. Methods to cor-
rect for sampling bias (e.g. [23, 25]) should be considered 
in planning [26].

Landscape connectivity influences species persistence 
through dispersal, source-sink dynamics, colonisation 
and gene flow [27]. Maintaining connectivity between 
PAs improves their ecological functioning and is now 

considered pivotal for effective planning [28–30]. Well-
connected PAs facilitate the movement of widespread 
species and gene flow among patchily distributed popu-
lations, improving persistence under future land-use 
and climate change [18]. If connectivity is not included, 
SCP can prioritise isolated, fragmented, and small sites 
insufficient for long-term persistence in fragmented 
landscapes.

Applying any SCP software involves decisions on set-
tings, which inevitably affect the results [3, 26, 31, 32]. 
We assess the sensitivity of SCP in data-poor situations 
(represented by Egypt) to common sources of uncer-
tainty. We quantify variability in the results of Zonation 
to distributional data quality and user-defined Zonation 
parameters, including: (1) biodiversity surrogate (but-
terflies, reptiles, mammals, or all three groups together); 
(2) SDM algorithm (Maxent vs elastic net); (3) with vs 
without weighting by prediction uncertainty; (4) with vs 
without bias correction; (5) different options for integrat-
ing connectivity; (6) weighting species by Red-List status; 
(7) different rules of priority; and (8) accounting for exist-
ing PAs vs a clean-slate situation. Although changing any 
of these factors will change the results, we assess here 
which dominate. We then evaluate the effectiveness of 
the current PA network in the conservation of the Egyp-
tian fauna, and then map important areas for future PA 
expansions in Egypt.

Methods
Study species and data
The main source of the presence data was the database 
collated by the BioMAP project (Biodiversity Monitor-
ing and Assessment Project, 2004–2008; Butterflies: [33], 
Reptiles: [34], Mammals: [35]), with revisions and addi-
tions from subsequent fieldwork and literature (see Addi-
tional file 1: Appendix S1). We excluded 76 species with 
few records (< 8 unique pixels and < 5 spatial blocks), 
as they make spatial-block cross-validation (see below) 
impossible. The final species list comprises a total of 178 
species (32 butterfly, 75 reptile, and 71 mammal species; 
Additional file 1: Table S1).

SDMs & sampling bias
We used two SDM algorithms to model potential distri-
butions: Maxent (ver. 3.3.3 k: [36]) and elastic net ([37]; 
implementing a down-weighted Poisson regression), 
both under the point-process modelling framework [38]. 
As the focus of this study is the evaluation of Zonation, 
we only give an overview of the SDM-approach here 
(details in [39]). Models were calibrated using fivefold 
spatial-block cross-validation, resulting in a mean predic-
tion for each species. Uncertainty in the prediction (pre-
dictive consistency) was computed as the average spatial 
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congruence (Schoener’s; [40]) for all ten possible pairs 
of cross-validated predictions; this served as a weight in 
Zonation (see below).

We assessed how much correcting for sampling bias 
changed the results by supplying Zonation with two sets 
of prediction maps, without correction (models fitted 
using only environmental variables), and with correction 
(using model-based bias correction: [25]). In the latter, 
SDMs were fitted including a bias layer of accessibility 
variables (distances to closest roads, cities, and PAs) and 
adjusting predictions to a constant accessibility of zero 
distance (for more details see: [25, 39]).

SCP & potential sources of uncertainty
We used Zonation (version 4.0; [2, 41]) to prioritise the 
Egyptian landscape for conservation. The Zonation 
outputs include a priority rank map and performance 
curves. The former represents a nested hierarchy of con-
servation value (top 5% cells are within the top 10%, etc.), 
showing the priority areas [41]. Zonation starts with the 
full landscape, and then iteratively removes the cells with 
the smallest marginal loss of conservation value (sub-
ject to species-specific weights, cost, connectivity, etc.). 
Performance curves demonstrate the quality of the solu-
tion by quantifying the fraction of the original distribu-
tion of each species (or their average) retains in response 
to successive removals of cells from the landscape ([42]; 
see Additional file 1: Figure S1 for a performance curve 
example).

Zonation uses different rules to calculate the marginal 
loss of conservation value and therefore the order of cell 
removal: additive-benefit function (ABF) and core-area 
zonation (CAZ) emphasise different but complementary 
aspects of biodiversity [41]. ABF emphasises species rich-
ness and is more appropriate for surrogates; CAZ empha-
sises species rarity by maintaining high-quality locations 
regardless of the local richness, and is more appropriate 
for the actual conservation targets [42].

