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by parameterizing ensembles of population 
dynamics models constrained with prior 
knowledge
Chen Liao1  , Joao B. Xavier1*   and Zhenduo Zhu2* 

Abstract 

Background:  Accurate network models of species interaction could be used to predict population dynamics and 
be applied to manage real world ecosystems. Most relevant models are nonlinear, however, and data available from 
real world ecosystems are too noisy and sparsely sampled for common inference approaches. Here we improved the 
inference of generalized Lotka–Volterra (gLV) ecological networks by using a new optimization algorithm to constrain 
parameter signs with prior knowledge and a perturbation-based ensemble method.

Results:  We applied the new inference to long-term species abundance data from the freshwater fish community 
in the Illinois River, United States. We constructed an ensemble of 668 gLV models that explained 79% of the data 
on average. The models indicated (at a 70% level of confidence) a strong positive interaction from emerald shiner 
(Notropis atherinoides) to channel catfish (Ictalurus punctatus), which we could validate using data from a nearby 
observation site, and predicted that the relative abundances of most fish species will continue to fluctuate temporally 
and concordantly in the near future. The network shows that the invasive silver carp (Hypophthalmichthys molitrix) has 
much stronger impacts on native predators than on prey, supporting the notion that the invader perturbs the native 
food chain by replacing the diets of predators.

Conclusions:  Ensemble approaches constrained by prior knowledge can improve inference and produce networks 
from noisy and sparsely sampled time series data to fill knowledge gaps on real world ecosystems. Such network 
models could aid efforts to conserve ecosystems such as the Illinois River, which is threatened by the invasion of the 
silver carp.

Keywords:  Lotka–Volterra model, Time-series data, Summary food web, Ecological network inference, Ensemble 
method, Invasive species, Illinois River
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Background
The study of ecosystems seeks to understand and predict 
the changes in species composition, dynamics and sta-
bility. Pioneered by Robert May [1], ecological network 
theory proposed that species interactions can be quan-
tified by numerical matrices and be used to study rele-
vant ecosystem properties [2]. Applications to real world 
ecosystems, however, have remained limited because 
quantifying species interactions requires laborious field 
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work in well controlled environments [3]. Computa-
tional methods that seek to infer ecological networks 
from laboratory or field data include parameter-free 
correlation-based algorithms such as Pearson’s correla-
tion coefficients [4], parametric or non-parametric sta-
tistical and machine-learning methods such as Bayesian 
networks [4, 5], non-parametric approaches based on 
nonlinear state space reconstruction such as the conver-
gent cross mapping [6], and nonlinear parametric mod-
els of population dynamics such as Ecopath with Ecosim 
[7]. Some approaches have been successfully applied to 
discretized co-occurrence (presence-absence) data [4, 
5, 8–10] but inference from continuous time-series data 
has lagged behind [6].

Multispecies population dynamics models, particu-
larly the generalized Lotka–Volterra (gLV) model 
(Eq.  (1)), provide a flexible way to model and link spe-
cies interactions to their temporal abundance changes. 
By constructing a gLV model, the underlying ecology is 
phenomenologically summarized with minimal param-
eterization: the biological growth is modelled by an expo-
nential growth rate and the fitness effect of each one-way 
interaction is quantified by a single coefficient with mag-
nitude and sign representing the interaction strength 
and type respectively. GLV models have been extensively 
used in theoretical and computational ecology, particu-
larly in studies of microbial communities [11–18], due 
to their simplicity, tractability, and transparent logic. For 
example, inferring microbial ecological networks from 
gut microbiome time series data has revealed a native gut 
bacterial species that prevents invasion by a pathogenic 
species [17].

Despite the popularity of gLV to infer ecological net-
works in microbial ecosystems, its use for macroscopic 
ecosystems remains limited. The present interest in the 
human microbiome has produced abundant datasets for 
microbial ecology. Macroscopic ecological field data, 
when they are available, tend to be noisy, sparsely sam-
pled and lack replicates [19]. GLV inference (despite 
many follow-up efforts [12, 20, 21]) is most commonly 
parameterized by linear regression (LR) [11]: the gLV 
model is first discretized and transformed into a system 
of linear equations and then fit by a regularized multilin-
ear regression (see “Methods”). The numerical discretiza-
tion of differential equations is significantly error-prone 
because the calculation of the gradients of noisy data ( g 
in Eq.  (6)) amplifies and propagates the error forward. 
Therefore, even the optimal solution to the transformed 
linear problem can produce a network that recreates 
the observed dynamics poorly [14]. Moreover, even the 
signs of inferred interactions may be inconsistent with 
prior knowledge of food webs whose trophic organiza-
tion constrains the types of interactions among species 

in the web. Finally, uncertainty of data can be translated 
into uncertainty of the single “best” model, making it 
unreliable to draw scientific conclusions solely based on 
model without knowing the uncertainty of its associated 
parameters.

Here we tackled these challenges by developing 
independent solutions and combining them into one 
approach to infer the network of species interactions 
from time-series data of Illinois River fish community. 
The data has been annually sampled by the Long Term 
Resource Monitoring Program in the Upper Mississippi 
River System [22], one of the very few ongoing long-
term monitoring programs in large rivers in the United 
States [23]. Briefly, we introduced a novel optimization 
algorithm that allows for estimation of the gradients in 
addition to model parameters. During the optimization, 
the signs of gLV parameters were constrained based on 
a summary food web that represents all potential inter-
actions among fish species. By searching the parameter 
space, we constructed an ensemble of models that harbor 
distinct sets of parameters but fit the data almost equally 
well. Using ensemble mean and variance, we were able to 
make robust inferences/predictions of network structure 
and dynamics as well as to assess whether or not these 
network properties are well constrained by the data. 
Finally, we used the ensemble of models to assess the 
impact of the silver carp (Hypophthalmichthys molitrix), 
an invasive species in the Mississippi and Illinois Rivers 
[24, 25] that presents a major problem that may percolate 
to the Laurentian Great Lakes in the future [26].

