
Ren et al. BMC Ecol           (2020) 20:28  
https://doi.org/10.1186/s12898-020-00295-6

RESEARCH ARTICLE

Predicting the potential distribution 
of the parasitic Cuscuta chinensis under global 
warming
Zichun Ren1,2, Lyuben Zagortchev3, Junxia Ma2, Ming Yan1* and Junmin Li2* 

Abstract 

Background:  The climate is the dominant factor that affects the distribution of plants. Cuscuta chinensis is a stem 
holoparasitic plant without leaves or roots, which develops a haustorium and sucks nutrients from host plants. The 
potential distribution of the parasitic plant C. chinensis has not been predicted to date. This study used Maxent mod-
eling to predict the potential global distribution of C. chinensis, based on the following six main bioclimatic variables: 
annual mean temperature, isothermality, temperature seasonality, precipitation seasonality, precipitation of the warm-
est quarter, and precipitation of the coldest quarter.

Results:  The optimal annual average temperature and isothermality of C. chinensis ranged from 4 to 37 °C and less 
than 45, respectively, while the optimal temperature seasonality and precipitation seasonality ranged from 4000 
to 25,000 and from 50 to 130, respectively. The optimal precipitation of the warmest season ranged from 300 to 
1000 mm and from 2500 to 3500 mm, while that of the coldest season was less than 2000 mm. In Asia, C. chinensis is 
mainly distributed at latitudes ranging from 20° N to 50° N. During three specific historical periods (last glacial maxi-
mum, mid-Holocene, and 1960–1990) the habitats suitable for C. chinensis were concentrated in the central, northern, 
southern, and eastern parts of China. From the last glacial maximum to the mid-Holocene, the total area with suitabil-
ity of 0.5–1 increased by 0.0875 million km2; however, from the mid-Holocene to 1960–1990, the total area with suit-
ability of 0.5–1 decreased by 0.0759 million km2. The simulation results of habitat suitability in the two representative 
concentration pathways (RCP) 2.6 (i.e., the low greenhouse gas emissions pathway) and 8.5 (i.e., the high greenhouse 
gas emissions pathway) indicate that the habitat suitability of C. chinensis decreased in response to the warming 
climate. Compared with RCP2.6, areas with averaged suitability and high suitability for survival (RCP8.5) decreased by 
0.18 million km2.

Conclusion:  Suitable habitats of C. chinensis are situated in central, northern, southern, and eastern China. The habi-
tat suitability of C. chinensis decreased in response to the warming climate. These results provide a reference for the 
management and control of C. chinensis.

Keywords:  Cuscuta chinensis, Ecological niche model, Maxent model, Bioclimatic variables, Species distribution, 
Climatic warming
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Background
The climate is the dominant factor to affect plant distri-
bution [1–4]. Under the context of global climate change, 
increasing attention has been focused on the prediction 
of the distribution of plants to better apprehend future 
trends [4]. In addition to species distributed in unique 
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habitats, such as arid regions [5], highlands [4], and capes 
[6], most studies focused on specific species, such as 
dominant forest species [7, 8], invasive species [9, 10], or 
rare species [3] to enable better management of species. 
However, to date, only few studies focused on parasitic 
plants [11, 12].

By definition, parasitic plants obtain all or part of their 
energy from autotrophic plants (producers) via haustaria, 
and are ubiquitous species in all ecosystems [13]. Most of 
the parasitic plants are harmful to agriculture since they 
absorb a notable share of the host plants’ nutrients, which 
ultimately decreases or even inhibits host growth and can 
lead to the death of the host due to insufficient nutri-
tion [14]. However, many parasitic plants are also used 
as medicine, such as Cuscuta chinensis [15], Cistanche 
deserticola [16], and Viscum coloratum [17]. Predicting 
the potential global distribution of such parasitic plants 
not only informs management procedures that enable a 
reduction of the harm parasitic species impose on agri-
culture, it is also useful for the development of medical 
applications. Until now, the distribution of C. chinensis 
has not been predicted.

Ecological niche models (ENMs) are standard in eco-
logical modelling [18]. ENMs are a classical method that 
utilizes occurrence data in conjunction with environ-
mental data to build a correlative model of the specific 
environmental conditions that meet a species’ ecological 
requirements and thus predict the relative habitat suit-
ability [19]. ENMs use layers of environmental informa-
tion and species, as well as pseudo-absence or absence 
points to develop probabilistic maps of suitable distribu-
tion [20]. ENMs are generally used for four main objec-
tives: (1) to estimate the relative suitability of the habitat 
that is currently occupied by the species to be assessed, 
(2) to estimate the relative habitat suitability in areas 
where the assessed species are currently not known to 
be present, (3) to estimate potential changes in the habi-
tat suitability due to scenarios of environmental change, 
and (4) to estimate the environmental niche of a species 
[21]. Among the available tools for ENMs, the maximum 
entropy (Maxent) approach is one of the most widely 

used for the prediction of species distributions [20, 22]. 
Moreover, Maxent is effective for the prediction of nar-
row species distributions [2, 3, 23–27].

