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Abstract 

Background:  Habitat models provide information about which habitat management should target to avoid species 
extinctions or range contractions. The willow ptarmigan inhabits alpine- and arctic tundra habitats in the northern 
hemisphere and is listed as near threatened (NT) in the Norwegian red list due to declining population size. Habitat 
alteration is one of several factors affecting willow ptarmigan populations, but there is a lack of studies quantifying 
and describing habitat selection in willow ptarmigan. We used data from an extensive line transect survey program 
from 2014 to 2017 to develop resource selection functions (RSF) for willow ptarmigan in Norway. The selection coef-
ficients for the RSF were estimated using a mixed-effects logistic regression model fitted with random intercepts for 
each area. We predicted relative probability of selection across Norway and quantile-binned the predictions in 10 RSF 
bins ranging from low-(1) to high-(10) relative probability of selection.

Results:  Random cross-validation suggest that our models were highly predictive, but validation based spatial block-
ing revealed that the predictability was better in southern parts of Norway compared to the northernmost region. 
Willow ptarmigan selected for herb-rich meadows and avoided lichen rich heathlands. There was generally stronger 
selection for vegetation types with dense field layer and for rich bogs and avoidance of vegetation types with sparse 
field layer cover and for lowland forest. Further, willow ptarmigan selected for areas around the timberline and for 
intermediate slopes. Mapping of the RSF showed that 60% of Norway is in the lowest ranked RSF bin and only 2% in 
the highest ranked RSF bin.

Conclusions:  Willow ptarmigan selected for vegetation types with dense field layer and bogs at intermediate slopes 
around the timberline. Selection coincides with previous habitat selection studies on willow ptarmigan. This is the first 
attempt to assess and quantify habitat selection for willow ptarmigan at a large scale using data from line transect 
distance sampling surveys. Spatial variation in predictability suggests that habitat selection in late summer might 
vary from north to south. The resource selection map can be a useful tool when planning harvest quotas and habitat 
interventions in alpine areas.

Keywords:  Resource selection function, Distance sampling, Line transect survey, Habitat suitability map, Predictions

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Knowledge about patterns of habitat selection is often 
needed in order to make evidence-based management 
decisions. For instance, Smereka et  al. [1] mapped the 
relative probability of selection for den sites for grizzly 
bears (Ursus arctos horibilis) in the Mackenzie Delta, 
Northwest Territories, Canada, to reduce human-bear 
conflicts by guiding human activity and land-use. A 

habitat selection model [2] has also been applied to har-
vest management of willow ptarmigan (Lagopus lago-
pus) in Northern Norway, where quotas are estimated 
based on a combination of pre-harvest densities and the 
amount of suitable habitat for willow ptarmigan available 
within the hunting area. Although a plethora of methods 
have been developed to assess patterns of habitat selec-
tion, resource selection functions (RSF) [3] are among 
the most frequently used methods to model habitat selec-
tion in animals (e.g., [1, 4–6]). An RSF is a function that 
is proportional to the probability of selection by an ani-
mal (c.f. [7, 8]) and is estimated directly from data. Data 
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in the context of RSF’s is usually a set of locations where 
individuals are observed and a set of randomly gener-
ated available locations where the individuals could have 
been observed (used vs. available units). Variables asso-
ciated with the observations may be habitat variables or 
covariates like elevation, topology, vegetation types or 
human-disturbance and infrastructure metrics. In a pres-
ence/available framework, variables that are assumed 
important for habitat selection are compared at the 
locations of the observations and the locations of avail-
able sites. A predictive RSF can be mapped and used to 
predict the relative selection for different geographical 
units based on their environmental characteristics [3, 7]. 
RSFs have been developed for many wildlife species [1, 
2, 4, 5, 9, 10], often with the purpose to quantify suitable 
habitat for species that are of conservation concern or to 
answer questions related to the ecological dynamics of 
the system.

Willow ptarmigan is a medium-sized grouse species 
distributed in tundra habitats and boreal forests in the 
northern hemisphere [11]. Willow ptarmigan inhabits 
treeless alpine- and arctic tundra habitats most of the 
snow-free season, but it also occurs in northern boreal 
forests near tundra habitats. In Norway, it was recently 
listed as near threatened (NT) in the national red list of 
species [12], due to a 15–30% decline in the breeding 
population during the last decade (e.g., [13]). Predation, 
climate change, unsustainable harvest and potentially 
loss of habitat are all assumed to have contributed to the 
observed decline, but the relative contribution from these 
effects is to date not quantified [12].

There has been a rapid development of human infra-
structure in the tundra areas of Norway during the 
nineteenth century, mainly due to construction of hydro-
electric power installations, recreational facilities and 
roads. Moa et  al. [14] found that autumn densities of 
willow ptarmigan were generally higher in management 
units with high proportion of areas located far from 
human infrastructure (see also [15, 16]). This suggests 
that habitat alteration affects willow ptarmigan popu-
lations. There is however a lack of studies quantifying 
and describing within range habitat selection for willow 
ptarmigan (but see [10, 17–20]). Some studies describ-
ing habitat selection however, have shown that willow 
ptarmigan broods, in general select for rich bogs close 
to willow-(Salix spp.) and dwarf birch (B. nana) thickets 
and avoid dry and sparsely vegetated habitats like heaths 
during summer and early autumn [10, 19, 20]. Willow 
ptarmigan is an indicator species for biodiversity in Nor-
wegian mountains [21] and its distribution overlap with 
several other alpine and boreal species [13, 22]. Hence, 
it is possible that willow ptarmigan can play a role as 
an umbrella species in the alpine ecosystems, especially 

because of its status as an economically important game 
species [23].

