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Effects of permafrost collapse on soil 
bacterial communities in a wet meadow 
on the northern Qinghai‑Tibetan Plateau
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Abstract 

Background:  Permafrost degradation may develop thermokarst landforms, which substantially change physico–
chemical characteristics in the soil as well as the soil carbon stock. However, little is known about changes of bacterial 
community among the microfeatures within thermokarst area.

Results:  We investigated bacterial communities using the Illumina sequencing method and examined their rela-
tionships with soil parameters in a thermokarst feature on the northern Qinghai-Tibetan Plateau. We categorized the 
ground surface into three different micro-relief patches based on the type and extent of permafrost collapse (control, 
collapsing and subsided areas). Permafrost collapse significantly decreased the soil carbon density and moisture con-
tent in the upper 10 cm samples in the collapsing areas. The highest loading factors for the first principal component 
(PC) extracted from the soil parameters were soil carbon and nitrogen contents, while soil moisture content and C:N 
ratios were the highest loading factors for the second PC. The relative abundance of Acidobacteria decreased with 
depth. Bacterial diversity in subsided areas was higher than that in control areas.

Conclusions:  Bacterial community structure was significantly affected by pH and depth. The relative abundance of 
Gemmatimonadetes and Firmicutes were significantly correlated with the first and second PCs extracted from mul-
tiple soil parameters, suggesting these phyla could be used as indicators for the soil parameters in the thermokarst 
terrain.
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Background
Permafrost accounts for about one quarter of land surface 
in the northern hemisphere. Approximately 1035 ± 150 
Pg soil organic carbon (SOC) was stored in the upper 
3  m soils in the circum-arctic permafrost regions [1]. 
The dynamics of these carbon pools can greatly change 
greenhouse gas concentration in the air. Permafrost 
degradation can result in greenhouse gas emissions 
and further potentially create a positive feedback to cli-
mate warming [2]. The permafrost degradation not only 

stimulates decomposition of soil organic matter (SOM) 
due to the increasing soil temperature [3], it also affects 
SOC dynamics via several mechanisms such as changes 
in vegetation growth, dissolved organic carbon transport, 
and even the landform [4]. Among these mechanisms, 
the landform change, i.e., thermokarst formation is one 
of the most recognizable ground features [5]. Thermo-
karst greatly changes soil physico–chemical characteris-
tics, as well as the SOC content and biodegradability [6], 
and thus was considered as a major source of uncertainty 
in predicting permafrost carbon balance [2]. Therefore, 
understanding the changes soil parameters and bio-
geochemistry in thermokarst landforms is a critical step 
toward the evaluation of permafrost carbon cycle.

Soil  bacteria are important drivers for almost all bio-
geochemical cycles including that SOM decomposition 
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in soils [7]. In permafrost regions, proteobacteria are 
usually the dominant phyla, and bacterial communities 
are sensitive to many biotic and abiotic factors such as 
pH [8, 9], soil moisture content [10], nutrients [11] and 
organic carbon content [12]. Since thermokarst changes 
soil moisture, temperature, pH [13], and decreases car-
bon and nitrogen stocks, as well as their chemical char-
acteristics [14], it would be reasonable to expect that 
thermokarst has great impacts on bacterial community 
structure. Although the importance of effects of thermo-
karst on microbes has been raised several years ago [15], 
reports to the bacterial community in thermokarst ter-
rains were mainly focused on the thermokarst ponds [16, 
17]. In these aquatic ecosystems, proteobacteria were 
also the dominant phyla and the bacterial community 
was affected by factors such as pH, dissolved oxygen, dis-
solved organic carbon [16, 17]. In addition to the thermo-
karst ponds [18], there are several typical thermokarst 
modes such as thaw subsidence, permafrost collapse in 
the terrestrial ecosystems [18]. It has been indicated that 
the vertical distribution pattern of bacteria has been dis-
turbed and showed a mixed pattern in a permafrost thaw 
induced subsidence area [19]. However, little is known 
about the bacterial communities within thermokarst ter-
rains which usually associate with removal of surface soil 
layers in terrestrial ecosystems.

