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Abstract 

Background:  Natural habitats are typically structured, imposing constraints on inhabiting populations and their 
interactions. Which conditions are important for coexistence of diverse communities, and how cooperative interac-
tion stabilizes in such populations, have been important ecological and evolutionary questions.

Results:  We investigate a minimal ecological framework of microbial population dynamics that exhibits crucial fea-
tures to show coexistence: Populations repeatedly undergo cycles of separation into compartmentalized habitats and 
mixing with new resources. The characteristic time-scale is longer than that typical of individual growth. Using ana-
lytic approximations, averaging techniques and phase-plane methods of dynamical systems, we provide a framework 
for analyzing various types of microbial interactions. Population composition and population size are both dynamic 
variables of the model; they are found to be decoupled both in terms of time-scale and parameter dependence. We 
present specific results for two examples of cooperative interaction by public goods: collective antibiotics resistance, 
and enhanced iron-availability by pyoverdine. We find stable coexistence to be a likely outcome.

Conclusions:  The two simple features of a long mixing time-scale and spatial compartmentalization are enough 
to enable coexisting strains. In particular, costly social traits are often stabilized in such an environment—and thus 
cooperation established.

Keywords:  Microbial interactions, Population dynamics, Multilevel selection, Public goods

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The last few decades have seen an immense effort in try-
ing to understand diverse communities of microbes [1–
4]. They exist in biofilms, in guts of higher animals, and 
many other places, where they are important for ecologi-
cal, economic, and medical affairs. Among the questions 
that have been asked are what is the origin of diversity 
in these communities, how can they survive and thrive 
together, and what role does a structured environment 
play? Empirical and theoretical answers point towards a 
few common themes. Endogenous mechanisms can sup-
port stable diversity of populations, for example by trade-
offs in allocation between multiple resources [5, 6] and by 

mutualistic cross-feeding [7–9]. However, environmental 
factors may play a major role as well: Spatial structuring 
and compartmentalization are also found to contribute to 
diverse microbial populations and their mutual coopera-
tion [10–19].

A natural example of an ecological system with such 
strongly structured environments are tidal cycles on 
rocky shores [20–22] (see also Fig.  1): High tide dilutes 
populations into small tidal pools and replenishes nutri-
ents, while at low tide remaining cells utilize these 
resources to replicate. The cyclic tidal dynamics may be 
more complex, but its crucial features include the spatial 
segregation of pools, and a new temporal scale deter-
mined by the tides, which is long compared to growth. 
Another scenario involving the same ingredients is the 
repeated colonization of surfaces and their dispersal [19]. 
Laboratory experiments can mimic these spatio-temporal 
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ecological conditions, for instance by enclosing popula-
tions in milli- and micro-fluidic droplets [23–25], which 
are pooled and then seeded periodically into new drop-
lets with fresh medium.

The ecological and environmental structuring of micro-
bial communities allows to address also a more funda-
mental problem in evolutionary biology: The evolution of 
multicellular organisms from single celled ancestors. This 
required the formation of stable collectives engaged in 
cooperative interactions, providing further motivation to 
study the conditions for this to occur. Experimental stud-
ies showed that in yeast multicellular aggregates readily 
form when environmental conditions impose a selective 
advantage to groups of cells [26–28]. Different routes to 
multicellularity that do not involve cells staying together 
after dividing [29] exist as well: Slime molds come 
together and form multicellular bodies when resources 
are scarce [30]. Thus, environmental conditions can be 
seen as an ecological scaffold [31, 32], providing the nec-
essary support for an major evolutionary transition [33, 
34] of collectives into new individuals.

What are the minimal, or simplest, environmental 
conditions that support coexistence between competing 
microbial strains, allowing them to form stable and heter-
ogeneous collectives? To what extent are these conditions 
sensitive to the details of the interaction, be it competi-
tive or cooperative, between strains? To address these 
questions, we analyze a minimal model of environmen-
tal structuring, which combines spatial segregation with 
limited resources and a temporal cycle of mixing and 
reseeding. In the evolutionary literature, similar ingre-
dients can be traced back to trait group models [35–39], 
that later led to the development of multilevel selection 
theory [40–42]. More recently, these concepts have been 
applied directly to microbial populations [10–13, 43]. 
Related concepts have also been developed in ecology 

with meta-community and meta-population approaches 
[44–46].

We develop a simple modeling framework to address 
interactions between microbial populations with dif-
ferent properties, including various implementations 
of interaction through public goods. Such a framework 
allows a direct comparison of specific biological interac-
tions. In particular, we study growth on shared resources, 
the enzymatic degradation of antibiotic hazards, and 
resource extraction via siderophores. By analyzing the 
long-term dynamics of population composition and size, 
we show that stable coexistence between strains with dif-
ferent properties is a generic outcome in all cases. While 
the specific dynamical interactions are different, coex-
istence—and thus cooperation when public goods are 
involved—between strains is readily mediated by the spa-
tio-temporal structuring of the environment.