In this study, we model willow ptarmigan habitat selec-
tion in August using exponential RSF’s. The exponential 
RSF was estimated using a mixed effects logistic regres-
sion model with a presence/available design. This study 
is the first objective attempt to model habitat selection 
for willow ptarmigan across Norway. We use satellite-
based vegetation maps, slope and aspect from a digital 
elevation model and timberline measures as predictor 
variables. Based on previous studies of willow ptarmi-
gan, we predict that willow ptarmigan selects vegetation 
types that offers food and concealment against predators. 
In addition, we predict that willow ptarmigan selects for 
areas close to the timberline, due to the special adapta-
tion to alpine and sub-alpine areas during the snow-free 
season. We further expect that willow ptarmigan avoid 
steep slopes. Southernly exposed slopes have normally 
more vigorous plant communities than northerly slopes 
due to prolonged sun-exposure, so we also expect that 
willow ptarmigan select for southern slopes rather than 
northern slopes.

Methods
Study area
Data from survey areas distributed in alpine tundra, 
low arctic tundra and northern boreal forests through-
out Norway (Fig.  1a) was used as a basis for our RSF. 
The vegetation in the tundra is dominated by small and 
medium-sized shrubs [e.g., willows, dwarf birch, and 
heath (Vaccinium spp. and Caluna spp.)]. The northern 
boreal forests are dominated by mountain birch (B. pube-
scens), Scots pine (Pinus sylvestris), and Norway spruce 
(Picea abies). The vertebrate fauna is dominated by large 
ungulates like wild- and semi-domestic reindeer (Rangi-
fer tarandus) and moose (Alces alces), rodents (e.g., 
Microtus spp.), and terrestrial birds. Important preda-
tors on willow ptarmigan include red fox (Vulpes vulpes), 
stoat (Mustela erminea), pine marten (Martes martes), 
gyrfalcon (Falco rusticolus), rough-legged buzzard (Buteo 
lagopus) and golden eagle (Aquila chrysaetos). Livestock 
grazing by sheep and cattle is common in many areas 
during summer (Jun–Aug). Human population density 
is generally low within these areas. However, some areas 
are located in proximity to larger villages and in some 
areas, there are several cabin villages and isolated cabins, 
many of which are only seasonally inhabited.

Data collection
We used information about willow ptarmigan occur-
rence based on observations done along line-transect 
surveys from 2014 to 2017. Transects were in most 
areas spaced out systematically following map grids 



Page 3 of 13Kvasnes et al. BMC Ecol  (2018) 18:41 

with a 500 m interval, and often either in north–south 
or east–west bearing (see Fig.  2a). The same tran-
sects were repeatedly surveyed each year. Following 
a distance sampling protocol [24] a dog handler with 
pointing dogs and an observer walked along the tran-
sect-lines with one free-ranging dog at a time searching 
both sides of the line [25, 26]. At each bird encounter, 
the observer recorded the species, total number of 
birds (juveniles, adult males, adult females, or birds of 
unknown sex or age), the perpendicular distance from 
the transect line to the observation, the geographical 
location (centre of the brood/covey if several birds) of 
the birds (in UTM) as well as the time of day the obser-
vation was made. The main purpose of the line-transect 
survey program is to estimate pre-harvest densities of 
willow ptarmigan in the survey areas for harvest man-
agement purposes. So, the survey areas are not chosen 
at random, but mainly driven by local initiatives and 
does not follow a strict design. However, the location-
data collected during the surveys are also suitable for 
assessing habitat selection using resource selection 
functions [10]. Detailed description for the sampling 
protocol used for estimating willow ptarmigan densities 

is outlined in Pedersen et  al. [27], Pedersen et  al. [25] 
and Eriksen et al. [28].

All observation data from the line transects surveyed 
were registered by the field worker to “Hønsefuglpor-
talen” (http://honse​fugl.nina.no/Innsy​n/ [29]), a com-
mon e-infrastructure and data portal supporting the line 
transect survey program in Norway. We used a JDBC-
connection with Rstudio [30] and the library «RJDBC» 
[31] to download survey data from the SQLServer data-
base. In total, 17,386 willow ptarmigan locations from 
7923 surveys along 2543 distinct transect lines across 
179 survey areas were downloaded. We established buff-
ers covering 200 m on each side of the transect lines and 
we discarded all observations made outside the line-buff-
ers (2778 used locations). The size of the buffers was set 
at 200 m because most of the used locations are within 
this distance from the transect-line (> 80%) and the pro-
cedure exclude observations that are either regarded 
as outliers or that have typo in the UTM coordinate 
text. Furthermore, based on the geographical position 
of the used locations and the geographical location of 
the transect line, we estimated perpendicular distances 
from transect lines to used locations and compared 

Fig. 1  Study area showing a the distribution of survey areas and vegetation types, b the relative probability of selection for willow ptarmigan 
during late summer/early autumn, ranging from low relative probability of selection (1) to high relative probability of selection (10)

http://honsefugl.nina.no/Innsyn/
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this to the perpendicular distance reported by the field 
workers. Whenever the deviation between these meas-
ures were > 30  m, we discarded the observation to opti-
mize the quality of our data (cf. 30 * 30 m is the spatial 

resolution of the vegetation variables, see “Vegetation 
variables” below). Additional 2427 observations were 
omitted in this procedure (see Fig.  2 and Table  1 for 
details regarding data management).