The Qinghai-Tibetan Plateau (QTP) is the largest high-
latitude permafrost region in the world. The QTP, also 
called “roof of the world”, affects hydrothermal circula-
tions over Asian and even the globe. The permafrost car-
bon pools are important for quantifying the regional and 
even global carbon cycle [20–22]. In comparison with the 
circum-Arctic regions, permafrost on the QTP is more 
vulnerable to global warming due to its high tempera-
ture thermal regime [23, 24], and the thaw slump, perma-
frost collapse has been widely recorded on the QTP [25]. 
Based on the knowledge that pH, SOC, and C:N ratios 
are the most important factors driving soil bacterial com-
munity [12] and they vary considerably in thermokarst 
landforms [26], we hypothesize that permafrost col-
lapse has great effects on bacterial communities. Spe-
cifically, we hypothesize that (1) the relative abundances 
of the dominant phyla showed different patterns within 
the microfeatures in permafrost collapse area; (2) the 
changes of pH, SOC, and C:N ratios regulated soil bacte-
rial communities in permafrost collapse-affected area; (3) 
the relative abundance of specific bacterial phyla showed 
significant changes along with the soil parameters. Since 
the proteobacteria are often dominant in many soils in 
permafrost regions, the abundancies of specific bacte-
rial phyla can be used as indicators for the changes in soil 
physico–chemical characteristics. To test these hypothe-
ses, we collected soil samples from a permafrost collapse 

feature on the northern QTP [27, 28] to investigate the 
bacterial communities and also examine their relation-
ships with soil parameters.

Methods
Site description and soil sampling
The study area is located in a permafrost region on the 
northern QTP (100.913°E, 38.001°N, 3661  m). The land 
cover is a typical alpine wet meadow, with predominant 
species of Kobresia tibetica Maxim., K. pygmaea, and K. 
humilis. According to soil taxonomy [29], the soil type is 
classified as Typic Haploturbel (ABGE).

The area is experiencing an active thermokarst process 
and there is a thermokarst gully, with a width of about 
15  m. The thawed area expands laterally upslope along 
the exposed headwall, and thus it is similar with thermal 
erosion in permafrost regions. However, there was little 
water flow in this gully. According to the thermokarst 
modes [30], this landform was more likely retrogres-
sive thaw slumps and thus we defined it as permafrost 
collapse. According to the land surface characteristics, 
we defined three stages of the permafrost collapse: con-
trol areas (C), collapsing areas (D), and subsided areas 
(S) (Fig.  1). We selected three transects at the intervals 
of 100 m for sample collection along with the gully. The 
active layer (surface  soil  layer that thaws during warm 
season and freezes cold season) thickness varied from 70 
to 120 cm across the microtopography. The thaw depths 
(which are less than active layer thickness since the active 
layer is the maximum thaw depth in late September) 
measured using a steel probe were 110 cm and 50 cm in 
the control and subsided areas. In the collapsing areas, 
the thaw depths varied from 70 to 100 cm due to the une-
ven ground surface. Soil samples were collected at depths 
of 0–10, 10–25, 25–35, and 35–50 cm at the three stages, 
and all these samples were taken from the active layers 
and were not frozen during the sample collection.

The soil samples were collected aseptically using eth-
anol-disinfected soil augers (3.5 cm in diameter) in the 
August 2015. At each stage, we selected 1 m × 1 m plots 
selected to collect the soil samples. The control areas 
were about 10 m away from the gully, and the collaps-
ing areas were located in the edges of the gully. The 
subside areas were located in the middle of the sub-
sided area (about 7 m away from the edge of the gully). 
One transect has narrow boundary area, and the col-
lapsing edge is sharp, it was difficult to collect samples 
from the collapsing stage, and only samples from con-
trol and subsided areas were collected (Fig. 1). For the 
other two transects, we collected the soil samples for 
all the three stages. Since there are considerable het-
erogeneities in soil properties within the same plots in 
most soils, there is a possibility that the samples used 
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for DNA extraction were not exactly same as the sam-
ples for physico–chemical properties measurement. 
Therefore, we mixed five soil cores in a sterile bag to 
produce a sample, then we divided this mixed sample 
into three subsamples. This method ensured that the 
soil parameters and sequencing data were from same 
samples, although standard errors in the soil samples 
were measurement errors. The samples were placed in 
clean, sealable plastic bags, transported immediately to 
the laboratory in a cooler with ice packs, and stored at 
− 80 °C until genomic DNA extraction was carried out.