Results
Fish community varies in space and time
The Illinois River is a major tributary of the Upper Mis-
sissippi River, where the long-term monitoring efforts 
of the fish community spread across six field stations 
since 1993 (Fig. 1a). To visualize how the fish community 
structure varied across time and space we first standard-
ized catch-per-unit-effort data to combine fish numbers 
obtained from the different fishing gears employed (see 
“Methods”, Additional file 1: Fig. S1). Then we carried out 
a principle component analysis (PCA) using data from 
the normalized abundances of 153 fish species for each 
year and site (Fig. 1b). The data from each site occupied 
distinct regions of the PCA plot, indicating distinct fish 
ecologies in space. The communities, despite regional dif-
ferences, were most similar between proximal sites. The 
first component, which explains 12% of the variance in 
the data, is strongly determined by variations in the com-
mon carp and bluegill, two species highly abundant in 
the Mississippi River upstream from the confluence with 
the Illinois River (Pool 4, Pool 8, and Pool 13) but less 
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Fig. 1  Field measurement provides population dynamics data on the freshwater fish community in the Upper Mississippi and Illinois Rivers. a 
Geographical location of the six stations monitored by the Long Term Resource Monitoring Program. The La Grange (LG) pool, located in the Illinois 
River, is the focus of the study. This map was modified from Fig. 1 in Zhu et al. [41]. b Biplot of principle component analysis (PCA). Each circle 
(“score”) represents the species abundance distribution of fish community associated with a site and year combination. The color brightness of 
circles indicates the passage of time (from 1993 to 2015): lighter colors represent earlier data. Each line (“loading vector”) represents contribution of 
an explanatory variable (fish species) to the variance of the first two principle components. For all loading vectors, the top 9 dominant native fish 
species in the LG pool plus silver carp, an invasive species, are colored in black while all others are colored in light gray. The inset is the same PCA 
score plot, but the circle size is scaled to be proportional to the abundance of invasive silver carp (samples missing silver carp are represented with 
crosses). c Common names, abbreviations, and species names of the 10 fish species investigated in our study. Fish images were obtained through 
public domain resources except for silver carp licensed by CC BY 3.0 and gizzard shad provided by Chad Thomas of Texas State University
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abundant in the Illinois River (LG) and the Mississippi 
River downstream from the confluence (Pool 26 and OR).

Our PCA illustrates that silver carp (Fig. 1c), one of the 
four species of invasive Asian carps, has established the 
lower and middle Mississippi river. The impact of the sil-
ver carp was detected in three sites (OR, Pool 26, and LG) 
over the course of the invasion (Fig.  1b, inset). The Illi-
nois River is known to have one of the highest silver carp 
densities worldwide [27]. The large silver carp density is 
obvious in the PCA, which shows that the loading vector 
for the silver carp aligns well with the La Grange commu-
nity data (Fig. 1b, in brown). In contrast, the Mississippi 
sites upstream of the confluence with the Illinois River 
(Pool 4, Pool 8, and Pool 13) where silver carp are barely 
found (Fig. 1b, inset) are misaligned with the silver carp 
vector. Figure  1b and its inset also reveal the invasion 
path: silver carp entered the Illinois River at the conflu-
ence, rather than continuing to migrate up the Missis-
sippi River. There is grave concern that the invader may 
enter Lake Michigan through the Illinois River, threaten-
ing the Great Lakes’ ecosystems and multi-billion-dollar 
fishing industry [26].

Among the six observation sites, we focused mainly 
on the fish community in the LG pool, the only monitor-
ing site along the Illinois River, for two reasons: (1) the 
pool has both upstream and downstream dams (Fig. 1a) 
and likely resembles a closed ecosystem that is minimally 
influenced by immigration and emigration of fish species; 
(2) the pool has a large population of silver carp (Fig. 1b, 
inset) and thus can be used to study the impact of this 
invasive species on the native fish. We chose to model 
the top 10 most abundant fish species (Fig. 1c, Additional 
file 2: Table S1)—including 9 native species and 1 invasive 
species (silver carp)—that together account for 87.1% of 
the total abundance (Additional file 1: Fig. S2). The eco-
logical effects of the remaining low-abundance species 
were assumed negligible; we chose not to group these 
species into one superspecies virtual group to avoid spu-
rious links between that virtual group and the abundant 
species [14].

A latent gradient regression algorithm improves gLV 
parameterization
To reduce the error in numerical approximation of the 
gradients, we treated the time gradients as latent param-
eters (their large uncertainty essentially makes them 
unobserved quantities) and iteratively learned by mini-
mizing error between observed data and model predic-
tions (see “Methods”, Fig.  2a). We first benchmarked 
the latent gradient regression (LGR) algorithm by using 
synthetic data produced by a 3-species gLV model with 
known parameter values (see “Methods”, Fig. 2b). In the 
absence of noise, we show that LGR outperformed LR in 

data fitting (adjusted R2: 99% vs. 36%) and recovered the 
ground-truth model parameter values (adjusted R2: 99% 
vs. 90%) (Fig. 2b). Using the same benchmark model with 
noise (see “Methods”), the LGR’s ability to recover known 
parameter values was slightly compromised, but still out-
performed the LR for curve fitting (Fig. 2c). Finally, non-
linear regression also fitted the data poorly (adjusted R2: 
53%) and was unable to accurately estimate the ground-
truth parameter values (adjusted R2: 84%) (Additional 
file 1: Fig. S3). The convergence rate of nonlinear regres-
sion was also much slower than LGR (Additional file  1: 
Fig. S3).