Fig. 2  Example area with transect-lines observations and random locations. To the left: Transect-lines placed in the landscape. On the right; a 
is a transect-line with all observations from 2014 to 2017, b the transect-line and observations with a 200-m buffer. Observations outside the 
200-m buffer and observations with > 30-m deviation between reported and estimated perpendicular distance were excluded from analyses (see 
“Methods”). c Randomly generated available locations within the 200-m buffer, d available locations after adjusting for detection probability (see 
“Methods”) and e is willow ptarmigan locations and adjusted available locations used in the modelling

Table 1  Summary of the process from importing data to the final dataset (see also “Methods” section)

a  Survey is a unique ID for each time a transect is surveyed
b  The complete dataset of used locations excluded surveys without observations
c  Generated available locations for each survey

Action Used locations Surveysa Available 
locations

Transects Survey areas

Imported data 17,386 7923 – 2543 179

Removed use locations > 200 m 14,608 7397 – 2496 179

Removed use locations > 30-m deviation 12,181 6927 – 2443 179

Removed surveys without use locationsb 12,181 4875 – 2109 176

Generate random locationsc – 6927 66,174 2443 179

Adjusted random locations – – 38,485 2438 179

Removed non-habitat (final dataset) 12,146 – 38,149 2440 179
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Defining available habitat
To quantify the distribution of available habitat we gen-
erated random locations within the surveyed area. Based 
on a presence-available design (as in our case), observa-
tions are expected to be drawn from a sample of available 
locations [7]. Therefore, the randomly generated available 
locations should represent the available habitat within 
the area that is covered by the surveys. Since our obser-
vations are sampled along line transects it is expected 
by design that the detection probability decreases as a 
function of distance from the transect-line [10, 24, 27]. 
To achieve a proper distribution of available locations 
[7] we performed a four-step procedure following Kast-
dalen et  al. [10] to achieve a similar probability distri-
bution among observations and available locations. (1) 
Within the line-buffers, we generated random available 
locations (Ai). The number of locations per line-buffer 
was set according to the effort (km transect) multiplied 
by 3 (e.g. 4 km transect surveyed in 4 years: 1 available 
location * 16  km * 3 = 48 random locations within the 
line-buffer). Following this procedure, we also generated 
available locations for transect lines without used loca-
tions. This resulted in 66,174 random available locations 
(Ai). (2) We used the R library “distance” [32] to estimate 
half-normal detection functions (gxo) from the used loca-
tions (see above). (3) Then, gxo was used to estimate the 
detection probability (Oi) of each location Ai based on its 
distance from the transect line. Oi has a value between 
zero and one. (4) Finally, we generated a random number 
between zero and one (Pi) for each Ai. Ai was included in 
the set of available locations in the final analysis when-
ever Pi < Oi. After omitting available locations in step 
four, our sample of available locations were 38,149 dis-
tributed with the same probability distribution as the real 
observations [10] (Fig. 2b).

Predictor variables
Vegetation data
Vegetation type at willow ptarmigan locations and avail-
able locations was extracted from a digital raster-map 
with a resolution of 30 × 30  m (SatVeg [33]). This map 
consists of 25 generalized vegetation types [34] cover-
ing Norway (Fig. 1a and Table 2). Ten vegetation classes 
were classified as alpine, three were classified as bogs and 
open swamp vegetation, and eight as forest vegetation. 
The remaining four classes; water, agricultural areas, cit-
ies and built-up areas and unclassified or shadow affected 
areas were all considered as non-habitat. We kept alpine 
classes, bogs and swamps as original classes. We consid-
ered forest classes; Bilberry-(Vaccinium myrtillus), Crow-
berry-(Empetrum nigrum) and Lichen-rich birch forests 
as mainly sub-alpine mountain birch forest and kept as 

original classes’ while we pooled the remaining forest 
classes into one class representing lowland forests domi-
nated by coniferous tree species.

Landscape data
We extracted aspect in degrees and slope in degrees 
from a digital elevation model (DEM) with a resolution 
of 10 × 10  m (Norwegian Mapping Authority: https​://
kartk​atalo​g.geono​rge.no/). We did not model the DEM 
(m.a.sl.) directly because of the clear bioclimatic gradi-
ents present in our large study area.