To be more realistic, conservation planning should 
include the cost of implementation [43, 44], but obtain-
ing cost data is frequently challenging [3]. No land prices 
(acquisition cost) are available across Egypt, and hence 
we constrained Zonation always to give low priority to 
agricultural and urban areas (Additional file 1: Figure S2), 
heavily modified and settled since Pharaonic times [45].

As different species do not have equal conservation 
importance, some species can be given a higher weight, 
influencing the order of cell removal [42]. We used two 
weighting methods: Red-List status and predictive con-
sistency. We assigned weights between 1 and 5 accord-
ing to national Red List assessments (Butterflies: [33], 
Reptiles: [34], Mammals: [35]; Additional file 1: Table S1). 
We compared equal-weighted vs Red List-weighted 

solutions. We used predictive consistency as described 
above as a second weighting option. Mean spatial con-
gruence ranges from zero (very high predictive uncer-
tainty) to one (identical predictions, no uncertainty). We 
used both weighting schemes factorially, yielding four 
options of species weighting.

Zonation offers different ways of integrating connec-
tivity, such as boundary length penalty [28], distribution 
smoothing [2], and boundary-quality penalty (BQP; [30]). 
We used BQP, which requires a user-defined species-
specific response to fragmentation (habitat loss) in the 
neighbour cells, represented by two parameters (radius 
and response curve). The radius defines the number of 
effective neighbour cells (~ distance) whose degradation 
or loss will affect the local cell value. The response curve 
describes the degree to which habitat loss in neighbour 
cells affects the local population [30]. Values are typically 
determined from habitat models [41] or expert ecological 
knowledge (e.g. [30, 46, 47]). Since both parameters are 
hard to obtain accurately, we used combinations of three 
response curves (low, moderate, and high effect; Addi-
tional file 1: Figure S3) and three radii (1–3 cells) plus no 
connectivity, making ten options in total.

Finally, we allowed for two possibilities with the cur-
rent PA network. First, we ignored it, allowing Zonation 
to prioritise any area of Egypt. Second, we forced Zona-
tion always to retain the cells of the current PA network 
as the highest priority cells in Egypt.

In total, we conducted 2560 Zonation analyses: four 
surrogate groups (butterflies, reptiles, mammals and all 
three together) × two modelling algorithms (Maxent, 
elastic net) × two biases (without, with sampling-bias 
correction) × two cell-removal rules (ABF, CAZ) × four 
weighting schemes (none, Red-List, predictive uncer-
tainty, and both) × ten connectivity options × two PA-
integration options (without, with PA masking). An 
example reproducible R-code used to generate the input 
files for zonation can be found in this link: https ://githu 
b.com/elgab bas/Conse rvati on-Prior itisa tion-Sensi tivit y. 
To quantify the main drivers of uncertainty in Zonation’s 
output, we used the mean species representation (= aver-
age proportion of remaining distribution of species) in 
the top 17% priority cells as the response variable, esti-
mated from performance curves. This value denotes the 
target area to be protected in Egypt by 2020. A random-
Forest analysis quantified the permutation importance of 
these factors. We also estimated the most important first-
order interactions among factors using the mean sum of 
squares from a generalised linear model.

Gap analysis and potential areas for PA expansion
To assess the effectiveness of Egypt’s PA network, we con-
centrated on Maxent SDM because it fitted slightly better 

https://github.com/elgabbas/Conservation-Prioritisation-Sensitivity
https://github.com/elgabbas/Conservation-Prioritisation-Sensitivity
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on cross-validation than elastic net, using species weights 
from Red-List status and predictive consistency so as to 
give high weight to threatened species with high predic-
tive consistency. To restrict the number of possibilities, 
we used an average connectivity (line 3 in Additional 
file 1: Figure S3) with the radius set at two neighbour cells 
and the CAZ cell-removal rule to retain high-quality core 
areas for conservation. Where necessary, we make com-
parisons between the outputs for Maxent vs elastic net 
and CAZ vs ABF.