To test the effectiveness of combining gLV network 
model and LGR inference algorithm further we analyzed 
two separate, independently published laboratory preda-
tor–prey microbial systems [28, 29], where the inter-
specific relationships are known and we could use the 
interaction signs to constrain the inference. GLV infer-
ence using LGR successfully identified network struc-
tures that reproduced the community dynamics observed 
experimentally in both datasets (Fig.  2d, e). Quantita-
tively, the adjusted R2 for the two-species Didinium nas-
utum–Paramecium aurelia ecosystem and three-species 
rotifer-algae ecosystems were 74% and 70% respectively. 
Moreover, the inferred network structure of the rotifer-
algae ecosystem agreed with the observed fitness trade-
off in survival strategies employed by the two algal clones 
[29]: the second clone Ch2 grew slower than the first 
clone Ch1 (the inferred growth rates of Ch1 and Ch2 
are 0.9 and 0.7 respectively) but developed resistance to 
rotifer’s predation (the inferred predation strength of the 
rotifer on Ch1 and Ch2 are − 0.41 and 0 respectively).

A summary food web of fish community constrains gLV 
parameters
Food webs that describe trophic positions of prey and 
predators constrain the signs of interactions between 
species. We sought to reconstruct a summary food web 
consisting of all potential interactions among the 10 
selected fish species and transform them into param-
eter sign constraints. Using the summary food web to 
constrain gLV parameters enables integration of prior 
knowledge in the network inference process, which not 
only improves efficiency in searching high-dimensional 
parameter space but guarantees qualitative agreement 
between the inferred network and literature data.

As illustrated in Fig.  3a, the summary food web can 
be reconstructed by first using prior knowledge to clas-
sify all 10 coexisting species as resource prey, meso 
predator, or top predator in a simple three-tier food 
web and then summarizing all potential interactions 
based on their trophic positions (see “Methods”). Fol-
lowing the procedure, a unique summary food web 
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for the 10-species fish community in the LG pool was 
reconstructed and shown in Fig.  3b. In the food web, 
channel catfish and white bass are the top predators, 
freshwater drum and black crappie are the meso preda-
tors, and all other 6 fish species are resource prey. The 
summary network consists of 42 pairwise interactions 
(bidirectional links), among which 14 represent known 
predator–prey relationships (black arrows). Since the 
total possible number of pairwise interactions is 45 for 
10 species, the summary food web does not impose 
sparsity on the interactions between fish species. These 
putative interactions can be naturally converted to 
the sign constraints of gLV model parameters (Fig. 3a, 
Additional file  2: Table  S2): a positive, neutral, or 

negative interaction requires its corresponding param-
eter to be positive, 0 or negative as well.

An ensemble of gLV models accounts for inference 
uncertainty
Our approach—which combines LGR with sign con-
straints—outperformed LR by improving adjusted R2 
from 45% to 81% in fitting the fish abundance data from 
the LG pool (Additional file  1: Fig. S4). We excluded 
silver carp in the inference of growth rates and pair-
wise interaction coefficients for the 9 native species 
because the invasive species began to establish the Illi-
nois River around 2000 [30] and has a much shorter 
time series. To prevent overfitting, we used empirical 

Fig. 2  Latent gradient regression algorithm enables parameterization of generalized Lotka–Volterra (gLV) network model. a A flowchart showing 
how linear regression (LR; shaded in light yellow) is expanded to include gradients ( g ) as latent parameters in our latent gradient regression (LGR; 
shaded in light blue) algorithm. X(t) : observed time series; X̂(t) : simulated time series; α,β : gLV model coefficients; g : gradients (i.e., time-derivatives 
of ln (X(t)) ; J(α,β) : penalty function; �·�F : Frobenius norm; LM: Levenburg–Marquardt. b, c Benchmark of the LGR algorithm using synthetic data 
in the absence (b) and presence (c) of noise. The synthetic data was generated by a 3-species gLV network model (b), where solid arrows represent 
positive (point end)/negative (blunt end) interactions and dashed arrows represent intrinsic population growth (incoming)/decline (outgoing) in 
the absence of other species (the same as in d,e). The best-fit model predictions (lines) are contrasted with the synthetic data (filled circles) in the 
lower part of b. MSE: mean squared error. d, e Performance of the LGR algorithm in inferring real ecosystems. d The protozoan predator (Didinium 
nasutum)-prey (Paramecium aurelia) ecosystem. Unit of abundance in y axis: individuals/mL. e The ecosystem of a rotifer predator (Brachionus 
calyciflorus) and two algae prey (Chlorella vulgaris). Unit of abundance in y axis: 10 individual females/mL for the rotifer and 106 cells/mL for the 
algae. In both d and e, the inferred gLV models are shown in the upper part and their predictions (lines), together with the observed data (empty 
circles), are shown in the lower part. To eliminate the initial transient period, the first 13 and 4 data points of population dynamics in d and e were 
removed respectively
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mode decomposition to smooth data (see “Methods”) 
and added a regularization term to the objective function 
(see “Methods”). An additional benefit of using smoothed 
data than original time-series is that LGR converged 
much faster (Additional file 1: Fig. S5).

If data are noise-free, the optimal fit should give the 
best estimate of network structure. However, uncer-
tainty in data leads to uncertainty in parameter estima-
tion so accounting for suboptimal yet constrained models 
can improve the inference power based on “the wisdom 
of crowds”. To search for alternative gLV models that 
are almost equally constrained by data, we generated a 
pool of 1000 perturbed models from the best-fit model 
given by LGR and constructed an ensemble by including 
only the subset with fitting error below a threshold (see 
“Methods”). Instead of using an arbitrary error cutoff, we 
found that the distribution of fitting errors of the 1000 
models exhibited three well-separated peaks that natu-
rally partition these models into three groups (Fig.  4a). 
Simulations of the 1000 models confirmed that their 

dynamics are very similar within the group (Fig. 4b) and 
the within-group mean adjusted R2 decreased from 79% 
for the first group to 61% and 2% for the second and third 
groups respectively. The superior performance of the 
first-group models simply assembled themselves into an 
ensemble that can be used for predictive analysis of fish 
community below.