Aspect is a circular variable (0°—north to 360°—
north) and was therefore transformed to radians 
(

raspect = aspect ∗
(

2π
360

))

 , and in the next step we 
created two variables representing north-expo-
sure 

(

Naspect = cos
(

raspect
))

 and eastern exposure 
( 
(

Easpect = sin
(

raspect
))

 [6]. We also constructed a cat-
egorical variable with five levels representing aspect, 
north (315°–45°), east (45°–135°), south (135°–225°), west 
(225°–315°) and flat areas (0°).

Timber line
To describe variation in altitude we used a raster-map 
with regional empirical timber line (RET) in meter above 
sea level, with a 100 × 100 m resolution [35]. To consider 
the bioclimatic variation caused by latitudinal and lon-
gitudinal gradients, we combined the DEM (see above) 
with the RET. Taking the regional empirical timber line 
at each location as the reference point (i.e. 0  m above 
the timberline) we calculated the deviation in altitude 
(meters) from the timberline to each willow ptarmigan 
location and available location.

All predictor variables at observations and available 
locations were extracted from the raster-maps using 
GRASS [36] and the function «r.what» through RStudio 
[30] with library «rgrass7» [37]. Summaries of the predic-
tor variables are given in Table 2.

Statistical analysis
Model development
We omitted used and available locations placed in “non-
habitat” (35 used locations and 336 available locations, 
se definition of non-habitat above). Our final data set 
used for analyses of willow ptarmigan habitat selection 
consisted of 12,146 willow ptarmigan observations and 
38,149 available locations (Table 1). We estimated selec-
tion coefficients for the RSF by comparing environmen-
tal conditions of used locations to available locations 
using a mixed-effects logistic regression model [38–40]. 
Observations and available locations are stratified by sur-
vey areas. However, there is unbalance in the data since 
the number of locations per survey area vary. Gillies 

https://kartkatalog.geonorge.no/
https://kartkatalog.geonorge.no/
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et  al. [39] showed that using a random intercept when 
data are unbalanced improve model fit greatly and can 
change the direction of model coefficients. Therefore, we 
used Generalized Linear Mixed Model (GLMM) and fit-
ted random intercepts for each survey area. The mixed 
effect model with random intercepts allow us further to 
account for spatial variation in density (density, because 
available points are generated based on effort not num-
ber of observed locations in the survey areas) and it 
provide marginal selection coefficients that can be used 
to make predictions also outside the sampled area. This 
approach assume that the explanatory variables has the 
same effects across all survey areas, although density may 
vary between areas. We did not consider effects of sex- 
and brood size on patterns of habitat selection.

The coefficients ( βn) estimated from the mixed-effect 
logistic regression model is the logarithmic relative selec-
tion strength (log-RSS) [41] for a given variable. We 
estimated the relative probability of selection at a given 

location using an exponential resource selection function 
(RSF):

where w(x) is relative probability of selection at loca-
tion x and β1 thorough βn is the estimated relative selec-
tion strength for explanatory variables x1 thorough xn 
from the logistic regression model. Note that we do not 
include random intercepts in the RSF since or objective 
is to predict relative probability of selection across the 
whole of Norway.

To facilitate model convergence, we standardized con-
tinuous variables (aspect, slope, deviation from the tim-
berline) to zero mean and one standard deviation [42].

We evaluated different combinations of explanatory 
variables, but always including the variable vegetation 
type when developing the RSF. We also tested for quad-
ratic effects of slope and deviation from the timberline, 

(1)
w(x) = exp (β1x1 + β2x2 + β3x3 + β4x4 . . . βnxn),

Table 2  Categorical and  continuous landscape variables used to  determine relative probability of  selection for  willow 
ptarmigan

Categorical variables are presented with the number of used sites and available sites, respectively. Continuous variables are presented with median and range of the 
variable for used sites and available sites, respectively. Numbers in parenthesis refers to the original vegetation type number in the vegetation map

Variable Category Units Used sites Available sites

Vegetation type Exposed alpine ridges (# 12) – 60 460

Bilberry-low fern birch forest (# 6) 366 1481

Wet mires, sedge swamps and reed beds (# 11) 147 633

Fresh heather and dwarf-schub communities (# 17) 4410 11,380

Graminoid apline ridge (# 13) 216 894

Herb-rich meadows (# 18) 572 994

Tall-grown lawn vegetation (# 10) 666 1767

Crowberry birch forest (# 7) 267 959

Lichen-rich birch forest (# 8) 222 929

Lichen-rich heathland (# 15) 145 1063

Heather- and grass-rich early snow patch communities (# 16) 503 1924

Heather-rich alpine ridge (# 14) 2240 6955

Lowland forest (# 1–5) 711 3620

Bryophyte late snow patch vegetation (# 20) 207 1100

Gras and dwarf willow snow-patch vegetation (# 19) 94 742

Ombrotrophic bog and low-grown lawn vegetation (# 9) 1320 3248

Aspect East – 2920 8704

Flat 72 360

North 3246 10,227

South 2991 9589

West 2917 9269

Timberline Over – 6251 18,263

Under 5895 19,886

Elevation – Meters 899 (6 to 1419) 861 (4 to 1501)

Aspect Degrees 182 (0 to 360) 183 (0 to 360)

Slope Degrees 5.23 (0 to 46.04) 5.02 (0 to 61.41)

Timberline (deviation) Meters 2.70 (− 330 to 314) − 5.20 (− 383 to 495)
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and we evaluated models including aspect either as one 
categorical variable with five levels (north, east, south, 
west and flat) or as two continuous variables (north–
south and east–west).