To conduct the gap analysis, we first allowed Zonation 
to prioritise the Egyptian landscape without consider-
ing the positions of the existing PAs. We then used three 
ways to assess the current PAs: first, we measured the 
point-biserial correlation between the (continuous) pri-
ority rank and the binary allocation of each pixel either 
to a PA or to non-PA land; second, we quantified the spa-
tial overlap between current PAs and top-priority sites 
of equal area using Jaccard’s similarity index; and third, 
by calculating Kendall’s correlation between the prior-
ity rank and the proportion of cells protected at each 1% 
rank intervals (following [48]). We expect PAs with good 
spatial allocation to have high values for biserial correla-
tion, Jaccard’s index, and Kendall’s correlation. We iden-
tified top-priority areas outside PAs (candidate locations 
for PA expansion) by forcing PAs to have the highest 

priority and then determining the best locations required 
to expand to 17% of the Egypt’s area.

Results
The main factor affecting the sensitivity of prioritisation 
(Fig.  1) was the choice of surrogate group, followed by 
correction for sampling bias, the strength of connectiv-
ity (response curve), and the choice of SDM algorithm. 
Correction for sampling bias led to higher species rep-
resentation. The spatial pattern of the top-priority cells 
depended on how strong the dependence of local popu-
lations in each cell was on habitat loss in the neighbour-
hood. The steeper the response curve (high dependency), 
the more clumped and the less scattered the solution. 
This effect was more pronounced for CAZ than for ABF 
(compare Fig. 2 and Additional file 1: Figure S4).

Maxent models led to higher species representation 
than elastic net. The different cell-removal rules, the 
radius of effective neighbour cells (connectivity), and 
weighting species by Red-List status or predictive con-
sistency did not affect sensitivity much (Fig.  1); how-
ever, using ABF or weighting species by their Red-List 
status led to relatively lower species representation. The 
use of different landscape threshold percentages (10%, 
17%, 25%) did not affect the overall relative importance; 
however, the choice of the surrogate group had lower 

Fig. 1 Permutation importance of factors affecting Zonation sensitivity across 2560 option combinations (randomForest model). The dependent 
variable is the mean species representation in the top 17% priority cells. (For the top 10% and 25%, see Additional file 1: Figure S5.) Statistical 
interactions are included in the measure of variable importance
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importance when the top 10% priority of the landscape 
was used (Additional file 1: Figure S5).

The most important interactions were as follows. 
Between sampling-bias correction and SDM algorithm, 
correction for sampling bias led to higher improve-
ment for elastic net. Between the surrogate group and 
sampling-bias correction, correction led to greater 
improvement for mammals than for reptiles. Between the 
surrogate group and SDM algorithm, Maxent had higher 
species representation for butterflies and mammals 
(Additional file 1: Figure S6).

We expected (by design) that incorporating the current 
PAs would lead to different spatial allocation of impor-
tant sites than solutions that did not account for PAs. 
Indeed, PA incorporation was one of the most impor-
tant factors affecting prioritisation (Fig.  1). The interac-
tions between incorporating PAs and other important 
factors (sampling bias correction and the choice of SDM 

algorithm and surrogate group) were also significant 
(Additional file 1: Figure S6).

When the Egyptian PAs were not incorporated, 
the spatial allocation of the top-priority cells varied 
depending on the choice of taxon, with the major-
ity of cells outside current PAs (78–90% under CAZ, 
similar for ABF: Fig. 3 and Additional file 1: Figure S7). 
In other words, the overlap of priority cells with cur-
rent PAs (Jaccard’s index) was very low (4.8–9.8%) and 
independent of the choice of the surrogate taxon, sam-
pling-bias correction and connectivity. The correlation 
between current PAs and the overall priority ranking 
in Egypt was very weak (− 0.11 to 0.14). There was a 
fair to good positive Kendall’s correlation between cell 
ranking and the fraction of cells protected at each 1% 
rank interval for mammals (τ = 0.72), butterflies (0.42), 
and all-species solutions (0.31), but a negative correla-
tion for reptiles (− 0.38; all for CAZ; see Fig. 4). When 

Fig. 2 The spatial distribution of the top 17% priority cells for different connectivity options (using options CAZ, bias‑free predictions, all study 
species, Maxent). The top‑left map shows the pattern of important sites without connectivity integration. The second to fourth columns are for 
equivalent maps with steeper response curves (low, medium, and high connectivity; curves 2‑4 in Additional file 1: Figure S3, respectively); while 
rows are for different numbers of effective neighbour cells (1 to 3). (Equivalent maps using ABF are shown in Additional file 1: Figure S4.)
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ABF was used, negative correlations occurred for all 
taxa (from − 0.57 to − 0.29) except butterflies (0.4; see 
Additional file 1: Figure S8). Similar results were found 
for elastic net, with non-significant correlations for 
reptiles and mammals for CAZ (Additional file  1: Fig-
ure S9).