Soil parameters measurement and soil DNA extraction
Soil moisture content was determined by drying the 
soil at 105 °C for 8 h. The pH and conductivity of a soil 
suspension (1:5 soil:water ratio) were measured with an 
acidity meter (PHS-3C, Shanghai, China) a conductiv-
ity meter (DDS-307A, Shanghai, China). The ORP is 
an important driver of microbial community [31], and 
thus we measured the ORP in laboratory using an ORP 
electrode (LeiCi 501, Leici Co., Ltd., Shanghai, China), 
although this measurement probably could not repre-
sent the natural soil ORP values since ORP changed 

Fig. 1  Location of the study area (a) and sampling sites (b) for the three stages of permafrost collapse areas (control, collapsing, and subsided). The 
red line denotes the permafrost collapse-affected area. The bottom image shows (c) the three different micro-topographies
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rapidly due to oxidation. Soil organic carbon (SOC), 
total carbon (TC) and soil inorganic carbon (SIC) of 
homogenized samples were quantified using dry com-
bustion in a TOC analyzer (Vario TOC cube, Elemen-
tra, Hanau, Germany), and SOC was determined after 
carbonate removal [20]. Total nitrogen (TN) was 
measured using the micro-Kjeldhal procedure with a 
Foss  8400  Kjeltec analyzer (Foss  Analytical Co., Ltd., 
Höganäs, Sweden). The C:N ratios were calculated from 
the mass ratio between SOC and TN. Since the samples 
had different bulk densities, we compared the SOC and 
TN densities (by multiplying contents with the dry soil 
bulk densities, with a unit of kg m−3).

Total soil DNA was extracted from 0.3  g soil from 
the samples using the MoBio PowerSoil DNA Isola-
tion kit (MoBio Laboratories, Carlsbad, CA, USA). 
The extracted DNA was analyzed using a QuBit DNA 
quantification system (Invitrogen) with QuBit high sen-
sitivity assay reagents. All the soil DNA samples were 
stored frozen at − 20  °C until further analyses were 
performed.

PCR amplification
PCR amplification, purification, and sequencing of a 
region of the 16S rRNA gene were performed. The V3 
and V4 hypervariable region of the bacterial 16S riboso-
mal RNA gene was PCR amplified (94 °C for 5 min, fol-
lowed by 35 cycles at 94 °C for 30 s, 54 °C for 30 s, and 
72 °C for 30 s and a final extension at 72 °C for 10 min) 
with the primer set 338F (5′-ACT​CCT​ACG​GGA​GGC​
AGC​AG-3′) 806R (5′-GGA​CTA​CHVGGG​TWT​CTAAT-
3′) by thermocycler PCR system (GeneAmp 9700, ABI, 
USA). All PCR reactions were performed using a 50 
µL reaction volume with 25  µL of PCR Pre-Mixture 
(TaKaRa), 0.3  µM of forward and reverse primers, and 
approximately 10 ng of template DNA.

The PCR products and 1X loading buffer (contained 
SYBR green) were combined and visualized by an aga-
rose gel electrophoresis on a 1.2% (w/v) agarose gel 
under ultraviolet illumination. PCR products were 
purified using a QIAquick Gel Extraction Kit (Qiagen, 
Chatsworth, CA, USA). A single composite sample for 
sequencing was prepared by combining approximately 
equimolar amounts of PCR products from each sample. 
Sequencing was performed (triplicate for each sample) 
by Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, 
China) using a Miseq 250.

Processing of sequencing data
Paired-end reads from the original DNA fragments were 
merged using FLASH when the original DNA fragments 
were shorter than twice the length of the reads. The 

sequences were processed using the QIIME software 
package Ver. 1.17. The singletons, reads that could not 
be assembled, were discarded. The chimeric sequences 
were identified and removed using UCHIME [32], and 
UPARSE (version 7.1) was used to cluster the operational 
taxonomic units (OTUs) with a 97% similarity cutoff. To 
compare of the diversity of bacterial communities in dif-
ferent samples, we estimated the diversity indices includ-
ing the observed OTUs (which was the count of unique 
OTUs in the sample), Chao1, Ace, Shannon, and Simp-
son indices.