Model selection and validation
Model selection was based on AIC (Akaike Information 
Criterion). We considered 24 model combinations and 
the model with lowest AIC is considered the best sup-
ported model, but ΔAIC < 2 suggest that models are sta-
tistically equivalent and thus equally supported by the 
data [43]. In such situations, we followed the principle 
of parsimony and selected the least complex model. The 
most parsimonious model was evaluated using k-fold 
cross-validation [7, 44]. K-fold cross-validation yield 
metrices to assess a model’s ability to predict high relative 
probability of selection at locations where the species are 
observed. We divided the dataset into 5 approximately 
equal-sized datasets (folds) using random k-fold portion-
ing in the R-library “dismo” [45]. For each model under 
validation, the k-fold cross-validation procedure followed 
four steps (repeated for each of the fivefold). (1) We 
withheld onefold (test set) and estimated model param-
eters based on the remaining fourfold (training set). (2) 
We used model parameters from the model in step 1) to 
predict the withheld test set. (3) A 10-quantile binning 
was generated on the predicted values of the test set. 
Bins were ranked from low relative probability of selec-
tion (bin #1) to high relative probability of selection (bin 
#10). A model with good predictive performance tends 
to have successively more willow ptarmigan locations in 
higher ranked bins. (4) A statistical metric of model per-
formance was assessed by spearman rank-correlation 
between bin-rank and the count of used locations in each 
bin. Strong positive correlation coefficient suggests good 
predictive performance [7]. We also performed the four 
cross-validation steps described above on four geograph-
ical regions (blocks, c.f. [46]) instead of fivefold. The 
regions were drawn up by similarities in climatic condi-
tions, and willow ptarmigan population dynamics within 
regions are synchronized [22].

Predicting resource selection functions across Norway
We developed a predictive resource selection map based 
on the most parsimonious model. In order to do so we 
had to convert all raster maps to 30 × 30  m resolution 
using program GRASS with the function «r.resamp.stats» 
[36], through RStudio [30] with library «rgrass7» [37]. 
Then we estimated the resource selection function for 
each 30 × 30 m cell by putting selection coefficients ( β1 , 
βn . . . ) from the selected model and the raster values (i.e. 
explanatory variables x1 , xn... ) into Eq.  (1). This proce-
dure creates a new raster containing RSF values for each 

cell. The predicted RSF values where scaled so that they 
were bounded between zero and one by dividing by the 
maximum RSF value. Following the recommendations in 
Morris et  al. [47], we mapped the RSF values based on 
the same quantile bins as we used in the k-fold cross-val-
idation procedure. Hence the map classification ranges 
from category 1 (low relative probability of selection) to 
10 (high relative probability of selection). We calculated 
the percentage distribution of each RSF-bin across the 
whole of Norway, within transect buffers and among 
the used willow ptarmigan locations. After producing 
the RSF-map for the whole of Norway, we performed 
another validation procedure using an independent wil-
low ptarmigan location dataset from the Global Biodiver-
sity Information Facility (gbif ) [48]. We downloaded 5787 
observations of willow ptarmigan that were recorded 
by ornithologists in Norway during June to September 
from 2000 to 2017 [48]. We extracted the RSF-bin rank 
for each observation using GRASS [36] and the function 
«r.what» through RStudio [30] with library «rgrass7» 
[37] and counted the number of observations in each 
RSF-bin. Some observations (1258) were in empty map-
cells (missing data for one or more of the predictor maps 
used in the modelling or were in non-habitat cells) so a 
total of 4529 independent observations could be linked 
to an RSF-bin. We calculated spearman rank correla-
tion between the RSF-bin rank and area-adjusted num-
ber of observations in each bin. Area-adjusted number of 
observations was the number of observations in each bin 
divided by the availability of that RSF-bin in Norway (c.f., 
Table 6).

Results
Model selection and validation
In our model set, two models were equally supported by 
the data when considering the trade-off between model 
fit and number of parameters (i.e. ΔAIC < 2: Table  3). 
Both models included vegetation type (16 categories), 
deviation from the timberline (linear and quadratic 
terms) and slope (linear and quadratic terms). The high-
est ranked model included aspect as a categorical vari-
able, whereas the second ranked model did not include 
any terms for aspect. Hence, the second ranked model 
had fewer parameters (21 vs. 25) and was considered as 
the most parsimonious model. K-fold cross-validation 
based on the most parsimonious model showed high 
and significant correlation for all fivefold (Table 4a), with 
a mean cross-correlation r = 0.96. This suggest that wil-
low ptarmigan locations tend to be in high ranked habi-
tats predicted by the model. All correlations from the 
regional cross-validation were significant, but the coef-
ficients were much higher for the eastern, southern and 
western regions than for northern region (Table 4b).
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Selection coefficients
Willow ptarmigan generally selected for areas around 
the timberline (Table  5). More specifically, selection 
increased from lower elevations towards the timber-
line and decrease above a polynomial inflection point at 
25 m above the timberline (Fig. 3). Willow ptarmigan also 
select for intermediate slopes (Table 5) whit an inflection 
point at 10°, whereas steeper slopes were increasingly 
avoided (Fig. 4).