Performance curves showed that the top-priority sites 
equivalent in area to the current PAs retained an average 
species representation of about 22% (all-species analyses; 
Fig. 5, left panel), compared with only about 15% retained 
within the current PAs (Fig.  5, right panel). Results are 
similar for CAZ and ABF, with slightly higher values for 
elastic net (Fig. 5 and Additional file 1: Figures S10, S11). 
For the separate taxa, top-priority sites again maintained 
a higher mean species representation (40% for butterflies; 
35% for reptiles, and 33% for mammals). Urban and agri-
cultural areas retained an average species representation 
of about 13% of all study species (Fig.  5 and Additional 
file  1: Figures  S10, S11), suggesting that although these 

areas are not crucial for species protection, they still have 
conservation importance for those species that depend 
on humans, either directly or via agriculture (e.g. rodents 
and some butterflies).

When PAs were forced into the solution, expanding 
current PAs to 17% of Egypt almost doubled the average 
species representation (all-species: Fig. 5 and Additional 
file 1: Figures S10, S11), with relatively higher values for 
elastic net. The pattern of top-priority sites varied slightly 
among species groups (Additional file  1: Figure S12), 
which together require more than 17% of the Egyptian 
landscape to conserve all three species groups simultane-
ously. We summarised the overall pattern of the top-pri-
ority sites by adding together the rankings of the top 17% 
cells of the four surrogate options (Fig. 6 and Additional 
file  1: Figure S13). Potential areas for PAs expansion 
include the Qattara Depression westwards to include the 
surroundings of the Siwa Oasis, the Mediterranean Coast 
west of El-Omayed, the Wadi El-Natrun area southwards, 

Fig. 3 The spatial distribution of the top 12% priority cells (the darker, the higher the priority) for the four surrogates using core‑area zonation, 
overlaid with current protected areas in Egypt (blue borders) (using bias‑free predictions from Maxent). Equivalent maps using additive‑benefit 
function are shown in Additional file 1: Figure S7

Fig. 4 The fraction of cells protected per Zonation rank for different surrogates using core‑area zonation (using bias‑free predictions from Maxent). 
The number on each panel represents Kendall’s correlation coefficient. (For equivalent results using additive‑benefit function or elastic net, see 
Additional file 1: Figures S8, S9)
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Fig. 5 Performance curves for Zonation analyses (Maxent, CAZ, all species together). Left panel is without PA integration. Solid curves represent 
the average performance curve for all species or per species‑group; while dashed lines represent the overall minimum and maximum performance 
curve per species group. The vertical grey line is for urban and agricultural areas (Additional file 1: Figure S2) forced to have low priority value; 
while the dashed vertical green line represents top priority sites existent in an area equals to the area covered by PAs. The right panel represents 
equivalent analysis with Egyptian PAs forced to have the highest priority scores. The vertical green line represents the area covered by PAs; while the 
vertical orange line represents the proposed areas for PAs expansion to 17% of Egypt. Performance curves are described in Additional file 1: Figure 
S1 and in the main text. For equivalent curves using ABF, see Additional file 1: Figure S10. Results for elastic net are shown in Additional file 1: Figure 
S11

Fig. 6 The overall pattern of top priority sites using CAZ (left) or ABF (right), both using bias‑free predictions from Maxent. Each map shows the 
summed rankings of the top 17% sites from the four surrogates used. Shading within current PAs (blue borders) are not shown to highlight the 
pattern for PA expansion (darker shading indicates higher rankings). The pattern for each species group is shown in Additional file 1: Figure S12. For 
equivalent maps using elastic net, see Additional file 1: Figure S13
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a coastal strip of North Sinai, the majority of central 
Sinai, coastal areas on both sides of the Suez Canal and 
the Gulf of Suez (including El-Galala mountains), inland 
wadis west of Hurghada, and the periphery of Wadi El-
Gimal PAs (Fig. 6, Additional file 1: Figures S13, S15).