Probabilistic inference of native fish species’ growth 
and interactions
Using the ensemble, we quantified the extent of variabil-
ity of gLV parameters (Additional file 2: Table S3) across 
its member models via the coefficient of variation (CV)—
the standard deviation divided by the mean. The distri-
bution of CV has a decreasing density (Fig. 4c) with 68% 
(36%) parameters of CV ≥ 0.25 (CV ≥ 1), suggesting large 
variability in the majority of parameters. Then we were 
wondering if their values inferred from data provide any 
evidence that the 9 native fish species grow and interact 
with each other. To answer this question, we tested the 

Fig. 3  Construction of summary food web and parameter sign constraints. a Schematic illustration of a three-step procedure of generating 
symbolic constraints of interactions from prior knowledge (see “Methods” for details). b Reconstructed summary food web for the top 10 abundant 
fish species in the La Grange pool. Point arrows represent positive effects and blunt arrows represent negative effects. The observed predator–prey 
relationships in other water systems are indicated by black arrows, including BKCP-BLGL [42], CNCF-BLGL [43], CNCF-ERSN [31], CNCF-GZSD [31], 
FWDM-GZSD [44], WTBS-BKCP [45], WTBS-BLGL [5], WTBS-FWDM [45], WTBS-ERSN [46], WTBS-GZSD [46], WTBS-CARP [35] (the former species is a 
predator and the latter species is a prey)
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null hypothesis for each parameter of each individual 
ensemble member gLV model that its value is equal to 
zero. If the p value of this test is p, then 1 − p (what we 
call the “confidence score” below) informs how likely 
the parameter is different than 0 since its 100(1 − p)% 
confidence interval just touches 0. In general, 1 − p is 
proportional to the magnitude of its corresponding gLV 
parameter (Additional file  1: Fig. S6, Additional file  2: 
Table S4).

Averaging the confidence scores over the ensemble 
provides a more conservative measure of the evidences 
for species’ growth and interactions (Fig. 5a). The mean 
confidence scores for the per-capita growth rates of 
several prey (common carp, gizzard shad and emerald 
shiner) are 94%, 80% and 77% respectively, suggesting a 
high likelihood of their intrinsic population growth in the 
absence of other fish species. Although the mean confi-
dence scores for almost all species interactions are low, 
the most probable interaction we inferred is a positive 
impact of emerald shiner on channel catfish with a 70% 
level of confidence, which agrees with empirical obser-
vations that emerald shiner support channel catfish’s 

growth by serving as major food sources [31]. To refine 
these predictions, we applied the same network infer-
ence procedure to fish abundance time-series data from 
the Pool 26—the closest pool to the LG pool (Fig. 1a) and 
had the most similar community composition (Fig.  1b). 
To include all 9 native fish species in the LG pool model, 
the pool 26 model must contain at least 12 species (Addi-
tional file  1: Fig. S2). We thus constructed an ensemble 
of 326 12-species gLV models (Additional file 1: Fig. S7, 
Additional file 2: Tables S5, S6) with an ensemble-mean 
adjusted R2 73%. The mean confidence scores estimated 
from the Pool 26 data identified with even higher possi-
bility that emerald shiner grows in the absence of interac-
tions (93%) and positively impacts channel catfish (72%) 
(Fig.  5b, Additional file  1: Fig. S7), thus confirming the 
predictions based on the LG data alone.

Fluctuation of relative abundances of native fish species 
in the near future
Due to the decent accuracy of fitting existing data from 
the LG pool (adjusted R2 79% on average), the ensemble 
of models was employed to predict the near future by 

Fig. 4  Ensemble method provides robust parameterization of generalized Lotka–Volterra (gLV) network models. a Probability distribution of the 
symmetric mean absolute percentage error (sMAPE) across 1000 gLV models perturbed from the best-fit model given by latent gradient regression 
(LGR). The distribution has three peaks that partition the 1000 models into three groups that represent good (668 models), mediocre (53 models) 
and poor (279) fits to data. Models in the first group were combined to make an ensemble. Dashed purple line: unperturbed model. b Simulated 
trajectories of the fish abundance data by models from the three groups. Unperturbed model is the best-fit model given by LGR. c The coefficient of 
variation (CV) of gLV parameters across the 668 models in the ensemble



Page 8 of 15Liao et al. BMC Ecol            (2020) 20:3 

extending their simulations for longer periods. In the 
next 20  years until 2035, the ensemble-mean trajecto-
ries of relative abundances show that 7 out of 9 domi-
nant fish species in the LG pool fluctuate periodically 
and concordantly at the annual time scale (Fig. 6), sug-
gesting that the LG pool fish community is a dynami-
cally coupled ecosystem. In contrast, the relative 
abundances of the remaining two fish species, particu-
larly the common carp, decreased continuously since 
the 1990s and were forecasted to remain at low level in 
the near future.

Impacts of invasive silver carp are stronger on native 
predators than prey
To study the impact of the silver carp—a present threat to 
the fisheries in the North America—we incorporated this 
species as a perturbation to the native fish network mod-
els in the LG pool. We assumed that its invasion altered 
the intrinsic growth rate of native fish species and quanti-
fied the susceptibility of each species to the perturbation 
using a single coefficient (see “Methods”). By fitting the 
susceptibility coefficients and testing whether their val-
ues are different than 0 for each gLV model in the ensem-
ble (Additional file  2: Tables S7, S8), we found stronger 
evidences that silver carp impacts native predators more 
than resource prey (Fig.  7). Particularly, the ensemble-
mean confidence scores for the impacts of silver carp on 
the two top predators—channel catfish and white bass—
are 78% and 91% respectively. Nonetheless, the confi-
dences that the finesses of resource prey and even meso 
predators have been directly impacted by the silver carp 
are generally low, which justifies our earlier choice to 
exclude silver carp from the network inference.