Methods and model
Population dynamics in spatio‑temporally structured 
environments
Our model describes several microbial populations 
growing in compartmentalized habitats (demes) that are 
repeatedly mixed. Within a deme they exhibit indirect 
interactions by competing for a single resource, and pos-
sibly also interact by producing public goods that affect 
this shared environment. After resources are depleted at 
time Tdepl , growth terminates. At time Tmix all demes are 
mixed into a common pool; this pool is diluted and cells 
are again seeded into empty demes with new resources. 
The cycle is repeated as illustrated schematically in 
Fig. 1b. We assume that Tmix is slightly larger than Tdepl 
such that all resource is depleted, but additional pro-
cesses like cell death are not yet an important aspect of 
the population dynamics.

Pool Demes

Seed cells into demes

Growth
for time

with fraction of population

Mix contents of demes
into global pool

ba

Tmix

Fig. 1  Spatio-temporally structured environments. a A rocky shore exposed to tidal cycles represents an example for structured environments 
considered in this article. Nutrients are replenished and contents of all small tidal pools are mixed during high tide, while allowing for segregated 
growth during low tide. The picture is taken by the authors and shows the coastline of Haifa (Israel) near Tel Shikmona. b Schematic depiction of 
cycles of growth, mixing and reseeding. Our model of many microbial populations growing in compartmentalized demes can be described by 
multilevel selection. Two levels are given by the growth dynamics within demes, and the cyclic dynamics of mixing and reseeding on a longer 
time-scale
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The two phases of our dynamics—growth and mixing/
dilution—are largely decoupled. We describe them by 
different mathematical tools (differential equations for 
growth, a stochastic mapping for mixing and dilution), 
and we use different notations to distinguish the relevant 
variables, which are summarized in Table 1.

Dynamics within demes: the growth phase
A single deme is seeded with multiple strains, described 
by the inoculum n =

(

n1, n2, . . .
)

 , where ni is the number 
of cells of strain i. Within the growth phase, continuous 
time-dependent quantities are denoted by uppercase let-
ters: These always include Ni(t) for the population size of 
strain i and S(t) for resource concentration. In their gen-
eral form the growth equations are 

(1a)Ṅi =αiNi ,

(1b)Ṡ =−
∑

i

αiNi

ϕi
,

where the dot denotes time derivatives, and strains are 
characterized by their growth rates αi and yields ϕi . The 
sum over i in Eq. (1b) includes all strains, each consum-
ing nutrients at their own rate. The inoculum size n pro-
vides the initial conditions for these dynamics, and the 
single resource is replenished to S0 at the beginning of the 
growth phase. Many similar models where indirect inter-
actions arise from shared nutrients are based on the Mac-
Arthur’s consumer-resource model [47, 48]. However, we 
will be interested in a more general scenario where indi-
rect interactions are mediated through additional vari-
ables, not yet contained in the dynamics of population 
size and resource concentration, given by Eq.  (1). These 
might be, for example, antibiotic concentration or addi-
tional resource dynamics, that lead to time-dependent 
growth rates αi(t) or yields ϕi(t) . Note that in the model 
specified by Eq. (1), the finiteness of populations is imple-
mented by the finiteness of resources; growth is stopped 
when resources are depleted. Technically, this is set by 
αi(t) = 0 for t > Tdepl . An alternative modeling approach 
that describes population finiteness is logistic growth. 
For our purposes including an explicit equation for the 
resource will be more convenient for describing the 

Table 1  Notation used throughout the main text

Inoculum size n = (n1, n2, . . . , ni , . . . )

Total inoculum size n = n1 + n2 + · · · + ni + · · ·

Composition of inoculum xi = ni/n

x = (x1, x2, . . . , xi , . . .)

Seeding probabilities P
[

n
∣

∣ n, x
]

=
∏

i

(n xi )
ni

ni !
e
−n xi

Averages over seeding
〈

F(n, x)
〉

=
∑

n
P
[

n
∣

∣ n, x
]

F(n, x)

Cycle index (τ )

Mixing time Tmix

Depletion time Tdepl

(

n, environment
)

Within-deme observables

 Population sizes N = (N1(t),N2(t), . . .)

 Population composition X = (X1(t), X2(t), . . .)

Xi = Ni/N

 Growth rate αi(t) = α(1+ δαi)A(t)

 Yield ϕi(t) = ϕ(1+ δϕi)Y(t)

 Resources S(t) , S(0) = S0

ϕ ∼ 1 ⇒ N(Tdepl) ≈ O
(

S0

)

 Depletion α(t > Tdepl) = 0

Public good dynamics

Production rates ρ = (ρ1, ρ2, . . . , ρi , . . . )

usually ρ1 > 0, ρi ≈ 0, i ≥ 2

Antibiotics parameters B(t); κ , γ , µ ⇒ α(t)

  see “Collective reduction of antibiotics” section

Pyoverdine parameters P(t); σ ⇒ ϕ(t)

  see “Iron extraction via siderophores” section
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cooperative interactions, since it has the advantage that 
we can directly compare Tdepl to the mixing time Tmix.