Data analysis
All variable measurements for each soil sample were con-
ducted in triplicate. A one-way ANOVA with a post hoc 
Tukey’s test was performed to compare the soil parameters 
and the relative abundance of bacterial phyla from the three 
permafrost collapse stages using R3.3.1 (http://www.r-
proje​ct.org/). To test if the sequencing data could be used 
as indicators for the soil conditions at different stages, we 
extracted principal components (PCs) from the soil param-
eters, and then used linear regression analysis to examine 
the relationships between the PCs and the sequencing data. 
A detrended correspondence analysis (DCA) showed that 
the eigenvalue of the bacterial phyla was 1.4, and thus a 
redundancy analysis (RDA) was selected to explore the 
relationships between the soil parameters and bacteria 
phyla. The Mantel test and RDA analysis were performed 
using Vegan packages [33] in R software. The raw reads 
were deposited into the NCBI Sequence Read Archive 
(SRA) database (Accession Number: SRR5420059).

Results
Bacterial diversity and community structure
A total of 31,894 OTUs (at the 3% evolutionary distance) 
were identified based on 10,442 reads for each sample. 
The Good’s coverage estimator for the OTUs ranged 
from 0.95 to 0.97 (Table  1), and the rarefaction curves 
showed that the sequences sufficiently covered the bacte-
rial community diversity in the samples (Additional file 1: 
Figure S1).

The OTUs encompassed 45 phyla, 103 classes, 240 
orders, 432 families and 717 genera. The bacterial com-
munity showed great variations among different sam-
ples. The most predominant phyla were Proteobacteria 
(42.1%), Acidobacteria (26.6%), Bacteroidetes (7.9%), 
and Chloroflexi (5.3%). Nitrospirae and Actinobacteria 
accounted for 5.0% and 4.0%, respectively (Additional 
file 1: Figure S2).

There were markedly changes in the soil bacterial 
community among the three stages. For example, the 

http://www.r-project.org/
http://www.r-project.org/
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Proteobacteria (Fig.  2a) and Bacteroidetes (Fig.  2c) had 
the lowest relative abundance in the upper 10 cm of the 
samples in the collapsing areas, while the abundances 
of Acidobacteria (Fig. 2b) and Chloroflexi (Fig. 2d) were 
than those in the control and subsided areas.

At the class level, the predominant classes were 
Acidobacteria (15.2%), Actinobacteria (8.4%), Alp-
haproteobacteria (10.0%), Betaproteobacteria (8.8%), 
Deltaproteobacteria (7.7%), and Gammaproteobacteria 
(4.9%). The latter four classes were recorded in all the 

Table 1  Estimated OTU richness, diversity indices and sample coverage

C, D, S means the control, collapsing, and subsided areas. 0–10, 10–20, 25–35, and 35–50 means the soil layers of 0–10 cm, 10–25 cm, 25–35 cm, and 35–50 cm

OTU Ace Chao coverage Shannon Simpson

C0_10 975 1904 1533 0.96 5.04 0.02

C10_25 913 1907 1490 0.96 4.76 0.04

C25_35 937 1922 1509 0.96 5.20 0.01

C35_50 690 1350 1095 0.97 4.62 0.03

D0_10 1081 2166 1735 0.95 5.33 0.02

D10_25 891 1688 1388 0.96 4.55 0.10

D25_35 910 1574 1341 0.97 5.19 0.02

D35_50 731 1238 1112 0.97 4.89 0.02

S0_10 1136 2051 1778 0.95 5.50 0.01

S10_25 1075 2080 1684 0.96 5.45 0.01

S25_35 1250 2290 1952 0.95 5.79 0.01

S35_50 742 1492 1206 0.97 4.40 0.07

Fig. 2  Relative abundance of proteobacteria (a), acidobacteria (b), bacteroidetes (c), and chloroflexi (d) for the three stages of permafrost collapse. 
The significant differences among the three samples were indicated (*p < 0.05, **p < 0.01)
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samples for the Proteobacteria, but no Epsilonproteobac-
teria were recorded.