Discussion
Drivers of conservation prioritisation sensitivity
Target areas for conservation should maximise species 
representation and their long-term persistence for best 
use of limited resources. SCP is a method of identifying 
priority areas and assessing the effectiveness of reserves. 
However, its efficient use is hampered by uncertainties 
and the paucity of good-quality data. Many procedural 
decisions influence the robustness of the assessments, 
and therefore conservation practitioners should account 
for possible sources of uncertainty during SCP analyses 
[3, 26, 31, 32]. In this study, we quantified the sensitiv-
ity of prioritisation by varying user decisions experimen-
tally. The main sources of uncertainty were the choice of 
surrogate group, sampling bias, the strength of the BQP 
response curve (i.e. the connectivity), and the choice of 
SDM algorithm, which collectively reflect our incomplete 
knowledge of species ecology and distribution.

Conservation planning is sensitive to the choice of 
taxon used as surrogate for biodiversity [19]. Here, we 
used four surrogates for the Egyptian fauna. Although 
their priority rankings are (fairly) positively correlated 
(Additional file 1: Table S2), choosing one strongly affects 
the mean species representation in the solution (Fig. 1), 
implying that they are not adequate to represent each 
other [7, 17]. As a consequence, even the collective use of 
all three will not adequately represent Egyptian biodiver-
sity as a whole. The vertebrate groups only partially cover 
for butterflies, implying that data on other taxa is essen-
tial for comprehensive conservation planning in Egypt. 
Such data are currently not available for the majority of 
taxa, and hence improving sampling and data-sharing 
in data-poor countries are prerequisites to making SCP 
analyses more representative [19].

The issue of data quality also becomes apparent in the 
effect of sampling bias on SDM predictive performance. 
We used model-based bias correction to improve predic-
tions for presence-only SDMs [25, 39, 49], and sampling 
bias was the second most important factor affecting pri-
oritisation. Correction led to a different spatial allocation 
of important sites and greater representation of species. 
Accordingly, we used ‘bias-free’ predictions in the final 
assessments. The use of biased data for conservation 
planning identifies suboptimal conservation sites, which 
are weakly correlated with ideal reserves, leading to the 
requirement of more area for conserving fewer spe-
cies [50]. Sampling-bias correction should be used for 

conservation planning in data-poor situations or when 
there are clear signs of bias in the available data. How-
ever, correction for sampling bias is not always success-
ful [23, 39], and hence the improvement of data quality 
should be a priority.

Maintaining connectivity among conservation sites is 
important for long-term conservation [9]. However, the 
effective integration of connectivity into SCP requires 
knowledge of home range, dispersal ability and sensitivity 
to habitat fragmentation of each species. This informa-
tion is onerous to estimate correctly [31] and is unavail-
able for most species, especially for cryptic species and in 
data-poor countries. Connectivity methods that do not 
require information on species ecology are possible. One 
example is the boundary-length penalty [28], but this is 
a generic (not ecology-driven) method that maintains 
site aggregation via assigning a high penalty to solutions 
that have a high edge-to-area ratio, and hence does not 
account for habitat quality near the border [41].

Connectivity response curves strongly affected the 
spatial distribution of the top-priority sites (Fig.  2 and 
Additional file  1: Figure S4), and hence connectivity 
demands careful attention in SCP analyses. Our use of 
the low-connectivity response curve (line 2 in Additional 
file 1: Figure S3) did not lead to a different outcome com-
pared to analyses which did not consider connectivity at 
all (line 1 in Additional file 1: Figure S3). In contrast, the 
use of medium or high response curves (lines 3 and 4 in 
Additional file 1: Figure S3) led to more aggregated top-
priority sites (Fig. 2 and Additional file 1: Figure S4) and 
a lower mean species representation [46]. Maintaining 
connectivity between important sites leads to the inclu-
sion of sites of low importance in the solution, and hence 
involves trade-offs [29, 31]. On the other hand, the radius 
of effective neighbour cells was not of much importance. 
As aggregated important sites are a safer investment than 
fragmented or isolated solutions [31], we conditioned our 
final analyses on a medium level of connectivity (line 3 in 
Additional file 1: Figure S3). However, this is not the ideal 
approach of integrating connectivity into Zonation when 
species differ in their sensitivity to habitat loss. The lack 
of relevant information for the Egyptian species is a com-
mon situation in data-poor countries.