Discussion
Here we proposed a new method to infer ecological net-
works from field data on real-world ecosystems. Field 
data are invaluable for ecology, but noise and infrequent 
sampling hinders network inference—especially with 

Fig. 5  Mean confidence scores for species’ growth and interactions in the La Grange (LG) pool and the Pool 26. a Clustering of the mean 
confidence scores estimated from the LG data. The numbers in the square matrix made of the 9 rows and the first 9 columns are the mean 
confidence scores of pairwise interaction coefficients and indicate the likelihood that fish species on the column impacts fish species on the row. 
The numbers in the last column are the mean confidence scores of intrinsic growth rates and indicate the likelihood that population of each fish 
species grows (prey) or declines (predators) in the absence of the others. b Refinement of the predictions in a by combining mean confidence 
scores estimated from both the LG and the Pool 26 data. Only the growth of emerald shiner and its positive impact on channel catfish have 
confidence scores at least 70% at both sites

Fig. 6  Forecasted population dynamics of the 9 dominant native 
fish species in the La Grange pool suggests a dynamically coupled 
ecosystem. Solid lines indicate the ensemble mean and gray shadings 
indicate ensemble standard deviation. Filled circles: observed data
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population dynamics models such as gLV which requires 
the calculation of time gradients [11]. The problem could 
in principle be solved by measuring accurate data and 
at higher rates, but this is often impractical. The infer-
ence method we proposed here offers a practical solu-
tion based on a deterministic optimization algorithm 
combined with parameter sign constraints obtained from 
prior knowledge and an ensemble method to assess the 
uncertainty associated with deterministic predictions. 
Modeling time gradients as latent parameters could 
improve other inference algorithms, especially those 
mathematically equivalent to gLV such as the Ecopath 
modeling framework [32].

It is interesting to observe from data that the relative 
abundance of common carp has decreased over time 
since the 1990s (Fig.  6). First introduced to the United 
States since 1800s, common carp were initially more 
competitive than native competitors because they repro-
duced rapidly and can survive in poor water quality [33]. 
Since its intrinsic growth rate is very likely to be positive 
(94% confident; see Fig.  5a), the declined relative abun-
dance of common carp may be due to stronger competi-
tive inhibitions from native consumers in the past several 
decades. Particularly, a moderate-level evidence (69%) 
was assigned to the inhibition of common carp by emer-
ald shiner (Fig. 5a). Emerald shiner is a small fish species 
feeding on a variety of zooplankton, protozoans and dia-
toms. Considering its growth and impact on channel cat-
fish were the only gLV coefficients identified with ≥ 70% 
confidence at both the LG pool and the Pool 26, emerald 
shiner might be a keystone species that drives changes in 
the relative abundance of local fish communities.

Our results also suggested that the ecological conse-
quences caused by the silver carp’s invasion may not be 
too detrimental in short-term period. Overall, we found 
little evidences that the invasion had impacted the fitness 
of native prey fish. The lack of strong negative impacts of 
silver carp on native resource prey may be due to the high 
productivity and species richness in the Illinois River 
[34], which mitigates the effects of interspecific competi-
tion for food sources. Still, we estimated, with 78% and 
91% confidences respectively, that channel catfish and 
white bass may eat silver carp and benefit from supple-
mental prey that they catch. These findings are consistent 
with stomach content analysis of native predators in the 
LG pool—including channel catfish, black crappie, and 
white bass, which revealed that silver carp had indeed 
entered their diets by serving as alternative prey [35].

Our study has limitations that stem from both the 
limitations of gLV model and the inference approach 
we developed. The gLV model has known limitations, 
including additivity (fitness influence that each spe-
cies receives from others is additive) and universality 
(the sign and strength of the influence can be reflected 
by the interaction coefficient) assumptions [36], linear 
functional responses (efficiency of predation is unsatu-
rated even when the prey is very abundant) [37], and the 
paradigm of pairwise interactions between species (high-
order interactions are not considered) [38]. These limita-
tions can be in principle overcome by increasing model 
complexity such as using saturated functional responses, 
which would nonetheless abolish the benefits associ-
ated with linear transformation of gLV equations during 
parameterization.

Fig. 7  Probability distribution of the confidence scores for the impacts of silver carp on the 9 dominant native fish species in the La Grange pool. 
The scores associated with each native fish species indicate the likelihood that the impact from silver carp on this species is different than 0. The 
ensemble-mean of these scores are indicated by the dashed lines and the numbers beside them
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Our inference method has additional limitations. First, 
the major predictions made using a criterion of “70% con-
fidence at both sites of the LG pool and Pool 26” may lead 
to type I errors. However, this is expected given insuffi-
cient and noisy data. Second, the LGR algorithm is a local 
optimization approach that easily falls into local minima; 
there is no guarantee that the optimized gLV parameters 
are closer to the ground truth (if it exists) than the initial 
guesses. This limitation has been reflected in our bench-
mark test where parameters that fit the data better could 
be further from the truth (Fig.  2c). Since the output of 
LGR depends on initial guesses which further depend 
on data, the issue of local optimization can also lead to 
instability of the algorithm in cross validation with ran-
dom partitioning of the data into the training and test-
ing subsets. Although global optimization techniques 
such as Markov chain Monte Carlo may diminish the 
limitation, they generally require intensive computations. 
Third, LGR may fail numerically in the step of solving a 
gLV model when its parameters are not well constrained 
and cause the simulation to explode. Therefore, a robust 
use of LGR requires parameter constraints such as the 
sign constraints we derived from a summary food web 
(Fig.  3b). However, this is only one way to incorporate 
prior knowledge and other types of constraints may be 
imposed to reduce the number of interactions further. 
Lastly, environmental factors such as temperature were 
not considered but they can be easily added as exogenous 
variables (similar to the silver carp) in the future.

Conclusions
We advanced the gLV model-based network inference 
and showed its utility in inferring/predicting the network 
structure and dynamics of a freshwater fish community 
in the Illinois River. Future applications of the inference 
approach could be generalized to study fish communi-
ties in other geographical locations with varying eco-
logical and environmental conditions (e.g., other rivers 
with long-term resource monitoring data) or even other 
macroscopic organisms. Such applications may enhance 
the ability to understand and predict the structure and 
dynamics of natural ecosystems and shed light on disrup-
tive threats posed by invasive species.