Cuscuta spp. belong to the family of Convolvulaceae 
and are annual holoparasitic herbs. Cuscuta spp. grow 
in a wide variety of climates and ecosystems on all con-
tinents except Antarctica [28]. Cuscuta spp. severely 
damage crop plants and are considered as the third-most 
detrimental group of parasitic pants worldwide follow-
ing Striga and Orobance [28]. C. chinensis is a typical 
native holoparasitic plant belonged to Cuscuta genus in 
China, which is also known as the Chinese Dodder [29], 
or Tu-Si-Zi in Chinese [30]. This study used the Maxent 
method to predict the potential distribution of C. chinen-
sis based on world-wide occurrence data of C. chinensis. 
This study aimed to identify: (1) the climatic factors that 
affect the suitability of C. chinensis habitat,( 2) how the 
distribution of C. chinensis changed during three histori-
cal periods (last glacial maximum, mid-Holocene, and 
1960–1990), and (3) how the C. chinensis distribution 
changed in response to global warming. The results pro-
vide a basic understanding of the trends of parasitic Cus-
cuta spp. plants within the plant community and improve 
the management and control of this species.

Results
Model performance and contribution of variables
Ecological modeling yielded an average AUC value of 
0.951, while the TSS index was 0.887, classifying the 
model as very satisfactory. The six bioclimatic vari-
ables of annual mean temperature (Bio1), isothermal-
ity (Bio3), temperature seasonality (Bio4), precipitation 
seasonality (Bio15), precipitation of warmest quarter 
(Bio18), and precipitation of coldest quarter (Bio19) 
were selected to establish the model (Table  1). Addi-
tional file  1: Fig. S1 shows the results of the Jackknife 
test of the variable contribution by Maxent. When used 
independently, Bio1, Bio3, Bio15, and Bio18 provided 
very high gains (> 0.40), indicating that these four vari-
ables contained more useful information than the other 
variables. Bio4 and Bio19 achieved very low yields 

Table 1  Environmental variables used for modeling the habitat suitability distribution of C. chinensis in this study

Data source Category Variables Abbreviation Units

C. chinensis
Worldclime

Bioclimatic Annual mean temperature Bio1 °C

Isothermality (BIO2/BIO7) (*100) Bio3 Dimensionless

Temperature seasonality (standard deviation *100) Bio4 Dimensionless

Precipitation seasonality (coefficient of variation) Bio15 Dimensionless

Precipitation of warmest quarter Bio18 mm

Precipitation of coldest quarter Bio19 mm
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when used alone, and did not contain much informa-
tion. Therefore, Bio1, Bio3, Bio15, and Bio18 were iden-
tified as important climatic factors that influence the 
suitable habitat of C. chinensis.

Response of variables to suitability
The response curves of C. chinensis to the six assessed 
bioclimatic variables are shown in Additional file 2: Fig. 
S2. As shown in Additional file 2: Fig. S2a, when Bio1 
is below 5  °C, the probability that C. chinensis exists 
is extremely low (below 0.5, indicating low probabil-
ity). With increasing temperature, the probability for 
C. chinensis to exist gradually increased, and reached 
the maximum at 22  °C with a probability of existence 
as high as 0.7. When Bio1 ranges from 4 to 37  °C, the 
survival rate of C. chinensis was high (~ 0.5). Therefore, 
the optimum annual mean temperature of C. chinensis 
ranges from 4 °C to 37 °C.

As shown in Additional file  2: Fig. S2b, when Bio3 
ranged from 0 to 45, the survival probability of C. chin-
ensis exceeded 0.5, indicating a benefit for the survival 
of C. chinensis. Therefore, the optimum isothermality of 
C. chinensis should remain below 45.

As shown in Additional file  2: Fig. S2c, when the 
temperature seasonality of Bio4 was ~ 500 or less, the 
existence probability of C. chinensis was extremely low. 
Furthermore, from 4000 to 25,000, the survival proba-
bility of C. chinensis first increased and then decreased, 
and the survival probability of C. chinensis decreased to 
above 0.5. Therefore, the optimal temperature seasonal-
ity of C. chinensis is 4000–25,000.

As shown in Additional file  2: Fig. S2d, when Bio15 
exceeds 25, the survival probability of C. chinensis 
rapidly increased and reached a peaked at around 80 
(~ 0.72). From 50 to 130, the survival probability of C. 
chinensis exceeded 0.5. Therefore, the optimal precipi-
tation seasonality ranges from 50 to 130.