The OTU richness, Ace, Chao and Shannon indices 
were positively correlated with each other, but nega-
tively correlated with the Simpson index (Table  1). For 
the mean values of the OTU richness and diversity indi-
ces at the four depths, the highest values of OTU Ace, 
and Chao index were all appeared in the subsided areas 
(Additional file 1: Table S1).

Relationships among soil parameters and bacterial phyla
Permafrost collapse obviously changed the soil physio-
chemical parameters (Fig.  3). For the upper 10  cm soil 
samples, TC densities in the collapsing areas were sig-
nificantly lower than those of control and subsided areas, 
which probably due to the excessively well-drain condi-
tion and severe erosion class. The lowest soil moisture 
contents were recorded in collapsing soil samples. Soil 
pH values were generally lower than 7 (Fig. 3).

A Mantel test showed that the bacterial community 
structure was correlated with pH (r = 0.22, p = 0.007) and 

depth (r = 0.306, p < 0.001), while other factors, including 
TC, SOC, SIC, SOC, TN, and C:N ratios, had no signifi-
cant relationship with the bacterial community structure.

Depth, pH, and ORP was significantly correlated with 
the relative abundance of specific phyla. TN, TC, and 
SIC were closely associated with the relative abundance 
of Nitrospirae. SOC was positively correlated with the 
occurrence of Bacteroidetes but negatively correlated 
with the relative abundance of Acidobacteria (Table  2). 
The most predominant phyla were Proteobacteria, and 
the relative abundance of Alphaproteobacteria was posi-
tively correlated with pH (Pearson’s r = 0.40, p < 0.05) but 
negatively correlated with the ORP (Pearson’s r = − 0.39, 
p < 0.05). There was a negative relationship between the 
relative abundance of Gammaproteobacteria and SOC 
(Pearson’s r = − 0.35, p < 0.05).

Bacterial phyla as indicators for soil parameters
For all the samples, there were significant relationships 
between SOC and TN, ORP and pH (Table 3). Five PCs 
were extracted from the soil parameters. The first and 

Fig. 3  Density of total soil carbon (TC) (a), total nitrogen (TN) (b), soil moisture content (c) and pH (d) in different layers for the three stages of 
permafrost collapse. TC density at 0–10 cm, soil moisture content at all the samples in collapsing areas were significantly lower than those of control 
and subsided areas (**p < 0.01)
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second PCs accounted for 59.97% of the total variances 
(Additional file 1: Table S2). The first PC (PC1) had high-
est positive loading coefficients with TC, SOC, and TN, 
suggesting the organic matter contents were the most 
important contributing factors for this PC. The most 
important contributing factors for the second PC (PC2) 
were moisture content and C:N ratios (Additional file 1: 
Table S3).

Linear regressions showed that the PC1 was signifi-
cantly negatively correlated with the relative abundance 
of Gemmatimonadetes (Adjusted R2 = 0.14, p < 0.02) 
and Bacteria_unclassified (Adjusted R2 = 0.09, p < 0.05). 
The PC2 was significantly positively correlated with the 
relative abundance of Firmicutes (Adjusted R2 = 0.12, 
p < 0.05). The RDA results showed that the first and sec-
ond axes explained 53.0% and 3.0% of the total phyla 
variances, respectively. The samples of the deeper depths 
(35–50 cm) were generally scattered in the right part of 
the RDA chart. The depth and pH were strongly corre-
lated with the first axis. TN content was strongly corre-
lated with the second axis (Fig. 4).

Discussion
The six dominant phyla accounted for 90.9% of the total 
sequences, and the number of total phyla (45) were simi-
lar with those in the central and southern QTP [19, 34]. 
The predominant phyla in the present study were simi-
lar to most soils irrespective of their climatic conditions 
[9, 35, 36]. The lower relative abundance of Proteobacte-
ria (Fig.  4a) and the higher abundance of Acidobacteria 
(Fig.  4b) in the 0–10  cm soil samples in the collapsing 
area probably can be explained by the lowest organic 
carbon density at this layer. Proteobacteria tend to grow 
in soils with high content of labile carbon [37]. In con-
trast, Acidobacteria usually show higher abundance in 
soils that have a low-quality carbon supply [37]. Simi-
larly, members of Bacteroidetes (Fig.  4c) are thought to 
be associated with the degradation of organic matter [38] 
and thus showed lower abundances in samples in collaps-
ing area. The highest OTUs, Ace, and Chao indices were 
generally recorded in the subsided areas, which prob-
ably showed the effects of labile organic matter contents 
in the subsided areas. The subsided areas can receive 