In order to develop our approximations, a key 
assumption we make is to distinguish the differences 
between strains reflecting their intrinsic properties, 
from the effect of the environment on all strains. As 
long as cells are growing, we describe this situation as 
αi(t) = α(1+ δαi)A(t) , with α the average growth rate 
over all strains, δαi are their relative differences that are 
assumed to be small ( |δαi| ≪ 1 ) and A(t) is a general 
time-dependent term that will depend on processes 
in the environment. Similarly, for yield we assume it 
is composed as ϕi(t) = ϕ(1+ δϕi)Y (t) , where ϕ is the 
strain average, |δϕi| ≪ 1 are the relative differences 
between strains and Y(t) is the time-dependent cou-
pling to the environment. While this approximation 
can be applied to many types of interactions, we will 
treat explicitly three specific cases: First, we establish 
a base behavior with both growth rate and yield con-
stant in time, A(t) = Y (t) = 1 . Then, we study collec-
tive antibiotic resistance that leads to time-varying 
growth rate, A(t)  = 1 , while the yield remains constant, 
Y (t) = 1 . Finally, pyoverdine production will be an 
example of time-dependent yield, Y(t) with a constant 
growth rate A(t) = 1 . With these definitions, α rescales 
time, and ϕ defines the unit of substrate to generate one 
cell, such that both αt and Sϕ are dimensionless num-
bers, describing time and the number of potentially 
growing cells, respectively.

Dynamics among demes: cycles of mixing and reseeding
Since demes are seeded with the same replenished 
environment, the final population sizes only depend 
on the inoculum sizes n . Thus, the growth phase can 
be represented in a coarse-grained form as a mapping 
between initial and final population size vectors

After mixing contents of all demes into a common pool, 
it is diluted by a factor d and seeded into new demes. 
Thus, if the average population size of all demes in a pre-
vious cycle was 

〈

N
〉

 , the average at seeding will be d
〈

N
〉

 . 
The seeded inoculum size n is assumed to follow a Pois-
son distribution P

[

n
∣

∣ d
〈

N
〉]

 . This expression indicates 
the probability for each combination of n , while the value 
after the vertical line denotes the average of this Poisson 
distribution. Therefore the re-seeding step is described 
by the mapping

(2)n  → N(Tmix;n) .

(3)
〈

N
〉

 → P
[

n
∣

∣ d
〈

N
〉]

.

The number of demes does not enter to the model—we 
only assume there are sufficiently many to describe the 
probability for seeding a certain combination with an 
independent Poisson distribution for each strain.

Combining growth with mixing and reseeding, the 
long-term dynamics takes the form of a mapping 
between cycles τ and τ + 1 . Since the Poisson distribu-
tion is specified by its average, this mapping can be for-
mulated between consecutive mean values n(τ )

Note the distinction in the two notations for averages: 
angular brackets 

〈 〉

 indicate the computation of the aver-
age over all demes, as the weighted sum in Eq.  (4). The 
overbar in n(τ ) indicates the variable for the average inoc-
ulum size, which changes over cycles. This second aver-
age acts as the parameter of the Poisson distribution for 
seeding.

Several important features of this mapping can be 
derived without specifying details of the growth phase. 
To derive these, we introduce total population sizes, 
n =

∑

i
ni at seeding and N =

∑

i
Ni at the end of growth 

phase; and fractions xi = ni/n and Xi = Ni/N  , denoted 
as vectors x and X . It is straightforward to write the map-
ping in terms of differences �n(τ+1) = n(τ+1) − n(τ ) and 
�x

(τ+1) = x
(τ+1) − x

(τ ) , 

 where the mapping for the fractions, written here in vec-
tor notation, holds for each strain i individually. It follows 
from the definition Cov

[

Xi,N
]

=
〈

NXi

〉

−
〈

N
〉〈

Xi

〉

 and 
the mean value x(τ+1)

i
=

〈

NXi

〉

/
〈

N
〉

 . Eq. (5b) is a version 
of the Price equation [49–51], usually describing how the 
frequency of a trait changes due to its inherent transmis-
sion bias and its covariance with fitness [41]. Here, the 
two terms have a clear interpretation in the context of 
multilevel selection: The average change of the popula-
tion composition 

〈

�Xi

〉

 , indicates the difference between 
beginning and end of growth phase for strain i, averaged 
over inoculum sizes in all demes. It is driven by selection 
among cells growing in a single deme, and reflects local 
competition. Typically, it will be positive for strains with 
faster growth rates. The second term Cov

[

Xi,N/
〈

N
〉]

 
indicates selection among different demes in the mix-
ing and reseeding phase, where large final population 
sizes are highly represented in the pool and therefore in 
re-seeding.

Equation (5b) allows to study an effect known as Simp-
son’s paradox [52, 53]. It describes counter-intuitive 

(4)n
(τ+1)

= d
〈

N
〉

= d

∑

n

P
[

n
∣

∣n
(τ )

]

N(Tmix;n) .