As shown in Additional file 2: Fig. S2e, with increas-
ing Bio18, the survival probability of C. chinensis 
gradually increased and peaked at around 500  mm. 
Beyond 500 mm, the survival probability of C. chinensis 
deceased and reached a minimum at around 1400 mm. 
Furthermore, the optimal precipitation of the warmest 
quarter ranges from 300 to 1000 mm, and from 2500 to 
3500  mm with the survival probability of C. chinensis 
exceeding 0.5.

As shown in Additional file  2: Fig. S2f, when Bio19 
ranged from 0 to 2000 mm, the existence probability of 
C. chinensis exceeded 0.5. Therefore, the optimal precipi-
tation of C. chinensis in the coldest season ranges from 
0  mm to 2000  mm and the survival probability exceeds 
0.5.

Model application
Global C. chinensis distribution
The global C. chinensis distribution is shown in Fig.  1a. 
In Asia, C. chinensis are mainly distributed at latitudes 
ranging from 20° N to 50° N, which includes central, east-
ern, and southern China (Fig. 1c). C. chinensis also has a 
small distribution in Japan, India, Afghanistan, Pakistan, 
Myanmar, Vietnam, Bangladesh, and Turkey as well as 
minor occurrences in Australia (Fig. 1a, c). However, no 
distribution was found on Europe, Africa, and America 
(Fig. 1a).

Habitat suitability simulation for three historical periods
The simulation results of the C. chinensis habitat suitabil-
ity during three historical periods (last glacial maximum, 
mid-Holocene, and 1960–1990) are shown in Fig. 2. From 
the perspective of space, suitable areas for C. chinensis 
during these three periods concentrated in the central, 
northern, southern, and eastern parts of China. These 
areas have a survival probability above 0.5, indicating that 
C. chinensis in these region benefitted from moderate or 
relatively high suitability. Compared with the last glacial 
maximum, the paleoclimatic prediction of the Holocene 
mid-term CCSM4 climate model indicates that the posi-
tion in the mid-Holocene changed; moreover, it indicated 
that the size of the predicted distribution increased. 
From the mid-Holocene to 1960–1990, the global habi-
tat suitability of C. chinensis gradually decreased, and 
the area with medium and relatively higher fitness (> 0.5) 
gradually decreased. From the last glacial maximum to 
the mid-Holocene, the total area with suitability above 
0.75 increased by 0.5689 million km2 (i.e., by 25.09%). 
The area with higher fitness (> 0.75) during the mid-Hol-
ocene reached 2.8362 million km2, accounting for 1.9% of 
the global total area. However, from the mid-Holocene 
to 1960–1990, the total area with suitability above 0.75 
decreased by 0.0797 million km2 (i.e., by 2.81%). Dur-
ing the period of 1960-1990, the area with high fitness 
(> 0.75) was 2.7565 million km2, accounting for 1.85% of 
the global total area. From the last glacial maximum to 
the mid-Holocene, the total area with suitability of 0.5-1 
increased by 0.0875 million km2, while from the mid-
Holocene to 1960–1990, the total area with suitability of 
0.5–1 decreased by 0.0759 million km2 (Table 2).

Suitable habitat distributions under global warming 
scenarios
The computed results for the C. chinensis habitat suit-
ability in RCP2.6 and RCP8.5 are shown in Figs.  3 and 
4, respectively. The suitable habitats of C. chinensis 
decreased in response to climatic warming. In RCP8.5, 
the total area with intermediate suitability and high 
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suitability for the survival of C. chinensis was less than 
that of RCP2.6. In RCP2.6, the C. chinensis suitabilities 
of northern, central, and southern China, North Korea, 
and the coastal areas of Japan all exceed 0.75. However, 
the suitabilities of southern Africa, the central and south-
ern parts of North America, and South America ranged 
between 0.25 and 0.5, while the habitat suitability of the 

remaining areas was below 0.25. In RCP2.6, the area with 
suitable habitat was below 0.25 (about 141 million km2), 
accounting for 94.6% of the global area. Areas where the 
habitat suitability ranged between 0.25 and 0.5, as well 
as between 0.5 and 0.75 accounted for 2.0% and 1.5% of 
the world, respectively, with areas of about 2.9526 mil-
lion km2 and 2.2519 million km2, respectively. Habitats 

Fig. 1  Global distribution (a), photo (b) and concentrated distribution (c) of Cuscuta chinensis. Geographical base map data were downloaded from 
the national basic geographic information system (http://www.diva-gis.org/)

http://www.diva-gis.org/
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with suitability exceeding 0.75 accounted for 1.91% of 
the total area of the world. In RCP8.5, the area suitable 
for C. chinensis growth between 0.25 and 0.5 was the 
same as in RCP2.6, and its distribution concentrated in 
the central and southern parts of North America and 
South America. Moreover, habitats with suitability above 

0.75 were also distributed in Northern China, North 
Korea, and the coastal areas of Japan. Compared with 
RCP2.6, for RCP8.5, the areas with high suitability for 
survival increased by 0.052 million km2; however, areas 
with intermediate suitability and high suitability for sur-
vival decreased by 0.18 million km2. Areas with habitat 

Fig. 2  Habitat suitability distribution of Cuscuta chinensis for three historical periods. Last glacial maximum (a, b), mid-Holocene (c, d), and 1960–
1990 (e, f). Geographical base map data were downloaded from the national basic geographic information system (http://www.diva-gis.org/)

http://www.diva-gis.org/
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suitability below 0.25% accounted for 94.8% of the world’s 
total area, with an area of 141 million km2. Compared 
with RCP2.6, this indicates an increase of 0.3298 million 
km2. Therefore, in general, habitats suitable for C. chin-
ensis decreased in response to climate warming (Table 3).  

