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Abstract 

Background:  The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which 
constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the 
key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as 
potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed 
within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern 
France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest 
structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We 
used linear mixed models to analyze patterns and derived the relative importance of the significant drivers.

Results:  Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, 
but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the 
relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while 
properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. 
The amount of forest and the composition of the surrounding rural landscape were additionally important drivers 
of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat 
patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages 
showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preced‑
ing stage with a positive relationship, indicating a cumulative effect of drivers.

Conclusions:  Our findings suggest that the ecosystem disservices of tick-borne diseases, via the abundance of ticks, 
strongly depends on habitat properties and thus on how humans manage ecosystems from the scale of the micro‑
habitat to the landscape. This study stresses the need to further evaluate the interaction between climate change and 
ecosystem management on I. ricinus abundance.
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Background
The castor bean tick (Ixodes ricinus) acts as vector for 
several infectious diseases (Lyme borreliosis, Tick-borne 
Encephalitis, Babesiosis etc.) that pose a risk to live stock 
and human health [1, 2]. Ultimately, the prevalence of 
tick-borne diseases (TBDs) constitutes an important 
ecosystem disservice [3, 4], which plays a major role for 
public health in Europe [5]. Shifts in the distribution 
of I. ricinus and the pathogens it transmits have been 
observed in the wake of climate and land-use change [6, 
7]. In response to these changing conditions a detailed 
understanding of I. ricinus abundance patterns is nec-
essary to predict and reduce exposure risk to TBDs and 
adjoining monetary expenses for humans.

Ixodes ricinus has a life-cycle consisting of three mobile 
ontogenetic stages (larvae, nymphs and adults), into 
which it develops immediately after a successful blood 
meal from vertebrate hosts [8]. Adult ticks are male or 
female and if they encounter each other on a suitable host 
and the female tick acquires a last blood meal and falls of 
the host in a random location, it may deposit eggs from 
which new larvae can hatch. The ecology of I. ricinus is 
complex with each ontogenetic stage having its own 
multitude of driving factors (Fig.  1) [9]. Many studies 
shed light on these factors [10], but they either consider 

a narrow spatial extent [11, 12] or encompass a small 
subset of known tick abundance drivers [13, 14]. While 
these earlier studies help to provide a general overview 
of the realized niche of I. ricinus, there is still a lack of 
large-scale studies, where the majority of environmental 
factors potentially driving tick abundance are evaluated 
simultaneously [9]. Here, we identify a set of relevant 
drivers of I. ricinus abundance to shed light on its realized 
niche. We surveyed deciduous forest fragments (hereaf-
ter ‘habitat patch’) of different sizes and age in rural land-
scapes, which are very common in Central Europe [15]. 
The extensive spatial and climatic gradient ranging from 
southern France to Estonia and central Sweden covers a 
extensive part of the I. ricinus distribution range.

Macroclimate is an important determinant of the I. 
ricinus distribution [16]. Ticks are not able to persist 
below or above certain climatic thresholds of tempera-
ture and relative humidity, because freezing or desicca-
tion threatens their survival [17]. Within the suitable 
range of these macroclimatic factors, temperature sums 
(the accumulated temperature over a given period of 
time) drive tick development rates [17] and the poten-
tial abundance of questing ticks [6]. However, the forest 
canopy buffers macroclimatic conditions considerably 
[18], which means that effects of macroclimate and tree/
shrub abundance are confounded. Because of that and 
since ticks are relatively immobile horizontally [19, 20], 
the habitat specific vertical profile of microclimate can be 
assumed to drive tick abundance [21].