Among the 16 vegetation classes (Table  5), there was 
a clear selection for herb-rich meadows and clear avoid-
ance for lichen-rich heathland relative to other habitat 
types. Four other vegetation types had parameter esti-
mates above average; ombrotrophic bog, tall-grown lawn 
vegetation, fresh heather- and dwarf-shrub and crow-
berry birch forest. Other vegetation types with selection 
rates well below average included exposed ridges, dwarf 
willow snow patches, late snow patches, lichen-rich birch 
forest, and lowland forest classes.

Predicting resource selection functions across Norway
We predicted relative selection probability for willow 
ptarmigan across Norway by calculating an exponential 
RSF (formula  1) using selection coefficients (Table  5) 

estimated based on the most parsimonious model in the 
candidate set (Fig.  1b). This model predicts that almost 
60% of the mapped area (excluding non-habitat, see 
methods) is located in the lowest RSF-bin (i.e. low habitat 
suitability). Only 2% is located in the highest ranked RSF-
bin (i.e. highest habitat suitability). If we take the lowest 
RSF-bin to be unsuitable for willow ptarmigan and the 
remaining bins 2–10 are increasingly suitable, about 41% 
of Norway is suitable for Willow ptarmigan (when not 
considering non-habitat). Further, for the area covered by 
the line transect surveys (i.e., areas within 200 ms from 
the transect lines), only 12% is predicted to be unsuitable 
and about 88% suitable for willow ptarmigan. For per-
centage distribution of RSF bins, see Table 6. Spearman 
rank-correlation between RSF-bin rank and number wil-
low ptarmigan observations from gbif adjusted for availa-
bility of bin-ranks in Norway (c.f., Table 6 column 1) was 
high and significant (rho = 0.857, p = 0.002). This suggest 
that the model also have high predictability on independ-
ent data.

Discussion
The habitat suitability model developed here for willow 
ptarmigan was highly predictive according to both the 
k-fold cross-validation and validation against independ-
ent data, and therefore identify important habitats for 
willow ptarmigan during late summer/early autumn in 
Norway. Willow ptarmigan in general selected for herb-
rich meadows and avoided most strongly lichen-rich 
heathland. Inspection of all vegetation type coefficients 
show that the general trend is selection for alpine vegeta-
tion types and bogs with abundant field layer and avoid-
ance for sparsely vegetated alpine vegetation types and 
lowland forest vegetation types. In addition to selection 
and avoidance for different vegetation types, willow ptar-
migan selected for areas around the timberline and for 
intermediate slopes.

Several other studies have described habitat selection in 
willow ptarmigan during different seasons [2, 10, 17–20, 
49]. We describe habitat selection during late summer/
early autumn. Kastdalen et al. [10] used similar data from 
August surveys, but for a much smaller area and using 
finer scaled vegetation data. In the study by Kastdalen 

Table 3  The 95% confidence set for models with ΔAIC < 5

Model probabilities sum to one

Model K AIC ΔAIC AICwt

Vegetation type + Timberline + Timberline2 + Slope + Slope2 + Aspect Categorical 25 53,190.3 0 0.42

Vegetation type + Timberline + Timberline2 + Slope + Slope2 21 53,190.65 0.34 0.35

Vegetation type + Timberline + Timberline2 + Slope + Slope2 + Aspect North–South 22 53,192.49 2.19 0.14

Vegetation type + Timberline + Timberline2 + Slope + Slope2 + Aspect North–
South + Aspect East–West

23 53,193.26 2.95 0.09

Table 4  Spearman rank correlations between  RSF bin 
ranks and  count of  used locations in  each RSF bin for  (a) 
fivefold portioning of  the  data and  (b) spatial blocking 
of the data into four geographical regions

(a) Fold Rho p-value

1 0.976 < 0.001

2 0.988 < 0.001

3 0.952 < 0.001

4 0.939 < 0.001

5 0.952 < 0.001

(b) Region Rho p-value

Centre 0.964 < 0.001

North 0.636 0.048

East 1.000 < 0.001

West 0.988 < 0.001
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et  al. [10], willow ptarmigan selected rich bogs close to 
willow- and dwarf birch thickets and they avoided dry 
and poor open areas like heath. Our results coincide 
with Kastdalen et al. [10] with respect to both selection 
and avoidance. First, we found relatively strong selection 
for open alpine vegetation types with dense field layer 
and for bogs. Second, we found that willow ptarmigan 
avoided lichen-rich heath and other sparsely vegetated 
alpine areas such as ridges and late snow-patch vegeta-
tion. Similarly, studies of willow ptarmigan brood move-
ments during summer in Northern Norway [20] and 
central Norway [19] also found that young broods used 
heaths less frequently than expected from the availability. 
In both studies, broods selected strongly for rich bogs. 
The vegetation types we used have a broad definition, 
so it is difficult to separate important small-scale habitat 
features. We can however, separate vegetation types that 
potentially contain important habitat features for willow 
ptarmigan (e.g. willow thickets, bogs and dwarf birch 
thickets [10, 17–20]). Willow thickets occur in bilberry-
low fern birch forest and crowberry birch forest, on tall-
grown sedge bogs and in fresh heather and dwarf-shrub 
communities. Among the bogs, both tall-grown sedge 
bogs and ombrotrophic bogs are high ranked vegetation 
types. Wet bogs and swamps is characterized by water 
level on the surface throughout the growing season and 