Table 2  Relationships among the soil parameters

ORP, oxidation reduction potential (mv); TN, total nitrogen; TC, total carbon content; SOC, soil organic carbon content; SIC, soil inorganic carbon. Pearson’s coefficient, 
* p < 0.05, ** p < 0.01

Depth Moisture Conductivity ORP pH TN TC SOC SIC C:N

Depth 1

Moisture 0.061 1

Conductivity − 0.068 − 0.226 1

ORP 0.466** 0.153 − 0.413* 1

pH − 0.552** − 0.064 − 0.060 − 0.533** 1

TN − 0.105 0.099 0.259 − 0.402* 0.300 1

TC 0.281 0.229 0.220 − 0.147 0.011 0.602** 1

SOC 0.209 0.331 0.203 − 0.128 0.032 0.573** 0.896** 1

SIC 0.294 0.076 0.190 − 0.135 − 0.013 0.503** 0.893** 0.601** 1

C:N 0.233 0.127 − 0.129 0.279 − 0.253 − 0.711** 0.047 0.138 − 0.055 1

Table 3  Relationships between soil parameters and the relative abundance of bacterial phyla

Pearson’s coefficient, * p < 0.05, ** p < 0.01. Moi., Soil moisture content; Cond., Conductivity; Gemma., Gemmatimonadetes; Aminic., Aminicenantes; Bacteria_un., 
Bacteria_unclassified; Atrib., Atribacteria; Cyano., Cyanobacteria. The proteobacteria was not significantly correlated with these parameters and was not shown

Acidobacteria Bacteroidetes Nitrospirae Chlorobi Gemma. Aminic. Firmicutes Caldiserica Bacteria_un. Atrib. Cyano.

Depth − 0..60** 0.50** − 0.10 0.68** − 0.06 0.60** − 0.13 0.553** 0.45** 0.43* − 0.25

Mois. 0.06 − 0.00 − 0.15 0.06 − 0.07 − 0.08 0.601** 0.00 − 0.27 − 0.18 0.03

Cond. − 0.36* 0.41* 0.05 − 0.01 − 0.17 0.25 0.02 0.06 − 0.03 0.33 0.06

ORP 0.09 − 0.21 − 0.17 0.23 0.38* − 0.01 0.01 0.14 0.36* − 0.08 − 0.37*

pH 0.45* − 0.40* 0.22 − 0.50** − 0.23 − 0.29 0.05 − 0.34 − 0.32 − 0.10 0.14

TN − 0.04 0.17 0.56** 0.11 − 0.47** 0.19 0.12 − 0.11 − 0.24 0.18 − 0.06

TC − 0.34 0.33 0.36* 0.30 − 0.21 0.27 0.10 0.02 − 0.06 0.21 − 0.08

SOC − 0.36* 0.39* 0.22 0.34 − 0.23 0.28 0.30 0.05 − 0.01 0.24 0.03

SIC − 0.25 0.20 0.43* 0.19 − 0.14 0.21 − 0.12 − 0.01 − 0.09 0.12 − 0.18

C:N − 0.22 0.09 − 0.45* 0.12 0.35* − 0.01 0.12 0.16 0.26 − 0.00 0.07
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dissolved organic carbon from the surrounding area [14], 
and the dissolved organic carbon is considered as labile 
substrates for microbial growth, and thus favors to the 
increase in soil microbial diversity [39].

The pH and depth were significantly correlated with 
bacterial community structure in this study. pH is the 
most important factor driving soil bacterial communities 
[40–42] since most bacterial taxa exhibit narrow growth 
tolerances to pH [36]. In subarctic areas, soil depth was 
one of the most important soil properties influencing 
bacterial community [8]. In an arid region on the west-
ern QTP, the relative abundance of Acidobacteria were 
higher in the near-surface layers [40]. Although the 
effects of depth on soil bacterial communities can be 
partly attributed to the pH because there is a significant 

relationship between pH and depth, other mechanisms 
are also probably responsible for the effect of depth, i.e., 
soil properties varied considerably at the centimeter scale 
in the upper soil layers [43, 44]. In our study, the relative 
abundance of Acidobacteria decreased with depth, which 
can be explained by that most Acidobacteria favor aero-
bic environments and therefore decline with depth [45, 
46].