Discussion
Relationship between C. chinensis habitat suitability 
and environmental variables
Temperature and precipitation are two climatic features 
that can be used as useful starting points to investigate 
the mechanisms with which the global climate controls 
plant distribution [29]. Among the six bioclimatic vari-
ables adopted for the developed model, annual mean 
temperature (Bio1), isothermality (Bio3), precipitation 
seasonality (Bio15), and precipitation of the warmest 
quarter (Bio18) were the most important contributors 
to the habitat suitability of C. chinensis as indicated by 
their high weights when used independently. The suitable 
annual average temperature of C. chinensis was identified 
to range within 11–37  °C. This suitable temperature fits 
the suitable germination temperature of C. chinensis. C. 
chinensis begins to germinate (the germination rate of C. 
chinensis is 7.3%) at a temperature of 10 °C, and the ger-
mination rate increases with increasing temperature [30]. 
When the temperature reaches 25–35  °C, the germina-
tion rate of C. chinensis reaches 40–46% [30]. When the 
temperature reaches 40 °C or above, the germination rate 
of C. chinensis is 0 [30]. The isothermality is the mean 
diurnal range vs. the temperature annual range, which 
has been shown to affect the distribution of tree species 
[31]. The distribution of C. chinensis is also affected by 
isothermality. When Bio3 ranged from 0 to 45, the sur-
vival probability of C. chinensis exceeded 0.5. Precipita-
tion changes during the growing season affect the growth 
of plants and their primary productivity [32]. In this 
study, the suitable precipitation of the warmest quarter 
was 300–1000 mm and 2500–3500 mm for C. chinensis 

growth, indicating that C. chinensis prefers a warm and 
humid environment [33]. C. chinensis has a disjunct dis-
tribution in Australia and Asia, which is likely the result 
of its relatively recent long-distance dispersal [28]. The 
main distribution areas of C. chinensis in China include 
the provinces of Henan, Jiangsu, Shandong, Hebei, Jilin, 
and Liaoning [56]. Recently, new records of C. chinensis 
have been reported for Bhubaneswar, Odisha, India, and 
Sikkim [34, 35]. The current distribution of C. chinensis 
might be the result of vegetation changes due to climatic 
changes, which include temperature and precipitation.

Habitat suitability simulation for three historical periods
Based on fossil pollen data, Martin predicted that the 
species in family Convolvulaceae first appeared in the late 
Eocene of southern Australia, the early Eocene of Africa, 
or the mid-Eocene of Brazil, and spread from low lati-
tude to high latitude [36]. The results of this prediction 
indicated that from the last glacial maximum to the mid-
Holocene, the global habitat suitability of C. chinensis 
gradually increased. Compared with its current distribu-
tion, C. chinensis benefitted from a larger area with suit-
able climate during the mid-Holocene period. Research 
has shown that the warming and increased precipitation 
at around 6000 BP greatly affected the European veg-
etation [37]. As shown in Fig. 2, in Western Europe, the 
survival probability during the mid-Holocene increased 
significantly compared with the last glacial maximum. 
This might be the result of the increased temperature and 
precipitation during the mid-Holocene, which results 
in an increase of the suitable survival area of C. chinen-
sis [38, 39]. In addition, C. chinensis might grow better 
under the prevailing higher CO2 conditions during the 
mid-Holocene [38, 39]. However, from the mid-Holocene 
to 1960–1990, the global habitat suitability of C. chin-
ensis gradually decreased. The possible reason might be 
habitat loss, which affects the distribution of species [40]. 
Meulebrouck et al. reported a significant decline of many 

Table 2  The area of Cuscuta chinensis’s four habitat suitability distribution during three historical periods

PCT indicates the percentage of the area in the current historical periods of the global’s total area. TAPCT indicates the percentage of the area in the current historical 
periods relative to the area in the last historical periods. The percentage increase (“+”) and decrease (“−”) in the area of the column compared to the area of the 
previous column in the historical period

Habitat 
suitability

Historical periods

Last glacial maximum Mid-holocene 1960–1990

Area (million 
km2)

TAPCT (%) PCT (%) Area (million 
km2)

TAPCT (%) PCT (%) Area (million 
km2)

TAPCT (%) PCT (%)

0–0.25 140.0203 – 94.04 140.6176 + 0.43 94.44 140.7554 + 0.01 94.53

0.25–0.5 4.0135 – 2.70 3.3286 − 17.06 2.24 3.2669 − 1.86 2.19

0.5–0.75 2.5989 – 1.75 2.1175 − 18.52 1.42 2.1213 + 0.18 1.42

0.75–1 2.2673 – 1.52 2.8362 + 25.09 1.90 2.7565 − 2.81 1.85
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wasteland species in Western Europe over the recent 
decades due to habitat loss [40].