Animals such as ungulates, birds and small mammals 
are amongst the most relevant tick-hosts [10]. Landscape 
composition and configuration [22–24] as well as biotic 
interactions [25, 26] are important determinants of tick-
host communities at regional and local scales [27], albeit 
exact effects on tick abundance remain unclear (Fig.  1). 
However, cascading effects of landscape factors, as proxy 
for prevailing tick-host communities, have previously 
been shown to be relevant for I. ricinus abundance [28–
30]. Not only landscape properties, but also the proper-
ties of the habitat itself determine local visitation rates 
by tick-hosts (Fig. 1). Morphological plant traits, as well 
as the structural complexity of a habitat patch deter-
mine the availability of shelter for tick-hosts [24, 27] 
whereas plant functional traits determine the availabil-
ity of food for many tick-hosts [22]. However, the prop-
erties of a habitat patch may be confounded with spatial 
or temporal continuity of the patch. Ancient forests, for 
instance, often have higher structural [31] and functional 
diversity [32, 33]. Similarly, larger patches have a higher 
chance of including distinct sub-stands resulting in more 
diverse patch properties. Hence, both older as well as 
larger patches may provide a larger amount of distinct 
niches and food resources for tick-hosts. This potentially 

Fig. 1  Tick life cycle in a specific habitat patch with particular empha‑
sis on the driver groups analysed in this study. Ticks go through 
different activity modes (gray, large font) within their life-cycle, while 
various environmental filters act upon them. While feeding they are 
attached to their host and get transported to wherever the host 
moves. Environmental filters also act upon tick-hosts, indirectly deter‑
mining the success of ticks. Following this logic, the environment 
relevant for ticks also comprises the host surface and its properties 
(e.g. fur density or body size), which may thus be microhabitat drivers 
during the ‘on host’ phase with a certain influence on the success 
of ticks. This is however omitted from the graph, because it goes 
beyond the scope of this study
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increases the abundance and modifies the community 
composition of tick-hosts, presumably with cascading 
effects on tick abundance [14].

Tick activity is determined by the herb layer as questing 
habitat, in terms of its cover [11, 12] and vertical struc-
ture [12, 34, 35] and by the abundance of the leaf-litter 
layer as moulting or resting habitat [36] (Fig.  1). There-
fore, biotic conditions of the habitat should be considered 
as limiting drivers, influencing the questing and survival 
success of I. ricinus considerably. Suitable conditions may 
lead to an increase in feeding opportunities for ticks, 
thereby raising the likelihood of life-cycle completion and 
thus tick survival and abundance. The link between the 
different ontogenetic stages and their abundance has so 
far not been sufficiently addressed. Younger tick stages 
are more prone to desiccation than older stages [36]. 
They utilize different strata of the microhabitat, which is 
partly an adaption to the different microclimatic require-
ments of the different ontogenetic stages. This differen-
tiated utilization of the microhabitat results in access to 
only a stage-specific fraction of the overall host commu-
nity [34]. Consequently, a distinct influence of environ-
mental factors and tick-hosts on the abundance of the 
different ontogenetic stages can be expected. Ultimately, 
these aspects can be interpreted as ontogenetic niche 
differentiation for I. ricinus [37]. However, it is not clear 
which fraction of a given ontogenetic stage has access 
to and hence depends on local or regional hosts. Albeit 
younger stages generally depend more on local hosts and 
older stages more on regional hosts [8], there may be 
local habitat properties, as outlined above, which attract 
the different stages’ hosts differently. This may result 
in an unexpected local accumulation or depletion of a 
given ontogenetic stage. In any case, cascading effects of 
younger on older ontogenetic stages, mediated by com-
mon drivers, may exist. By testing the influence of the 
previous stage, we can test the degree to which drivers of 
the previous ontogenetic stage (explaining its abundance) 
influence the stage in focus, implying theoretical cascad-
ing effects.

As an overarching objective, we quantify the relative 
explanatory value of each of the significant drivers of I. 
ricinus abundance, when all the significant drivers are 
simultaneously retained in one model per ontogenetic 
stage. With the help of a multi-factorial model we answer 
these following research questions:

1.	 Do macroclimatic metrics explain tick abundance 
when habitat characteristics that buffer macroclimate 
are accounted for?