(5a)�n
(τ+1)

= d
〈

N
〉

− n
(τ ) ,

(5b)�x
(τ+1)

=
〈

�X
〉

+ Cov
[

X,N/
〈

N
〉]

,
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statistical observations that arise due to structure of the 
underlying data. The illustration in Fig.  2 depicts this 
effect in the context of our model: The ’green’ strain 
looses in the local competition and declines in fre-
quency over the growth phase, 

〈

�Xgreen

〉

< 0 . In the 
depicted example the inequality �Xgreen < 0 even holds 
for each group individually. However, a larger initial 
fraction of this strain correlates with a larger final size, 
Cov

[

Xgreen,N/
〈

N
〉]

> 0 . If this correlation is strong 
enough, the sum of both effects will cause an increased 
frequency over cycles, �x

(τ+1)
green > 0 . This effect has been 

examined, for instance, in synthetic-biology experiments 
with microbial populations [54, 55].

Results
Analysis of isoclines in the cycle mapping
The general mapping of Eq. (5) will be analyzed in terms 
of its isoclines and fixed points, providing information 
on the conditions for takeover, coexistence, total extinc-
tion, and other possible outcomes of interacting popu-
lations. Isoclines are curves in phase space satisfying 
either �n = 0 or �xi = 0 , such that one variable—the 
total inoculum size or the fraction of strain i – remains 
unchanged under the mapping. An isocline separates 
the space between regions where the variable increases 
or decreases. Fixed points of the dynamics appear at the 
intersections of all isoclines, where �n = 0 and �xi = 0 
holds for all i. Our analysis involves deriving approxima-
tions for isoclines which help understand the structure of 
phase space.

Below we illustrate all our results with two strains 
( i = 1, 2 ). Then, the phase space is a two-dimensional 
plane (n, x1) ; the other fraction is determined by 
x2 = 1− x1 . Numerical algorithms for computing the 
isoclines are described in Additional file 1: Appendix S1.

Indirect interaction by metabolic growth‑yield trade‑off
First, we carry out the isocline analysis for a very simple 
indirect interaction between two strains with constant 
growth rate and yield, and with a metabolic trade-off: strain 
1 grows slower but is more efficient ( δα1 < 0 and δϕ1 > 0 ). 
The phase plane (n, x1) is shown in Fig. 3 for four param-
eter sets. Sample trajectories of inoculum sizes in the cycle 
mapping are shown as connected purple dots starting from 
dark purple on the outside; all of them converge to stable 
fixed points (green circles) after few cycles. Unstable fixed 
points are depicted by red empty circles; trajectories pass 
near these points but are not attracted to them. Isoclines of 
total population size are drawn with blue lines, while iso-
clines of fraction with orange lines.

In panels A and D the stable fixed point is inside the 
plane, where 0<x1<1 , indicating coexistence between the 
two strains. In contrast, in panel B the fixed point is on the 
boundary x1 = 0 and in panel C on the boundary x1 = 1 . 
These two cases represent fixation of one strain. Approxi-
mations for the isoclines are derived by solving the within-
deme dynamics of Eq. (1), and then inserting the solutions 
into the cycle mapping of Eq.  (5) (see Additional file  1: 
Appendix S1): 

 The position n⋆ of the population size isocline in Eq. (6a) 
is influenced by a balance between the dilution rate d 
during mixing, and the increase in cell number of dur-
ing growth, S0ϕ , setting an equilibrium inoculum size 
given by the product dS0ϕ . For a uniform population 
growing under cycles, n⋆ = dS0ϕ is the vertical isocline 
of population size; we call this the dilution line. Larger 
inoculum sizes cannot be sustained over long times, and 
smaller ones will rapidly grow to this value and remain 
unchanged on average over cycles. With only two popu-
lations, the trade-off, δα1 < 0 and δϕ1 > 0 , rotates the 
dilution line by a positive angle from its vertical position 
(Fig. 3). Trajectories in all figure panels converge quickly 
to this tilted isocline, implying that total population size 
equilibrates faster than composition [56, 57]. We shall see 
that this tilted dilution line, as well as the separation of 
time-scales between total population size and its com-
position also occur also in other interactions analyzed 
below.

Increasing dS0ϕ shifts the tilted dilution line to higher 
n while leaving its general shape almost invariant (going 
from panels A, C to B, D). In contrast, this parameter 
has negligible influence on the composition isocline, 
which depends strongly on δαi . The latter has the form 

(6a)�n
⋆
= 0 ⇔n

⋆
≈ dS0ϕ

(

1+ δϕ1(2x1 − 1)
)

(6b)�x
⋆
1 = 0 ⇔ n ≈

|δϕ1/δα1|

log(S0ϕ)
.

Fig. 2  ’Simpson’s paradox’ visualized in our model. Equal populations 
of two strains (top left) are seeded to demes with variable 
proportions (top right). At the end of the growth phase, the green 
strain has decreased in frequency in each deme (bottom right). 
Nevertheless because its frequency covaries with final population 
size, the green strain increases in frequency after pooling (bottom 
left)
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n ≈ const , which is independent of x1 , and thus appears 
as a(n almost) vertical line in phase space.