Moreover, C. chinensis is a holoparasitic plant, which 
absorbs both water and nutrients from host plants by 
haustaria and fully relies on their host [41]. Using Maxent 
modeling, this study found that the trends of the global 
habitat suitability of the host (Glycine max) of C. chinen-
sis during these three historical periods were the same as 

that mentioned above (unpublished data). This indicates 
that the habitat suitability of the host would also affect 
the habitat suitability of the parasite.

Changes in distribution of C. chinensis in the future
From the perspective of the overall ecological suitability 
of C. chinensis, in RCP8.5, the area suitable for the sur-
vival of C. chinensis was less than that of RCP2.6. Global 

Fig. 3  Suitable habitat distribution of Cuscuta chinensis in RCP2.6. Geographical base map data were downloaded from the national basic 
geographic information system (http://www.diva-gis.org/)

http://www.diva-gis.org/


Page 8 of 14Ren et al. BMC Ecol           (2020) 20:28 

warming thus seems to have limited the growth of C. 
chinensis and negatively impacted the global habitat suit-
ability and suitable areas for C. chinensis. This may be 
because transitory or constantly high temperatures cause 
an array of morpho-anatomical, physiological, and bio-
chemical changes in plants. These affect plant growth 
and development [42], and decrease the productivity of 
both above-ground plant parts and roots [43].

As mentioned above, the suitability of the host can 
also affect the future suitability of parasites. Using Max-
ent modeling, this study found that the suitability area of 
the host G. max in RCP8.5 was less than in RCP2.6 (Ren 
et  al., unpublished data), indicating that global warm-
ing also negatively affects the suitable area of the host 
and consequently reduced the suitable area of parasites 
by limiting plant growth. In previous literature, several 

Fig. 4  Suitable habitat distribution of Cuscuta chinensis in RCP8.5. Geographical base map data were downloaded from the national basic 
geographic information system (http://www.diva-gis.org/)

http://www.diva-gis.org/
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researchers reported that the yield of rice (Oryza sativa), 
chillies (Capsicum annuum), and tomato (Solanum lyco-
persicon), other hosts of C. chinensis [44], significantly 
decreased under global warming [45, 46]. This might also 
reduce the suitability of both hosts and parasites.

As shown in Fig.  4, in the future, C. chinensis has a 
probability of habitat suitability ranging within 0.25–0.5 
in both South America and North America under global 
warming, although C. chinensis is currently not distrib-
uted there. This might be due to two reasons. First, the 
temperature and precipitation in South America and 
North America increased in response to global warm-
ing. For example, Ramos da Silva and Haas [47] reported 
that the overall temperature of South America increased, 
and precipitation also increased in southern Brazil and 
the western Amazon in response to global warming. Kar-
malkar and Bradley [48] showed that the temperature in 
North America will have increased appropriately by 2050. 
Projections of the winter precipitation for the eastern 
USA (including the Northeast) and the Midwest (mostly 
CMIP5 models) indicate a wetter future. Secondly, with 
increasing temperature and precipitation, the stronger 
growth of the C. chinensis’s host Triticum aestivum [49], 
a main host of crop in both North and South America 
[50], might drive the invasion of C. chinensis from its 
suitability area to North America and South America.

Conclusion
The existence and potentially suitable habitat of C. 
chinensis were assessed and predicted by using the best 
Maxent modeling evaluated by both the AUC index and 
TSS index. Six main bioclimatic variables that influence 
species distribution were selected from a total of 19 
bioclimatic variables. These are annual mean tempera-
ture, isothermality, temperature seasonality, precipita-
tion seasonality, precipitation of the warmest quarter, 
and precipitation of the coldest quarter. Controlling 
temperature and precipitation can both prevent and 
protect C. chinensis. The suitable habitat of C. chinen-
sis is mainly distributed in China. Compared with its 

current distribution, the mid-Holocene period offered 
a larger climatically suitable area for C. chinensis, and 
central and southern China were particularly suitable. 
The simulation results of C. chinensis habitat suitability 
in RCP2.6 and RCP8.5 indicated that the C. chinensis 
habitat suitability decreased due to the warming cli-
mate. This indicates a decreasing trend for the C. chin-
ensis distribution in the future. In addition to the above 
bioclimatic variables, other factors may also affect the 
suitable habitat of plants, such as soil, geographic bar-
riers, human disturbance, and host distribution [41, 
42]. Although this study only considered the impact 
of the climate on C. chinensis, if the effects of human 
activities, geographic barriers, soil conditions on veg-
etation, and host distribution were to be comprehen-
sively considered, the distribution of C. chinensis could 
be more accurately predicted. However, a flaw affects 
the accuracy of ENMs, which critically hinges on the 
quality of the occurrence data and often uses haphaz-
ardly collected data. Although the maximum number of 
background points was set to 10,000, to match the bias 
of the buffer of appearance records, the utilized back-
ground records were constrained to Asia.