Table 5  Parameter estimates from the most parsimonious model

Variables in italic is significant with p-value < 0.05. Categorical variables in italic are significant relative to the reference class (exposed alpine ridges)

Variable Category Estimate SE p-value

Vegetation type Exposed alpine ridges (intercept) − 1.869 0.145 < 0.001

Bilberry-low fern birch forest 0.480 0.154 0.002

Wet mires, sedge swamps and reed beds 0.493 0.170 0.004

Fresh heather and dwarf-shrub communities 0.825 0.142 < 0.001

Graminoid apline ridge 0.460 0.161 0.004

Herb-rich meadows 1.126 0.152 < 0.001

Tall-grown lawn vegetation 0.830 0.150 < 0.001

Crowberry birch forest 0.731 0.159 < 0.001

Lichen-rich birch forest 0.346 0.161 0.032

Lichen-rich heathland − 0.233 0.168 0.166

Heather- and grass-rich early snow patch communities 0.492 0.150 0.001

Heather-rich alpine ridge 0.599 0.143 < 0.001

Lowland forest 0.355 0.148 0.017

Bryophyte late snow patch vegetation 0.273 0.160 0.089

Gras and dwarf willow snow-patch vegetation 0.026 0.180 0.883

Ombrotrophic bog and low-grown lawn vegetation 0.928 0.146 < 0.001

Deviation from timberline 0.071 0.018 < 0.001

Deviation from timberline2 − 0.257 0.018 < 0.001

Slope 0.159 0.031 < 0.001

Slope2 − 0.193 0.034 < 0.001
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has an intermediate selection rank. Dwarf birch thickets 
occur in bilberry-low fern birch forest, fresh heather and 
dwarf-scrub, tall-grown sedge bogs, lichen-rich birch for-
est, heather- and grass-rich leeside. Dwarf birch do also 
occur on lichen-rich heathland and heather-rich alpine 

ridges, but in these sparsely vegetated and wind-exposed 
vegetation types, dwarf birch occurs more sparsely than 
in the latter types. The highest ranked vegetation type—
herb-rich meadows—do not typically include willows 
or dwarf birch. It is however, characterized as the most 
nutrient rich vegetation type in the alpine region often 
with a stable water supply [34]. This might suggest that 
herb-rich meadows interact with other preferred vegeta-
tion types such as bogs or fresh heather and dwarf-shrub 
communities. Ehrich et al. [18], Henden et al. [50] advo-
cate the importance of willow tickets for willow ptarmi-
gan occupancy and both studies were carried out in low 
arctic tundra (e.g. same as the northern region in this 
study). Unfortunately, our vegetation maps cannot sepa-
rate this vegetation structure, but it is possible that such 
strong selection for willow thickets in the arctic tundra is 
a special adaptation to a different environment.

Although the model is highly predictive according to 
the k-fold cross-validation on independent test data, 
the regional cross-validation for the northernmost 
region is barely significant. One reason for this low cor-
relation could be the relatively low number of survey 
areas in this region. Only 32 survey areas out of a total 
of 179, and only 1096 used locations out of a total of 
12,146 were in the northernmost region. However, this 
explanation might not be supported because the model 
was highly predictive in the western region where the 
observations are even fewer (14 survey areas and 426 
observations). More likely, either willow ptarmigan 
selects differently in the low arctic tundra than in alpine 
tundra, or the broadly defined vegetation types in our 
vegetation map has different forms in low arctic tun-
dra in north compared to areas further south. Another 
possible explanation can be that the relative probabil-
ity of selection for a certain habitat type change with 
the availability of that habitat type (e.g., as a functional 
response [38, 51]). Hence, the availability of certain 
habitat types might vary from north to south. Since we 
use marginal selection coefficients applied to the whole 
of Norway, we are not able to account for such effects. 
Although the correlation is significant (Table 4b), build-
ing of a specific model for the northern region could 
result in a better predictive RSF for this region.