Methods
General
All simulations and computational analyses were per-
formed in MATLAB R2018 (The MathWorks, Inc., 
Natick, MA, USA).

Long term resource monitoring data
The time series data of the Upper Mississippi and Illinois 
Rivers fish community were collected from the annual 

reports of the Long Term Resource Monitoring Program 
[22]. The program used a multigear and multihabitat 
sampling design protocol (refer to the program report 
for details) to collect data from 6 observation sites (Lake 
City, Minnesota, Pool 4; La Crosse, Wisconsin, Pool 8; 
Bellevue, Iowa, Pool 13; Alton, Illinois, Pool 26; Havana, 
Illinois, La Grange Pool; and Cape Girardeau, Missouri, 
Open River). To standardize the catch per unit effort 
(CPUE) from multiple gears to the same relative scale, 
the raw CPUE data during the time period between 1993 
and 2015 were converted to relative abundance among 
species within the same site and summed over all 6 fish-
ing gears (electrofishing, fyke net, mini fyke net, large 
hoop net, small hoop net, trawling). Since the absolute 
abundances are not available, we assumed that the fish 
species were maintained at or nearby the carrying capac-
ity, which allows for parameterizing a generalized Lotka–
Volterra model directly from relative abundance data 
such as the standardized CPUE indices.

Noise filtering and data smoothing
It is well known that outliers or noisy data in the popula-
tion abundance data can result in spurious gradient esti-
mates. Although our parameter estimation algorithm was 
designed to solve this issue by optimizing the gradients, it 
is nonetheless a local optimization approach and uses the 
numerically approximated gradients as initial guesses to 
start the fitting procedure. To improve the fitting robust-
ness, population abundance data for the two microbial 
ecosystems as well as the two fish communities in the La 
Grange pool and the Pool 26 were smoothed before used 
to guide parameterization.

Data smoothing was performed by the classical empiri-
cal mode decomposition (EMD) algorithm which has 
been extensively reviewed elsewhere [39]. Briefly, EMD 
decomposes the input time-series data into several 
intrinsic mode functions (IMF), each of which represents 
a distinct local oscillation mode of the data. Since IMFs 
with Hurst exponent below 0.5 have low autocorrelations 
and are more likely to contain noise than signal, smooth 
trends can be extracted from the original time-series by 
only keeping IMFs with Hurst exponent no smaller than 
0.5. The MATLAB codes of EMD and Hurst exponent 
estimation can be accessed from https​://www.mathw​
orks.com/matla​bcent​ral/filee​xchan​ge/52502​-denoi​sing-
signa​ls-using​-empir​ical-mode-decom​posit​ion-and-hurst​
-analy​sis.

Generalized Lotka–Volterra model
The generalized Lotka–Volterra (gLV) model is a system 
of ordinary differential equations (ODE) with birth–
death processes describing how fish species abundances 
change over time

https://www.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-empirical-mode-decomposition-and-hurst-analysis
https://www.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-empirical-mode-decomposition-and-hurst-analysis
https://www.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-empirical-mode-decomposition-and-hurst-analysis
https://www.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-empirical-mode-decomposition-and-hurst-analysis
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where xi(t) is the abundance of fish species i at time t 
and N  is the total number of fish species. αi is referred 
to as the net (birth minus death) population’s per-capita 
growth rate of the fish species i while βi,j , known as the 
pairwise interaction coefficient, represents the popu-
lation influence of fish species j on fish species i . Once 
parameterized, Eq.  (1) can be numerically solved using 
any ODE solver. We used MATLAB’s built-in solver 
ode15s in this study.

GLV parameterization by linear regression (LR)
A commonly used technique to parameterize a gLV 
model is to discretize Eq. (1) and solve the following mul-
tilinear regression [11]

where �·�F is the Frobenius norm. α , β , X , g are the vec-
tors/matrices of growth rates, interaction coefficients, 
time-series data, and gradients of the time-series data 
respectively ( t1, t2, . . . , tM are discrete time points)

Note that the gradients g are input parameters to the 
linear regression procedure and need to be numerically 
approximated. We calculated g by differentiating the 
spline interpolants of the observed data X . MATLAB 
built-in function spline and fnder were used for spline 
interpolation and differentiation respectively. The linear 
least-square problem in Eq.  (2) was solved by the inte-
rior-point algorithm implemented by MATLAB built-in 
function lsqlin.

(1)
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dt
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
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
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
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

GLV parameterization by nonlinear regression (NLR)
The gLV parameters α,β can also be estimated by non-
linear regression. Naively, it searches the space of α,β for 
a local minimum of a sum of squares between simulated 
and observed data

where X̂(α,β) is the matrix that has the same format as X 
but consists of simulated time-series data x̂i(t) obtained 
by numerically solving the gLV model with given α,β , i.e.,

The nonlinear least-square problem in Eq.  (7) was 
solved using the trust-region-reflective algorithm, 
which was implemented by MATLAB built-in function 
lsqnonlin.