Methods
Study species
Cuscuta chinensis grows near the seaside, its stems are 
thin, twining, filiform, glabrous, yellowish or pale yellow-
ish, and have a diameter of ~ 1  mm (Fig.  1b). The plant 
has neither roots nor leaves, or leaves that are reduced 
to minute scales [51]. It often parasitizes on Fabaceae, 
Asteraceae, or Zygophyllaceae. C. chinensis is distributed 
throughout Asia and Australia [51, 52]. Its aerial parts are 
harvested in autumn, when the fruits are ripe, and are 
dried naturally via sunlight. Dried parts are thrashed for 
seeds [28, 51]. C. chinensis seeds are often used as herbal 
medicine, and have the functions to improve the metabo-
lism of the liver and kidney, are used as a diuretic, and 
can improve eyesight [15, 53, 54].

Table 3  The area of Cuscuta chinensis’s four habitat suitability distribution for two global warming scenarios

PCT indicates the percentage of the area in the current historical periods of the global’s total area

Habitat suitability Global warming scenarios

RCP2.6 RCP8.5

Area (million km2) PCT (%) Area (million km2) PCT (%)

0–0.25 140.8488 94.59 141.1786 94.81

0.25–0.5 2.9526 1.98 2.8043 1.88

0.5–0.75 2.2519 1.51 2.0183 1.36

0.75–1 2.8467 1.91 2.8988 1.95
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Data sources
Occurrence records (818) of C. chinensis were collected 
from the national specimen information infrastruc-
ture (http://www.nsii.org.cn/), the Chinese virtual her-
barium (http://www.cvh.org.cn/), and the plant photo 
bank of China (http://ppbc.iplan​t.cn/). 175 occur-
rence records were collected from the global biodiver-
sity information facility (GBIF; http://www.gbif.org; 
accessed on June 26, 2018). Moreover, four occurrence 
records were collected from scientific publications. 
The total records were also filtered at the resolution 
of 2.5 arc min (4.3 × 4.3  km2) and 550 similar-latitude 
and longitude-repeated records as well as four invalid 
records (occurrence points of the bioclimatic variable 
raster layer with a value of -9999) were deleted. Finally, 
443 valid records were used for the analysis herein 
(Additional file 3: Table S1).

Bioclimatic factors exert important biological sig-
nificance for the determination of the environmental 
niche of species [2]. Since the GBIF database has a spa-
tially-biased dataset due to variable sampling efforts, 
data storage, and mobilization below 30 arc sec resolu-
tion [55, 56], only data of 19 bioclimatic factors with 
2.5 (4.3 × 4.3  km2), 5 (10 × 10  km2), and 10 arc min 
(16 × 16 km2) resolution were downloaded (http://www.
world​clim.org). The climate data for the three periods 
(last glacial maximum, Mid-Holocene, and 1960–1990) 
also originate from http://www.world​clim.org.

The paleoclimatic prediction was conducted with the 
CCSM4 climate model. The representative concentra-
tion pathways (RCPs) are four greenhouse gas concen-
tration (rather than emission) trajectories that have been 
adopted by the Intergovernmental Panel on Climate 
Change (IPCC) [4]. Four RCPs (RCP2.6, RCP4.5, RCP6.0, 
and RCP8.5) represent net radiative forcing of 2.6, 4.5, 
6.0, and 8.5  W/m2 at the end of the year 2100 [57, 58]. 
The most representative RCP2.6 and RCP8.5 with the 
lowest and highest net radiation intensity at the end of 
2100, respectively, were used for this study. The RCP2.6 
scenario results in 490 ppm CO2 equivalent and a global 
average temperature increase of 1.5 °C, while the RCP8.5 
scenario results in 1370 ppm CO2 equivalent and a global 
average temperature increase of 5.0  °C [59, 60]. C. chin-
ensis habitat suitability distributions were modeled for 
each of these two scenarios. In both cases, the habitat 
suitability distribution of C. chinensis was simulated sep-
arately. Climate projections for the years 2061 through to 
2080 were used as climate data and were obtained from 
CCSM4 global climate models for RCP2.6 and RCP8.5, 
which are available at http://www.world​clim.org. Geo-
graphical base map data were downloaded from the 
national basic geographic information system (http://
www.diva-gis.org/).