We have seen that isoclines can intersect inside 
the phase plane to generate a stable coexistence fixed 
point. Now we ask what the conditions on the meta-
bolic trade-off are for such coexistence? In Fig.  4 we 
show the area in parameter space (δα1, δϕ1) support-
ing coexistence. This reveals two distinct regions 
of different behavior: In the large trade-off regime 
( |δα1| ∼ O(10−1) ), broad areas of coexistence appear 
as strips almost independent of δα1 . There, the growth 
rate difference is large enough that all demes are domi-
nated by the fast growing strain when seeded by a 
mixture. Coexistence arises only due to demes that 
were seeded with the efficient strain alone, and it can 
grow without local competition to large final sizes. 
The degree of efficiency trade-off, δϕ1 , supporting this 
coexistence depends on the equilibrium population size 
parameter dS0ϕ . For small trade-off regime, in contrast, 
the parameter range supporting coexistence is narrow 
and depends on a delicate balance between δα1 and δϕ1 . 
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Here, demes exhibit an almost continuous spectrum of 
possible final sizes at mixing, compared to the essen-
tially only two outcomes in the previous regime. In this 
case, coexistence is much less robust and requires fine-
tuning of the trade-off.

Public good interactions
Public goods are extracellular products that promote 
or enhance growth, and are usually available to all 
cells within a shared environment. Often, public goods 
are actively produced by cells and generate ecological 
interactions through the environment. In well-mixed 
environments, public goods can lead to the ’tragedy 
of commons’ [58], where producing (sub-)populations 
that pay a cost for production of the public good are 
out-competed and go extinct. In spatially structured 
environments this outcome can be averted, in par-
ticular when segregation supports Simpson’s paradox 
(Fig.  2). In the following, we analyze two classes of 
public good interactions: One is the collective resist-
ance to antibiotics, mediated by secretion of an antibi-
otics-hydrolyzing enzyme. The second involves active 
extraction of a growth resource from the environment, 
specifically iron-chelation by extracellular pyoverdine. 
These two examples lead to a time-dependent growth 
rate αi(t) or a time-dependent yield ϕi(t) , allowing us 
to compare the effect of spatio-temporal structuring in 
two types of interactions with different costs and ben-
efits. In order to couple these dynamics to our spatio-
temporal model, we add one equation describing the 
public goods dynamics to the within-deme growth, 
Eq. (1), which then influences either αi(t) or ϕi(t).

Collective reduction of antibiotics
Extracellular enzymes that reduce the concentration 
of antibiotics in the environment can be considered a 
prime example for a public good. We model a scenario 
where an antibiotic with a concentration B(0) = B0 
is supplemented at the seeding step in all demes. The 
entire population may be able to recover and grow, if 
at least one strain can reduce this concentration over 
time, potentially leading to cross-protection [59, 60]. 
It has been reported that the effectiveness to treat bac-
terial populations with antibiotics depends the initial 
population density [61–64], which will be crucial to 
determine the outcome of the within-deme dynamics.

In the following, we assume only one of two strain 
produces and secretes enzymes that hydrolyze antibi-
otics. We assume that this comes at a cost in terms of 
growth rate [54, 65], such that the producing strain has 
a lower growth rate ( δα1 < 0 ), while yield is assumed 
to be identical ( δϕ1 = 0 ). Antibiotics-induced death is 

coupled to metabolic processes, such that death rate 
is proportional to growth rate in the absence of anti-
biotics [66, 67]. With these considerations, a common 
model for the effective growth rate of microbial popula-
tions exposed to antibiotics is [68],

Here, the fraction in the last term—indicating the time-
dependent function A(t)—is a sigmoidal Hill-function. 
While without antibiotics we had A(t) = 1 , here A(t) 
decreases with increasing antibiotic concentration: At the 
’minimal inhibitory concentration’ (MIC) of B(t)/µ = 1 
population growth it becomes zero and switches sign to 
population death. For large antibiotic concentrations, the 
time-dependent term saturates at A(t) = −γ . The steep-
ness of A(t) around the MIC is determined by κ . Com-
pared to this dramatic effect of antibiotics on growth 
rate, we assume that growth rate differences δαi are small.

The changing antibiotic concentration affects growth 
rates of all inhabiting populations simultaneously. The 
concentration is reduced by the production strain,

where ρ1 characterizes the rate of resistance of strain 
1, incorporating both expression rate of hydrolyzing 
enzymes and efficiency of their degradation reaction. 
This equation for B(t) is added to Eq.  (1) which in turn 
affects both growth rates αi(t).

Coupling these interactions—how antibiotics changes 
the growth rates in a deme, Eq. (7), and how the its concen-
tration is reduced, Eq.  (8)—generates a race between two 
processes. Either the amount of antibiotics is large enough 
to kill all cells within a single deme, or microbes can reduce 
the concentration below B(t)/µ < 1 in time for the popu-
lation to recover. For Tmix long enough, such that recover-
ing populations deplete all nutrients, we will find either a 
fully grown population or no cells at all.

Figure  5 shows four examples of phase planes with the 
isoclines and trajectories marked as before. Approximating 
the within-deme dynamics, the shapes of the two isoclines 
are determined by 

 The population size isocline for antibiotic reduc-
tion, Eq.  (9a) (blue line in Fig.  5), features two distinct 

(7)αi(t) = α
(

1+ δαi
) 1−

(

B(t)/µ
)κ

1+
(

B(t)/µ
)κ
/γ

.