Although Maxent and elastic net had very similar per-
formances when used under the point-process modelling 
framework [39, 49], their use here contributes to the sen-
sitivity of prioritisation. Predictions from Maxent led to a 
higher mean species representation than elastic net. Sim-
ilarly, Lentini and Wintle [19] found that the spatial allo-
cation of priority sites was highly dependent on the SDM 
algorithm used. More than one SDM algorithm should 
probably be used, comparing the spatial pattern of their 
priority sites. However, the effect of modelling algorithm 
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had little effect on the proposed sites for PA expansion 
(Fig. 6 and Additional file 1: Figure S13).

The use of CAZ or ABF cell removal rules led to some 
variation in prioritisation. Each rule identified differ-
ent top-priority sites, especially for reptiles and mam-
mals (Fig.  3 vs Additional file  1: Figure S7). This effect 
was expected, because the calculation of the marginal 
loss of conservation value is different in both rules: CAZ 
emphasises species rarity, while ABF emphasises species 
richness (for details, see [41]). Their differences here can 
be attributed partially to the effect of connectivity, which 
affects CAZ more than ABF (Fig.  2 vs Additional file  1: 
Figure S4); [51]. The areas proposed for PA expansion 
were not too different whichever cell removal rule was 
used (Fig. 6 and Additional file 1: Figures S12, S13).

Weighting species by Red-List status was less impor-
tant than the other factors described above, but it led 
to smaller mean species representation. Weighting spe-
cies includes trade-offs, because species assigned higher 
weights will have a higher representation in the solution 
at the expense of other species [47]. In contrast, weight-
ing by predictive consistency was not important, proba-
bly because spatial-block cross-validation produced high 
and not very variable values (median = 0.8; Additional 
file 1: Figure S14).

The effectiveness of current Egyptian PAs and areas 
for potential expansion
Since 1983, thirty Egyptian PAs have been declared, 
covering approximately 14.6% of the total area of Egypt 
(Additional file  1: Figure S15), gazetted after fieldwork, 
literature reviews and recommendations of experts [45, 
52]. Although the surveyed sites show good spatial cov-
erage (Additional file  1: Figure S16), they are inevitably 
incomplete and are taxonomically biased towards charis-
matic or well-known taxa.

Ideally the majority of top-priority sites would be 
located inside PAs, but the high permutation importance 
of PA incorporation indicates the suboptimality of cur-
rent Egyptian PAs. The performance curve for the top-
priority sites irrespective of PAs is more concave (Fig. 5 
left) than for current PAs (Fig. 5 right), meaning that the 
cells with the highest priority across Egypt have higher 
species representation than sites within PAs. Current PAs 
are reasonably correlated with the important sites for 
butterflies and when all species were used together, but 
only very weakly or even negatively for reptiles and mam-
mals. The correlation between priority rankings across 
Egypt and the PAs was similarly very weak in all cases, as 
was the intersection between current PAs and top-prior-
ity sites (Jaccard’s index) for all taxa, cell-removal rules, 
and SDMs. Thus modelling shows that though slightly 
better for butterflies, the PA network does not cover 

species-rich areas for mammals well, and is also inade-
quate for reptiles in all scenarios.

Previous studies evaluating the effectiveness of the 
Egyptian PAs have shown contrasting results. Newbold 
et al. [45] suggested that they are more effective for but-
terflies and mammals than random sites, containing 
higher than average species richness, and similar results 
were found for medicinal plants [53, 54]. However, simple 
species richness  as an indicator is sensitive to sampling 
bias [55], fails to consider complementarity, and ignores 
important threatened species living in less-rich areas [56] 
and unique assemblages [5]. Therefore the use of spe-
cies richness alone for conservation planning may create 
solutions that are too optimistic. In contrast, Zonation 
is a complementarity-based method, designed to ensure 
that important sites maximise species representation.

Effective PAs should be resilient to climate change [57]. 
We did not consider climate change here so as to simplify 
the analysis of prioritisation sensitivity. Using Egyptian 
reptiles, the current PA network has a significantly higher 
Zonation ranking than unprotected areas, but the dif-
ference declines under climate change [34]. To prevent 
species loss under climate change, new PAs in Egypt are 
probably required for effective conservation in the future 
[34, 54, 58]. For example, the Suez Gulf coast, Qattara 
Depression and Red Sea Coast are important for medici-
nal plants under climate change [54]. These areas, along 
with the Gebel El-Galala area, Mediterranean Coast, and 
Central to North Sinai, are important for reptiles under 
climate change [34]. These assessments suggest areas 
similar to those proposed for PA expansion here (Fig. 6 
and Additional file 1: Figure S13).