Bioclimatic variable screening
To avoid the influence of highly relevant environmental 
data on the prediction results, both Pearson correlation 
coefficient and principal component analysis (PCA) of 
19 bioclimatic variables were tested using the SPSS 19.0 
software (SPSS Inc. Chicago, IL USA). One variable of 
each set of highly cross-correlated variables (r > 0.8) was 
selected for further analysis [2]. Various environmental 
factors were considered and the most relevant factors for 
prediction and evaluation were selected [61, 62]. Subse-
quently, the Maxent model was used to calculate the con-
tribution rate of the 19 selected environmental factors. 
According to the 19 bioclimatic variables presented in 
Table 4, 10% of the distributed information points were 
randomly selected as test sets, and the remaining 90% of 
the samples were used as training set for model verifica-
tion. The model settings were repeated 10 times. Six bio-
climatic variables were screened to explore the response 
of C. chinensis to climate change. Then, the Jackknife test 
was used to test the contribution rate of bioclimatically 
dominant factors (> 0.4).

Maxent modelling
The principle of Maxent is a criterion for the selection of 
statistical characteristics of random variables that best 
meet the objective conditions. This is also known as the 
principle of maximum information. The probability dis-
tribution of random quantities is difficult to measure. 
Generally, only mean values (such as the mathematical 
expectation and variance) or values under specific 
defined conditions (such as peak values and the number 
of values) can be measured. The distribution of these val-
ues can be measured in a variety of ways, and thus, an 
infinite number of distributions can be investigated. Typ-
ically, one of these distributions has the highest entropy. 
Selecting this distribution with the highest entropy (Max-
ent) as distribution of the random variable is an effective 
processing method and criterion. This Maxent approach 
establishes a model with Maxent in accordance with 
known data [23, 41]. Maxent uses all grid elements in a 
certain study area, thus using the largest possible distri-
bution space. It also uses the grid unit of the known spe-
cies distribution point as sample point, and obtains the 
constraining conditions according to the environmental 
variables of the sample point unit to identify the Maxent 
under this constraint condition. This approach yields the 
possible distribution [23, 63] with simple operation, fast 
calculation speed, and good prediction result [64, 65]. 
Based on the Maxent theory, the Java-based software 
package Maxent was developed by Phillips et al. [66] and 
can be used to simulate habitat suitability. The present 
study used Maxent modelling to predict the potential dis-
tribution of C. chinensis. Maxent software (version 3.4.1) 

http://www.nsii.org.cn/
http://www.cvh.org.cn/
http://ppbc.iplant.cn/
http://www.gbif.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.diva-gis.org/
http://www.diva-gis.org/
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was obtained from the official website (http://biodi​versi​
tyinf​ormat​ics.amnh.org/opens​ource​/maxen​t/) [67]. The 
Maxent method is to establish a model with a maximum 
entropy in accordance with known knowledge [2]. The 
entropy of a random variable ξ is given by the formula 
[2]: H(ξ) =

∑n
i=1

(

pi log
1
pi

)

.

Model evaluation index
The area under curve (AUC) value and the true skill 
statistic (TSS) index respond differently to distribution 
point occurrence rates and thresholds; therefore, their 
combination can better assess the performance of the 
model [68, 69]. Both AUC and TSS were used to evalu-
ate the performance of the model [68]. The AUC value 
was directly obtained after running the Maxent software 
[68]. The receiver operating characteristic (ROC) curve is 
based on the accuracy of the threshold-independent eval-
uation model, i.e., each value of the prediction result is 
used as possible judgment threshold. The corresponding 
sensitivity and specificity were calculated via the ROC 
curve. The specificity (1-specificity; i.e., the probability 
for being predicted to be positive without the species 
distribution) is shown on the abscissa, and the sensitiv-
ity (1-omission rate; i.e., the probability that the species is 
actually distributed and predicted to be positive) is shown 
on the ordinate. The AUC value was calculated as the 
area enclosed by the curve and the abscissa and was used 

to assess the performance of models that are not affected 
by the choice of the threshold [70]. In general, the AUC 
ranges between 0.5 and 1. A larger AUC value indicates 
better model performance [2]. Model performance is cat-
egorized as failing (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), 
good (0.8–0.9), or excellent (0.9–1) according to the AUC 
[69]. The TSS provides a threshold-dependent meas-
ure of accuracy, which is often applied for presence–
absence predictions [68]. The TSS index was calculated 
as: TSS = Sensitivity + Specificity − 1, where sensitivity is 
defined as the probability that a model correctly classifies 
the presence data, whereas specificity indicates the prob-
ability of classifying correctly the absence data points 
[71]. The TSS ranges from − 1 to 1, where a value of 0 or 
less indicates a model performance no better than ran-
dom, and a value of 1 indicates perfect performance [71]. 
Here, model performance is either categorized as failing 
(< 0.4), poor (0.4–0.55), fair (0.55–0.7), good (0.7–0.85), 
or excellent (0.85–1) according to the TSS [68].