(8)Ḃ = −ρ1N1B ,

(9a)�n
⋆
= 0 ⇔ n

⋆
≈

{

dS0ϕ
1
x1

κγα1
(1+γ )ρ1

(log B0/µ)
2 ,

(9b)�x
⋆
1 = 0 ⇔ n ∼

{

1
1−x

⋆
1

1
δα1

1
(x⋆1)

1+ǫ

.
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connected parts: One is the dilution line n⋆ ≈ dS0ϕ , 
implied by the resource limitation on population size 
already found before. This limitation determines equilib-
rium population size for large inoculum sizes and large 
fractions of the resistant strain x1 that  defines a region 
where antibiotics are easily reduced. In contrast, sur-
vival for small inoculum sizes depends on having enough 
producing cells to reduce antibiotics in time to prevent 
extinction. This defines a threshold on n1 = n x1 , and 
hence the isocline scales as n⋆ ∼ 1/x1 , creating its anti-
biotics-limited part. The blue hatched area enclosed by 
these two parts shows increasing inoculum sizes between 
cycles, and thus can lead to survival in the long run.

The composition isocline (orange line in Fig.  5) also 
exhibits two parts: In the region of large x1 , resist-
ant cells succeed in reducing the antibiotics below 
B(t)/µ = 1 in time to reverse death into growth. 
However, during this time both strains are dying. In 
order for the non-producers to survive this phase, 
they need to exceed a threshold in their inoculum 
size n2 , which leads to the top scaling of the iso-
cline, n2 = n(1− x1) = const . Above this isocline the 

producing strain fixates and trajectories flow to the 
stable fixed point x1 = 1 (green circle on top boundary, 
present in all panels).

The scaling for smaller x1 results from a balance 
between two opposing effects: Populations that have a 
larger initial fraction x1 are more likely to overcome the 
antibiotic threat and survive, thus the mean x1 increases 
for the next cycle. These gains are offset against the 
losses in local competition, which are of order δα1 . 
Details are described in Appendix S1, where we derive 
the scaling of the isocline reported in Eq. (9b), where ǫ 
a small empirical positive constant.

It is interesting to note that, similar to the sim-
ple resource consumption case, the two isoclines are 
largely determined by two parameters independently: 
dS0ϕ governs the position of the population isocline, 
whereas growth rate difference δα1 governs the position 
of the composition isocline. Each of these parameters 
has a negligible effect on the other isocline.

We have seen that, for large enough fraction of pro-
ducer cells, the population isocline intersects with 
the top boundary to form an all-producer stable fixed 
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point. An important question is, under what condi-
tions can the two strains coexist over long times? Such 
coexistence implies cross-protection due to the spatio-
temporal structure, as non-producing cells manage 
to “hitch-hike” to the next cycle and survive. Figure  5 
shows that if the resistant strain suffers a serious 
growth-rate cost, it will not be able to cross-protect 
the sensitive strain and carry it over multiple cycles 
(A, B). In this case, the isoclines cross at an unstable 
fixed point and the only stable outcomes are complete 
extinction or fixation of the resistant strain. However, 
if this cost is not too high (C, D), stable coexistence can 
arise.

The shapes of the isoclines reveal a simple condition 
for the stability of coexistence, depending on the position 
of their intersection: If they intersect on the antibiotics-
limited branch of the population size isocline (left part), 
the coexistence fixed point is unstable. If this intersection 
occurs on the resource limited dilution line (right part), 
it is stable. The direction of flow in the phase plane dic-
tates that, in the former case, trajectories arriving from 
the right with increasing x1 are already in the no-survival 
regime (outside the hatched blue region) and thus must 
flow to extinction. In contrast, in the latter cases these 
trajectories can potentially arrive to the intersection. 
In Fig. 6 we explore how the stability of this fixed point 

changes, when varying either of the two parameters gov-
erning the isoclines. Interestingly, at the transition from 
stable to unstable fixed point a limit cycle can occur via a 
Neimark-Sacker bifurcation [69], which is the analogue of 
a Hopf bifurcation in the discrete dynamics of the cycle 
mapping. In this case, both average size and composition 
of demes oscillate over multiple cycles (see Appendix S1).

Iron extraction via siderophores
A different kind of indirect interaction occurs when a 
growth-promoting substrate is actively extracted from 
the environment by extracellular products. Such a sce-
nario is generated by pyoverdine, an iron-chelating 
siderophore produced by several Pseudomonas species. 
Pyoverdine strongly binds otherwise almost unavailable 
iron, and allows microbes to uptake the iron-pyoverdine 
complex via special transport proteins. Siderophores 
have often been considered to be a public good [55, 70–
72], but more recent experiments showed that this clas-
sification is highly dependent on details of environmental 
conditions [73, 74]. Physiologically, enhanced iron-avail-
ability seems to increase the yield of cells [75, 76], as 
populations grow to larger size with the same amount 
of nutrients. As before, we analyze the interaction 
between a producing and non-producing strain in the 
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spatio-temporally structured environment. This provides 
an example of time-dependent yields induced by the var-
ying level of obtainable iron from the environment.