It is interesting that, despite the large uncertainty 
explored in this study via the 2560 SCP analyses, there is 
surprising congruence in the spatial distribution of the 
priority sites chosen by Zonation across all options. The 
frequency with which cells were chosen to be within the 
highest or lowest set of priority sites across all options is 
shown in Additional file 1: Figure S17. This encourages us 
to feel the final recommendations may be rather robust 
to the modelled uncertainties.

The proper evaluation of Egypt’s PAs is in its infancy, 
and our analysis is inevitably incomplete. Our results 
should not be considered definitive, because of the 
unknown level of error and uncertainty accompanying 
species distribution data, distribution modelling and the 
prioritisation process. Conservation planning is sensi-
tive to commission errors in predicted distribution maps 
(false presences—conserving areas lacking the species of 
interest; [24]). Although we attempted to minimise this 
error using spatial-block cross-validation, predicted dis-
tributions still have an unknown level of error. The use 
of only a single type of species response to habitat loss 
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can also be criticised. We cannot guarantee that con-
serving the top-priority areas identified here will ensure 
long-term species persistence, because this requires 
explicit population modelling, such as population viabil-
ity analysis [20, 28]. Some priority areas outside PAs are 
under great pressure from human uses (e.g. tourism on 
the Mediterranean and the Red-Sea coasts; mining in the 
Qattara Depression).

The actual conservation value of the top-priority sites 
requires fine-scale field validation [3] to verify their suit-
ability. Such validation must be undertaken by the Egyp-
tian Nature Conservation Sector when planning for PA 
expansion. Likewise, our evidence for the low conser-
vation efficiency of the current PA network should not 
encourage decision-makers in Egypt to alter current 
PAs until intensive good-quality data on a range of taxa 
become available. This will require much time and effort. 
Our aspirations for an expansion of the PA network 
should not distract from the urgent need for improving 
management within current PAs.

Data quality greatly affects conservation planning [50]. 
Despite the endeavours of Egypt’s Nature Conservation 
Sector, many more initiatives are required to improve 
inventories within and outside PAs, and also effective 
ecosystem management within PAs. A national scheme 
for biodiversity data collection and sharing would greatly 
facilitate future conservation planning. Due to the limita-
tions of currently available data, the effectiveness of the 
PAs will need to be re-evaluated using improved inven-
tory data on a wider range of taxa (e.g. birds, amphibians, 
plants, invertebrates, etc.), and include climate change. 
Data on additional species would make the SCP analysis 
more robust and stable and better represents the over-
all Egyptian biodiversity [59]. Future evaluation should 
be run in close partnership with scientists, experts on 
Egyptian biodiversity, decision-makers, stakeholders and 
local communities to minimise the gap between doing 
research and its implementation [20, 57].

Conclusion
The robustness of conservation planning applications is 
subject to many sources of uncertainty which should be 
accounted for during the prioritisation process. Conser-
vation planning in data-poor situations is sensitive to the 
selection of the surrogate group, correction for sampling 
bias, connectivity parameters, and the choice of model-
ling algorithm; collectively, these reflect data quality 
issues. This underlines the urgent need to improve data 
quality in the data-poor countries to enhance the useful-
ness of SDMs and conservation planning applications 
for long-term biodiversity conservation. We recom-
mend the use of data on as many species groups as pos-
sible and more than one modelling algorithm to obtain 

a robust and stable conservation planning. Sampling bias 
can highly affect the efficiency of SCP output and there-
fore should be corrected for. Maintaining connectivity 
between top priority sites is essential for the effective 
long-term conservation of many species and therefore 
should be carefully integrated into conservation plan-
ning. However, as species-specific responses to habitat 
loss represents an important knowledge gap. We high-
light the need for studies elaborating the response to hab-
itat loss for less-studied species. Using currently available 
data on the Egyptian butterflies, reptiles, and mammals, 
the Egyptian protected areas network seems to be inef-
ficient for wildlife conservation. We determined the top 
priority sites for further on-the-ground field evaluation 
as potential areas for protected areas expansion.
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