The Mantel test for all the samples showed no signifi-
cant relationships among soil carbon and nitrogen and 
bacterial community. Despite that the smaller sample 
size at the collapsing stage may have effects on the sta-
tistical result, this finding could be also due to the effects 
of thermokarst on physio–chemical parameters in these 
samples were uneven. For example, although the SOC 

Fig. 4  A redundancy analysis (RDA) of the bacterial community structure for the samples from the three stages of permafrost collapse
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density in the upper 10 cm layer in the collapsing stage 
was lower than that in the control and subsided areas, 
there were no significant differences at other depths. The 
non-significant relationship between SOC and bacterial 
community could be also explained that the SOC consists 
of many fractions of organic carbon, and the total SOC 
content was not equal to the substrate availability for 
bacteria [47].

The effects of ORP on bacterial communities can be 
partly explained by pH since they were significantly 
correlated with each other. The significant relationship 
between Nitrospirae and TN confirmed the fact that 
higher soil nutrient contents may facilitate the growth 
of Nitrospirae [45]. It is noteworthy that the relative 
abundance of Alphaproteobacteria increased along with 
pH, which was consistent with the finding that this class 
tended to have a high relative abundance in higher pH 
conditions [48], but this finding was contrary to one 
study in arctic region [8]. Since such studies are scarce, 
future studies are required to understand the relationship 
between Proteobacterial classes and soil parameters.

The PC1 was significantly negatively correlated with 
the relative abundance of Gemmatimonadetes and Bac-
teria_unclassified. The Bacteria_unclassified were the 
sequences that could not be classified into any known 
group, and thus the Gemmatimonadetes could be seen 
as an indicator for this PC. Several studies suggested that 
Gemmatimonadetes be adapted to a lifestyle associated 
with organic matter sources that are difficult to miner-
alize [49]. This is a possible explanation for the fact this 
phylum was negatively correlated with PC1 in our study. 
The PC1 was mainly related to higher SOM contents, 
which usually associated with higher labile fractions [50]. 
The relative abundance of Firmicutes was a significant 
indicator for the PC2. Both laboratory experiment [51] 
and sequencing data from field samples [52] confirmed 
that this phylum as exhibiting positive response to soil 
moisture content.

Distribution of sampling sites on the RDA chart 
showed no clear pattern for the three stages of perma-
frost collapse, although the deepest layers (35–50  cm 
layers) tended to appear on the right part of the chart. 
This result could be explained by the heterogeneity in 
the soil properties created by thermokarst, and no clear 
environmental gradient was present at the three stages. 
Our results showed that permafrost collapse produced a 
greatly heterogeneous soil environment and subsequently 
affected the soil bacterial community at the phyla level, 
and future studies are required to examine the response 
bacteria at genus and even family levels to environmental 
changes in thermokarst terrains.

Conclusions
Our study showed that the loss of organic carbon in 
the upper 10  cm samples at the collapsing area greatly 
decreased the relative abundance of Proteobacteria and 
Bacteroidetes while increased the relative abundance 
of Acidobacteria and Chloroflexi. The thermokarst 
increased the bacterial diversity in the subsided areas, 
a finding that may be related to the presence of higher 
labile fractions of organic matter. Soil parameters includ-
ing depth, moisture content, ORP, soil carbon and total 
nitrogen content showed a significant relationship with 
specific phyla. The most important factors affecting bac-
terial communities are depth and pH. The relative abun-
dance of Acidobacteria decreased with depth, but no 
significant relationships existed between Proteobacteria 
and depth. Gemmatimonadetes were negatively associ-
ated with the factors which were associated with high 
SOM content, and Firmicutes were significantly associ-
ated with soil moisture content and C:N ratios. These two 
phyla could be used as indicators for the soil parameters 
in the thermokarst terrain.
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