GLV parameterization by latent gradient regression (LGR)
Our approach minimizes the same least square as in NLR 
but searches the space of the latent gradients g , rather 
than gLV parameters α,β

The transformation functions α(g ,X),β(g ,X) can 
be found by solving the linear regression in Eq.  (2), i.e., 
α(g ,X) = α

opt
LR (g ,X) and β(g ,X) = β

opt
LR (g ,X) . J (α,β) in 

Eq. (9) was introduced as the penalty function to reduce 
the risk of overfitting. Here we used a modified version 
of ridge regression where the self-interaction coefficients 
of species are not penalized (this is consistent with our 
previous assumption that the fish community is saturated 
nearby carrying capacity, which implies strong intraspe-
cific competitions)

where �α and �β are the penalty coefficients for the growth 
rate vectors and the interaction matrix respectively.
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The number of observed data is much larger than 
the number of parameters for synthetic ecosystem 
and the two microbial ecosystems. Therefore, we used 
�α = �β = 0 in fitting these data. For the fish abundance 
data in the LG pool and the Pool 26, we performed leave-
one-out cross-validation: the training dataset was the full 
time-series excluding the middle-year data ( ttest = 2004 ) 
and the test dataset includes a single data point at that 
year. As we mentioned in the Discussion section, both 
local optimization nature of LGR and insufficient data 
prevented us from using more complex strategies of data 
partitioning between training and testing sets. The opti-
mal values of �α and �β were chosen as the combination 
minimizing the sum of squared error over all fish spe-
cies on the test set, i.e., 

∑N
i=1

(
xi(ttest)− x̂i(ttest)

)2 . We 
found �α = 1.6× 10−4, �β = 7.9× 10−3 for the LG pool 
data and �α = 1.6× 10−2, �β = 4.0× 10−4 for the Pool 
26 data. The final gLV model was parameterized by run-
ning LGR with the optimized penalty coefficients and the 
complete dataset.

Solving Eq. (9) requires an iteration method that alter-
nates between updating the values of g and α,β . The 
algorithm of LGR include 4 distinct steps

1.	 Pick an initial guess of g(0) for g . We constructed 
g(0) by numerical differentiation of data as described 
above (see GLV parameterization by linear regression 
for details).

2.	 Given g(k−1) and X , estimate α(k),β(k) by solving the 
following linear regression

	

3.	 Given g(k−1),α(k),β(k) and X , estimate g(k) by apply-
ing the update rule of the Levenberg–Marquardt 
(LM) algorithm [40] (other optimization algorithms 
can be applied similarly). Let X1 , X̂

(k)

1  , g(k)1  are the 
flattened 1-dimensional NM × 1 vectors of X , X̂

(k) , 
and g(k) respectively. The LM algorithm is a blend of 
the gradient descent and a Gauss–Newton approach 
that constructs a search direction by solving the fol-
lowing set of linear equations
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NM × 1 residual between observed and simulated 
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 is 

the NM × NM Jacobian matrix. �(k) is a damping 
parameter that controls the magnitude and direction 
of the update (small values of �(k) result in a Gauss–
Newton update and large values of �(k) result in a 
gradient descent update). I is the identify matrix. Let 
d(k) be the reshaped 2-dimensioanl N ×M matrix of 
d
(k)
1  . The update rule of the LM algorithm can be rep-

resented as below
	

4.	 Let k = k + 1 and go back to step 2. The iterations 
continue until the convergence criteria for the LM 
algorithm is met.

The LM algorithm is implemented by MATLAB built-
in function lsqnonlin. The choice of �(k) at each step and 
more details about the implementation are available in 
the MATLAB webpage

https​://www.mathw​orks.com/help/optim​/ug/least​
-squar​es-model​-fitti​ng-algor​ithms​.html#f204.

The above iterative optimization procedure is a deter-
ministic variant of the expectation–maximization algo-
rithm. The latent gradients computed in the expectation 
step (Step 3) are used to update the gLV coefficients in 
the maximization step (Step 2). However, our approach 
was not formulated into a statistical framework that 
explicitly models the gLV parameters and the latent 
gradients as random variables with probabilistic distri-
butions. Therefore, it is still a deterministic optimiza-
tion method that should not be confused with a classical 
expectation–maximization algorithm.

Synthetic community data
To benchmark our LGR algorithm, we created a 3-spe-
cies ( Xi where i = 1, 2, 3 ) gLV model with its parameter 
values ( αi and βi,j where i, j = 1, 2, 3 ) indicated along the 
arrows in the model diagram (Fig. 2b). The synthetic data 
used in Fig. 2b were created by deterministically solving 
the model using MATLAB built-in function ode15s. Envi-
ronmental noise was added to the model by simulating 
stochastic differential equations

(14)g(k+1) = g(k) − d(k)

(15)

dXi(t) =



αi +

3�

j=1

βi,jXj(t)



Xi(t)dt + σidWi(i = 1, 2, 3)

https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html#f204
https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html#f204
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where dt is the time step and dWi is the Wiener process 
(Brownian motion) with diffusion rate σi (equal to 0.001 
for all three species). The histograms in Fig.  2c were 
plotted based on 1000 simulated noisy datasets. The 
MATLAB codes for numerical solution of stochastic dif-
ferential equations can be assessed from https​://githu​
b.com/horch​ler/SDETo​ols.

The following setups are general to both deterministic 
and stochastic simulations. First, synthetic data used in 
Fig. 2b, c and Additional file 1: Fig. S3 were generated by 
sampling the simulated trajectories at a fixed time inter-
val of 5 from t = 0 to t = 100 . Second, the initial condi-
tions for X1,X2,X3 in all simulations were 0.15, 0.6 and 
0.4 respectively. Lastly, parameter sign constraints were 
employed by all inference algorithms (LR, NLR, LGR) in 
fitting the synthetic data.

Summary food web and parameter sign constraints
The summary food web of the modelled fish community 
was reconstructed in two steps: (1) classifying all fish spe-
cies in three trophic levels represented by resource prey, 
meso predator, and top predator on the basis of their 
feeding behavior; (2) summarizing all potential interac-
tions based on the classification and empirical observa-
tions. In the classification step, the trophic positions of 
fish species was determined by finding a distribution 
that is compatible with two constraints imposed by prior 
data: (1) the FishBase (https​://www.fishb​ase.de) trophic 
level index (a floating-point number that equals one plus 
weighted mean trophic level index of the food items) of 
any fish species in higher trophic levels is no smaller than 
that of any fish species in lower levels; (2) the predator of 
any known predator–prey relationship occupies a higher 
trophic level than the level occupied by the prey. We 
assume that each pair observed to interact in other fresh-
water ecosystems has the potential to interact the same 
way in the Upper Mississippi and Illinois Rivers.