Model setting
This study randomly established 10,000 validation sites, 
and used the actual point of existence to run the model. 
To obtain the best model, the Maxent model was set as 
follows: (1) the regularization multiplier (beta) selected 
based on corrected Akaike information criterion (AICc) 
was set to 1, 2, 5, 10, 15, and 20 [19, 72, 73]. (2) A 10 

Table 4  Bioclimatic variables used in the model and the relative contributions of 19 bioclimatic variables to the Maxent 
model for C. chinensis 

Variables Description Percent 
contribution

BIO1 Annual mean temperature 8.6

BIO2 Mean diurnal range (Mean of monthly (max temp − min temp)) 1.8

BIO3 Isothermality (BIO2/BIO7) (* 100) 6.4

BIO4 Temperature seasonality (standard deviation * 100) 13.1

BIO5 Max temperature of warmest month 1.4

BIO6 Min temperature of coldest month 1.8

BIO7 Temperature annual range (BIO5–BIO6) 1.3

BIO8 Mean temperature of wettest quarter 1.1

BIO9 Mean temperature of driest quarter 3.9

BIO10 Mean temperature of warmest quarter 2

BIO11 Mean temperature of coldest quarter 3.6

BIO12 Annual precipitation 1.6

BIO13 Precipitation of wettest month 8

BIO14 Precipitation of driest month 1.2

BIO15 Precipitation seasonality (coefficient of variation) 13.4

BIO16 Precipitation of wettest quarter 1.3

BIO17 Precipitation of driest quarter 1.2

BIO18 Precipitation of warmest quarter 24.1

BIO19 Precipitation of coldest quarter 4.2

http://biodiversityinformatics.amnh.org/opensource/maxent/
http://biodiversityinformatics.amnh.org/opensource/maxent/
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cross-validation approach was used as replicated run 
type [22]. (3) A complementary log–log (cloglog) trans-
formation was used to produce an estimate of the habitat 
suitability of weeds [67]. (4) The resolutions of environ-
mental variables were set to 2.5, 5.0, and 10.0 arc min. 
The Maxent model was run 10 times repeatedly. Each 
run randomly selected 90% of the distribution informa-
tion points as training set, while the remaining 10% of 
the samples were used for the test. The threshold rule 
selected equal training sensitivity and specificity. The 
output format of Maxent was selected automatically 
depending on the particular sample size of the occur-
rence records according to a method developed by Phil-
lips and Dudik [62]. The auto feature setting was selected 
and the regularization multiplier (beta) was 1. In addi-
tion, the environmental variable was set to 2.5 min.

Predicting the suitable area of C. chinensis under global 
climate change
ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA) 
was used to superimpose and map the results of the Max-
ent model calculations. Based on the main ecological fac-
tors, a global map of ecologically appropriate zones for 
C. chinensis was drawn. Artificial grading was used to 
classify different grades based on their ecological simi-
larity. According to the statistical principle, the expres-
sion of probability “existence” and the empirical method 
divided the suitable area into four levels [74]. These lev-
els are: < 25%, which is representative for non-suitable 
survival areas, and indicates that the suitability for the 
survival of species in these areas is below 25%. A level of 
25–50% is representative for low-suitable survival areas, 
a level of 50–75% is representative for survival areas with 
average suitability, and a level of > 75% is representative 
for high-suitable for survival area. These three levels indi-
cate that species have a higher probability of survival in 
these areas [74]. The optimal ranges of the climatic varia-
bles were defined as those ranges where species inhabited 
survival areas with average and high suitability, i.e. > 50% 
[74]. The range of appropriate eco-factor values was 
derived from the response curves of the Maxent model 
results.
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Additional file 1: Fig. S1. The results of the jackknife test of variable 
contribution in modeling the habitat distribution of Cuscuta chinensis. The 
regularized training gain describes how much better the Maxent distribu-
tion fits the data compared to a uniform distribution. The dark blue bars 
indicate the gains from using each variable in isolation, while the light 

blue bars indicate the gains lost by removing a single variable from the full 
model. The red bar indicates the gains when all variables are used. 

Additional file 2: Fig. S2. Response curves of six main bioclimatic 
variables. The red curve showed the mean response calculated over 
10 replicates, while the blue margin showed the standard deviation 
calculated over 10 replicates. The temperature data are expressed in  °C 
* 10. This means that the value of 231 represents 23.1 °C. The unit used 
for precipitation data is mm (Bio1: annual mean temperature (°C); Bio3: 
isothermality (BIO2/BIO7) (* 100); Bio4: temperature seasonality (standard 
deviation *100); Bio15: precipitation seasonality (coefficient of variation); 
Bio18: precipitation of warmest quarter (mm); Bio19: precipitation of cold-
est quarter (mm)). 

Additional file 3: Table S1. 443 valid records used for this study.
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