While the exact relation between yield and sidero-
phore concentration is hard to specify, a few principles 
can guide our modeling: First, since cells require only 
minuscule quantities of iron and almost all experi-
mental system will likely contain small traces of it, we 
assume they can maintain a minimal level of growth 
even without pyoverdine. Moreover, the effect of pyo-
verdine on yield saturates, with a maximum increase 
by a factor σ . We assume pyoverdine is shared among 
all cells within a single deme, which requires matching 
transport proteins [74, 77]. Taking these considerations 
together, we propose

which indicates an exponential convergence towards a 
maximal value of yield with increasing pyoverdine con-
centrations P. As before, each strain i is characterized by 
its fixed deviation in yield δϕi , while the public good con-
centration P(t) affects all strains in the same time-varying 
way. For the dynamics of pyoverdine, P(t), we assume 
again that only strain 1 produces it,

The rate ρ1 includes expression rate, excretion rate and 
the magnitude of their effect on yield, such that P itself 
is a dimensionless quantity, that can be used in the expo-
nential function of Eq. (10).

Analyzing the system involves once again integrating 
the population and resource dynamics, Eq. (1), together 
with the pyoverdine concentration dynamics, Eq.  (11). 
These solutions are inserted into the cycle map, Eq. (5), 
from which we can obtain the scaling for the two 
isoclines, 

 Without pyoverdine we would recover the dilution 
line; indeed this is where the isocline intersects with the 
boundary x1 = 0 . Moving away from this boundary the 
isocline becomes a dilution line enhanced by a factor σ , 
indicating saturated pyoverdine concentration, see Fig. 7.

The approximation for the composition isocline is 
obtained using numerical evaluation of the terms, 
and is described in Additional file  1: Appendix S1. 
The (x⋆1)−1 scaling is important for coexistence: This 

(10)ϕi(t) = ϕ
(

1+ δϕi
)

(

σ − (σ − 1)e−P(t)
)

,

(11)Ṗ = ρ1N1 .

(12a)�n
⋆
⇔ n

⋆
≈
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dS0ϕσ

dS0ϕ
,
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log |δα1| + C

x
⋆
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hyperbolic shape typically intersects the (vertical) iso-
cline for population size. Thus, the stable long-term 
outcome in the cycle dynamics is maintenance of a 
small producer population, whose coexistence with a 
non-producing strain is indicative of cooperation.

Discussion
In this article, we investigated various types of interac-
tions between growing microbial populations that are 
repeatedly mixed and separated into compartmentalized 
demes on a long time-scale. These interactions include 
growth on a shared resource with a metabolic trade-off, 
which was extended by two specific examples of coopera-
tive interactions: antibiotic degradation to allow growth, 
or enhancing iron availability by a chelator. In both cases 
extra-cellular products, also known as public goods, are 
secreted and affect all cells. The reduced growth rate of 
the producing strains would therefore result in fixation of 
faster non-producing strains in a homogeneous environ-
ment. We investigate how this outcome changes in a spa-
tio-temporally structured environment in our model and 
how it depends on details of the interaction. We found 
that the spatio-temporal structure, together with the var-
iance of initial conditions for the growth processes, com-
monly allows costly cooperative traits to stably coexist 
over multiple cycles of seeding, growth and mixing.

By formulating the dynamics in terms of fractions 
and total population size, we found that the popula-
tion composition x obeys the Price equation [41, 49], 
�x

(τ+1) =
〈

�X
〉

+ Cov
[

X,N/
〈

N
〉]

 (see Eq.  (5b)). This 
is in agreement with previous work on trait-group-mod-
els [35, 37–39]. The ecological life cycle imposed exter-
nally on the population in our model, lets us interpret 
these two terms directly as the two levels of selection: 
〈

�X
〉

 is the average change in the within-deme dynam-
ics, usually dominated by fast growth. The second term, 
Cov

[

X,N/
〈

N
〉]

 , indicates correlations of the population 
composition with (relative) total population size, and 
thus describes selection between populations of different 
demes. In this context, ’Simpson’s paradox’ occurs when 
the first term is negative, but the second covariance term 
is positive and large enough to make the the total change 
positive.

However, the Price equation only models frequency 
dynamics, while previous work has highlighted the 
importance of population sizes as well [11, 78]. In our 
framework, population size is a dynamic variable, kept 
finite by including also growth resource as a dynamic 
variable. Importantly, this finite population size at the 
end of growth is variable and depends on conditions in 
each deme. Thus population size takes the center stage, 
as it plays the role usually occupied by fitness. If an 
inoculum generates a larger final population size—due 
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to reduction of antibiotics, enhanced iron-availability, 
or just more efficient resource conversion – then popu-
lations from such demes will be over-represented in the 
next cycle. Diluting the pool by a constant factor after 
resource depletion, rather than re-seeding by a fixed 
number, allows the inoculum size to vary according to 
the outcome of the previous growth phase. This effec-
tively carries over the representation in the pool to the 
next generation, upon which selection can act.

We note that another possibility for modeling finite 
populations is to introduce logistic growth. This approach 
describes in an abstract manner many factors potentially 
limiting growth, including finite resources. We have cho-
sen the more direct approach of explicit resource dynam-
ics [79–81], which clarifies the distinction between 
strains with different efficiencies in utilizing this resource 
for growth. We note that this differs from early ecological 
models with an implicit limitation via carrying capacity, 
known as ’r/K-selection’ [82].