In the summarization step, the potential pairwise 
interactions include not only observed predator–prey 
relationships but hypothetical interactions that are gen-
erated by the following ecological rules: (1) fish species 
on higher trophic levels feed on fish species on the imme-
diate lower level (common prey relationships); (2) the 
same fish species compete for limited resources within its 
own population (intraspecific competitions); (3) fish spe-
cies on the same trophic level compete with each other 
for limited resources (interspecific competitions). Any 
pair of fish species whose trophic relationship does not 
apply to the three rules is assumed to be non-interacting.

Sign constraints can be converted from the potential 
interactions in the summary food web. Depending on 
the interaction type, the conversion follows the following 
rules: (1) βi,j < 0 and βj,i > 0 for predator (species j)-prey 

(species i ) relationships; (2) βi,i < 0 for intraspecific com-
petitions within population of species i ; (3) βi,j < 0 and 
βj,i < 0 for interspecific competitions between species j 
and species i ; (4) βi,j = 0 and βj,i = 0 for non-interacting 
species pairs. Per-capita growth rate of species i is positive 
( αi > 0 ) if it occupies the lowest trophic level and negative 
( αi < 0 ) if it occupies higher trophic levels. The derived 
sign constraints for the La Grange pool and the Pool 26 
were combined and shown in Additional file 2: Table S2.

Construction of ensemble models
To identify alternative parameters that fit data (almost) 
equally well, we first generated perturbed gLV coeffi-
cients by adding noise to the coefficients ( αopt

LGR,β
opt
LGR ) 

of the optimal (unperturbed) model obtained by LGR. 
Noise was added by sampling a log-normal distribution 
with the mean equal to the logarithmic of αopt

LGR,β
opt
LGR and 

the standard deviation fixed at a constant σ . Then the 
perturbed coefficients were used as initial guesses and 
re-optimized to minimize the following regularized least-
square objective function

where αopt
alt ,β

opt
alt  are gLV coefficients of the re-optimized 

model. The MATLAB trust-region-reflective algorithm 
was used to solve the above nonlinear regression. The 
standard deviation ( σ ) of the lognormal distribution was 
carefully chosen to ensure that the deviations of the re-
optimized models from the data span a distribution that 
is neither too wide (low sampling efficiency) nor too nar-
row (not enough diversity). We found that σ = 0.2 and 
σ = 0.005 serve the purpose for the LG pool and the Pool 
26 respectively.

For each of the LG pool and the Pool 26, we generated 
1000 perturbed-then-reoptimized models as candidates 
for building an ensemble of models that fit data (almost) 
equally well. Practically, we used a cutoff value to exclude 
those models whose deviations from the data are higher 
than a threshold. In Fig. 4a, we quantified the deviation 
of model from data using symmetric mean absolute per-
centage error (sMAPE)

where xi(tk) and x̂i(tk) are observed and simulated abun-
dance of fish species i at time tk . We preferred sMAPE 
over other metrics such as the mean squared error 
because (1) it is normalized between 0 and 1 and (2) more 
importantly, its distribution over the 1000 models for 
the LG fish community provides a less arbitrary cutoff 
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value (0.25) that separates candidate models into groups 
that represent good and poor fits to data (Fig.  4a). To 
ensure fair comparison between model predictions across 
observation sites, we applied the same cutoff criterion 
(sMAPE ≤ 0.25) to construct the ensemble of gLV models 
for the Pool 26 fish community.

Silver carp models
We chose not to model the abundance of silver carp as 
an autonomous gLV variable because the number of 
data points in silver carp’s time series was insufficient 
to reliably estimate new gLV parameters associated 
with the variable. Instead, silver carp was added to the 
gLV models of the native fish network in the LG pool as 
an exogenous variable (its value is not determined by 
model but given by data)

where ǫi is the susceptibility parameter that quantifies the 
response of the growth of native fish species i to silver 
carp. xsvcp(t) is the abundance of silver carp at any time 
t , which can be obtained by interpolating data observed 
at discrete time points. Since silver carp invaded the Illi-
nois River for only two decades, we assumed that silver 
carp perturbs the growth rate of native fish species with-
out changing their feeding behavior and interactions 
with other native species. In other words, the coefficients 
αi and βi,j inferred in the absence of silver carp remain 
unchanged in its presence. For each ensemble gLV model 
with parameters αopt

alt ,β
opt
alt  , the optimal value of its sus-

ceptibility parameter ǫopti  was given by the following non-
linear regression

where ǫ =
[
ǫ1 · · · ǫN

]T . Note that we fit each ǫi one 
at a time while setting all other ǫj(j  =i) to zero, since too 
many adjustable parameters may lead to overfitting and 
spurious coupling. Equation (19) was solved using trust-
region-reflective algorithm implemented in lsqnonlin, 
together with sign constraints of ǫ (Fig.  3b, Additional 
file 2: Table S2).

Confidence score
The confidence score of a parameter is defined as 1 minus 
p-value testing that the parameter value is different than 
0, i.e., 1 minus the minimum significance level below 
which the confidence interval of the parameter includes 
0. If z is the vector of parameters (it could be gLV param-
eters α,β in Eq.  (1) or susceptibility parameters ǫ in 

(18)
dxi(t)
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opt
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Eq. (18)), its confidence interval at significance level α is 
given by

z∗ is the optimized value of z , df  is degree of freedom 
(number of data minus number of parameters), X and 
X̂(z∗) are the observed and simulated data respectively, 
J (z∗) =

(

∂X̂(z)/∂z
)

|z=z∗
 is the Jacobian evaluated at z∗ , 

and t1− α
2 ,df

 is the Student’s t inverse cumulative distribu-
tion function. We used MATLAB built-in function 
nlparci to construct confidence intervals (nlparci essen-
tially computes Eq. (20)).
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