We followed the recommendation for mapping RSFs 
in Morris et  al. [47] and partitioned our RSF predic-
tions into 10 quantile bins before predicting the RSF 
across Norway. The bin ranks stretch from low relative 
probability of selection (1) to high relative probability of 
selection (10). The k-fold cross validation results suggest 
the model is highly predictive in describing the relative 
change in probability from bin 1 to bin 10. About 60% of 
Norway, 5% of the willow ptarmigan locations and 12% of 
the surveyed area (within buffers) are in lowest RSF bin 

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Slope (°)

w
(x

)

Slope = 10°
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Table 6  Percentage cover of  RSF-bins 1–10; 
across  the  whole of  Norway, within  the  surveyed area 
(i.e., within  200-m buffers) and  the  distribution of  willow 
ptarmigan locations across RSF bins, respectively

Note that the values are rounded

RSF-bin Norway (%) Surveyed area 
(%)

Willow 
ptarmigan 
locations (%)

1 59 12 5

2 12 12 7

3 7 11 8

4 5 10 10

5 4 10 10

6 3 10 11

7 3 9 11

8 3 9 12

9 2 9 13

10 2 9 14
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(Table  6). Our data originate from a distance-sampling 
scheme, where the primary aim was to estimate willow 
ptarmigan densities in survey areas. Thus, data is sys-
tematically collected in areas where willow ptarmigan is 
expected to occur. When we predict across Norway, this 
will in turn lead to challenges in portion habitats with no 
probability of selection (e.g., forest and meadow habitats 
at low elevations, and coastal areas in southern latitudes 
and far from willow ptarmigan core habitats) since such 
areas were not surveyed. Based on this, we expect the 
lowest RSF bin to both include areas of low relative prob-
ability of selection that might be in or adjacent to alpine 
areas and no probability of selection (i.e. sites are far from 
willow ptarmigan core areas).

In general, animals are more abundant in habitats that 
are selected most strongly, and Boyce et al. [52] proposed 
that abundance can be estimated directly from habitat 
selection models for populations at the carrying capac-
ity or for populations following an ideal free distribution. 
However, despite this and other studies documenting 
that willow ptarmigan select for specific habitat features 
[2, 10, 17–19, 49], Kvasnes et al. [53] found no clear rela-
tionship between willow ptarmigan density estimated 
pre-harvest (in August) and proportion of different 
habitat categories within survey areas. As also noted by 
Boyce et al. [52], Kvasnes et al. [53] suggested that other 
factors that are not directly related to habitat also influ-
ences the abundance. Willow ptarmigan population 
densities in the study of Kvasnes et al. [53] were gener-
ally lower than historic densities [54, 55]. In addition, 
different harvest strategies [56] and varying predation 
rates can have great influence on population densities 
in willow ptarmigan, both of which can vary independ-
ent of habitat composition. Habitat selection can also 
be affected by social interactions such as conspecific 
attraction [57], which is also suggested as a possible fac-
tor influencing the distribution of willow ptarmigan [58]. 
In our model, we assume that the explanatory variables 
have the same effect across all survey areas. Thus, we 
predict relative probability of selection for willow ptar-
migan regardless of density and factors affecting den-
sity such as harvest rates, predator densities and human 
infrastructure.

Our RSF is based on data collected in August, so the 
resource selection map we developed is restricted to 
a short period of time. It is the phase when chicks are 
fledged, still accompanied by the adults, but only a few 
weeks prior to harvest. About 120,000–200,000 willow 
ptarmigans are shot each year in Norway (Statistics Nor-
way, http://www.ssb.no/jord-skog-jakt-og-fiske​ri), so an 
RSF based on data from August combined with density 
estimates from the same period can be a useful tool for 
harvest management. Further, the high and significant 

correlation for the independent validation-dataset 
recorded from June to September suggests that the RSF 
might be a useful tool to identify willow ptarmigan habi-
tat potential during most of the snow-free season. An 
RSF based on winter locations of willow ptarmigan could 
also be useful in land-use management since most of the 
new infrastructure development in alpine and tundra 
areas is building of recreational facilities such as cabin 
villages. Cabin villages is mainly located in sub-alpine 
birch forests and boreal forests [59] and mountain birch 
is one of the main food items for willow ptarmigan dur-
ing winter [60].

Conclusions
We found that willow ptarmigan selects for vegetation 
types with dense field layer and bogs at intermediate 
slopes around the timberline. Selection for vegetation 
types coincide with previous small-scale habitat selec-
tion studies on willow ptarmigan. This is the first attempt 
to assess and quantify habitat selection for willow ptar-
migan at a large scale using data from line transect dis-
tance sampling surveys, and model validation show that 
the model is highly predictive. Based on our RSF it is 
predicted that c. 60% of the land area in Norway is in the 
lowest RSF bin. This implies that these areas have very 
low probability of selection by willow ptarmigan com-
pared to higher ranked RSF bins. Spatial variation in the 
model’s predictive capability suggest that habitat selec-
tion vary from north to south. Despite the conservation 
status near threatened (NT) in Norway, willow ptarmi-
gan is a highly valued game species, and c. 50,000 register 
to hunt ptarmigan each year (Statistics Norway, http://
www.ssb.no/jord-skog-jakt-og-fiske​ri). There is also a 
continued demand for hydroelectric power installations, 
recreational facilities and roads within willow ptarmi-
gan areas. The consequences are loss of habitat and thus 
a reduced potential carrying capacity for willow ptarmi-
gan and other alpine species. The resource selection map 
we have developed predicts relative probability of selec-
tion during summer/early autumn and can be a useful 
management tool in the conservation of habitats across 
Norway. We recommend that the RSF is considered 
when planning harvest quotas and when planning habitat 
interventions in willow ptarmigan ranges. The latter can 
potentially also benefit other species with overlapping 
distributions.
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