With population size and composition as explicit 
dynamic variables, we employed phase-plane analysis to 
study several instances of interactions between strains 
that vary in their intrinsic properties. These instances 
all implement some cooperative interaction between 
strains, but differ in their kinetics and biological detail. 
An important tool for this is the analysis of population 
size and frequency isoclines, their geometry, parameter 
dependence, and how they constrain the system trajecto-
ries. This analysis characterizes the long-term outcomes 
of the system, which include extinction, exclusion (sin-
gle-strain) fixed-points and coexistence fixed-points. We 
found that all instances of cooperative interactions could 
support long-term coexistence in the spatio-temporally 
structured habitat.

Regardless of the type of interaction, total inoculum 
sizes equilibrate rapidly to a value determined by envi-
ronmental conditions, while changes in composition 
occur much more slowly. Such a separation of time-scales 
is known for other models as well [56, 57]. An interesting 
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observation is that each variable is governed by a differ-
ent parameter of the system. The dilution rate, which sets 
the position of the inoculum size isocline, can be chosen 
independent from growth rate differences, which influ-
ences the composition isocline. Thus, as both isoclines 
can be shifted independently in phase space, intersec-
tions that indicate coexistence are obtainable for many 
parameter values.

Cooperative interactions between microbial strains 
have often been described by game theoretical 
approaches [83–85]. This simplifies the potential com-
plexity of the system and can classify different types of 
interactions. Here we have used a dynamical-systems 
which incorporates more biophysical ingredients. This 
opens the possibility for a richer spectrum of outcomes 
and takes into account also dynamic effects. For example 
in the case of antibiotic resistance, both population sur-
vival and coexistence depend on rates of competing pro-
cesses and on initial conditions.

An application of concepts similar to the trait-group-
models [35, 38] to microbial populations was previously 
explored for instance in [10–13]. There, the authors deal 
with finite population sizes in segregated demes, fluctua-
tions during the initial time of growth, and a second, long 
time-scale on which all populations are mixed repeatedly. 
These fluctuations in cell numbers during initial stages 
of growth amplify benefits to the whole population, lead 
to larger final sizes, and are thus important for coexist-
ence. That fluctuations can leave traces in the popula-
tion composition long after this initial time is known for 
a long time in principle [86], and has also been applied 
to microbial populations [87, 88]. Our model contains 
this effect as well, although in a simplified form: variation 
only occurs in the inoculum, and this variation is a cru-
cial feature even though we mostly focus on mean values. 
Ultimately, such initial fluctuations provide the variation 
on which natural selection can act on the long time-scale.

In our model, we did not consider cell death to be an 
important contribution to the within-deme dynamics. 
This is a reasonable approximation for microbial popula-
tions, where growth often happens within hours, but sig-
nificant decay only sets in on the time-scale of multiple 
days. However, this limits our model such that Tmix needs 
to be roughly the same magnitude as Tdepl to be a realis-
tic approximation. For approaches that include death in 
the dynamics, choosing the mixing time becomes more 
important [12, 89, 90], and is then a crucial parameter 
that determines if social traits are selected. If mixing time 
is very long, completely different aspects of microbial 
population dynamics become relevant [91, 92].

We have modeled a perfect separation of demes dur-
ing growth, which are then instantly and globally mixed 
after a constant mixing time Tmix . What would happen, if 

any of our modeling assumptions were subject to uncer-
tainties? One way to weaken the assumption of separated 
demes is to investigate populations in continuous space 
with limited dispersal. In such a setting, it was found 
that coexistence emerges on intermediary diffusion rates 
[93, 94]: Very fast diffusion makes the spatial depend-
ence disappear altogether, while too slow diffusion leads 
to extinction of non-producers. A similar effect can be 
found in models of social evolution, which treat ’viscous 
populations’ [95, 96] with limited dispersal, but not the 
fully discrete structure of multiple populations in demes. 
Recently, several groups have tried to model the effects 
of specific interactions as a directed graph [97–100], 
where—depending on topology of interactions—fixation 
of alleles could either be enhanced or hindered. While 
most of these analyses treat each of the interacting nodes 
as individuals, we expect that if each of them encom-
passes full population dynamics on its own timescale, the 
spectrum of possible outcomes will also be skewed by the 
topology, that determines how populations migrate or 
are mixed. Finding answers to these issues would be one 
possible avenue for future work.

Conclusion
In conclusion, we formulated and analyzed models of 
social interactions of spatially distributed microbial 
populations. Our results showed that coexistence—
also of costly social traits—can be supported by the 
simple ecological mechanisms of a second time-scale 
and spatially distributed populations, two conditions 
that are arguably ubiquitous in nature. The dynamics 
of these traits can be described by an expression akin 
to the Price equation, which allowed reasoning within 
a framework that generalizes several previously pub-
lished modeling approaches. Moreover, we also expect 
other collective dynamics to show similar behavior 
[101], when they are subject to similar spatio-temporal 
structuring of the environment.
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