2.	 Does (a) landscape configuration, in terms of frag-
mentation, lead to higher tick abundances in rural 
landscapes and does (b) landscape composition, in 

terms of proportion of more intensive land-use types 
of the non-forest matrix, indirectly drive I. ricinus 
abundance?

3.	 Do (a) structural and functional properties of the 
habitat patch affect tick abundance and do (b) more 
diverse conditions in these properties or higher tem-
poral continuity of the patch lead to higher tick abun-
dances?

4.	 Are (a) the different ontogenetic stages driven to 
a varying degree by different drivers and (b) how 
important are common drivers, in terms of abun-
dance of the previous ontogenetic stage for I. ricinus?

Methods
Study locations
This study was carried out within the framework of the 
smallFOREST  project [38]. Study sites were located 
in eight regions across the temperate zone of Europe 
(southern and northern France, Belgium, western and 
eastern Germany, southern and central Sweden and Esto-
nia, Fig. 2). Two landscape windows each of 5 km × 5 km 
extent, but with contrasting landscape configuration 
and composition due to differences in agricultural dis-
turbance intensities, were selected in each of the eight 
regions. These two landscape windows were selected to 
be representative of the regional gradient in land-use 
intensity. In each of these 16 windows a total of 14–16 
forest patches (depending on local availability) of dif-
ferent size and age were selected as focal forest patches. 
Forest patches had to be dominated by deciduous tree 
species covering more than 60% of the tree layer to be 
considered for sampling. Our selection resulted in a total 
of 250 forest patches (Additional file  1). Sampling was 
confined to a random subset of predetermined plots, as 
described in [38]. The plots were distributed regularly 
within each patch, their number depending largely on 
patch size (one to 128 plots per patch, on average 5.0). 
The study design is illustrated in more detail in Fig. 1 of 
[38].

Sampling of tick and forest stand characteristics was 
carried out by the same team in all regions whereas soil 
and vegetation surveys were done by site-specific expert 
groups.

Ecological surveys
The major setup of our surveys is designed to capture 
the key drivers as suggested by [9]. We modified it to 
consider specific properties of rural landscapes and for-
est as habitat type. We looked at the driver groups Mac-
roclimate, Landscape and Habitat quality and 
distinguished, in contrast to [9], between macrohabitat 
(overstory) and microhabitat (understory vegetation, 
leaf-litter layer and soil) and considered a potential link 
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between ontogenetic stages (Additional file  2). Specific 
indicator traits within each driver group were selected to 
describe different aspects and to be ecologically mean-
ingful for as many as possible functional guilds related 
to ticks (such as ticks themselves, potential hosts, plants 
and leaf litter as habitat).

Tick survey
A random subset of the predefined plots depending on 
patch size (between one and nine plots per patch, on 
average 2.3), was sampled for ticks. We collected ticks 
at all mobile stages (larvae, nymphs and adults) by drag 
sampling [39] in 2013 within 1 week per landscape win-
dow (Additional file 1). Due to the high number of plots 

and their spatial distribution, sampling was possible 
only once in each plot. Drag sampling was done using 
a 1  m ×  1  m piece of white flannel cloth, attached to a 
wooden stick as handle and a metal chain was attached 
at its bottom to increase the contact probability between 
the cloth and the ground-layer. Sampling was carried out 
only during rain-free day time between 09:00 and 21:00 h.

The cloth was dragged upright through the ground-
layer vegetation along four different 25 m long transects 
within each plot (resulting in a 100  m2 sample area). 
Attached ticks were picked off the cloth after every tran-
sect and preserved in ethanol. They were counted later 
in the laboratory and were determined morphologi-
cally to species level according to [40]. Small numbers of 

Fig. 2  Distribution of collected ontogenetic stages in all eight sampled regions. Size of the circle corresponds to the average abundance of ticks 
collected per 100 m2. All plots sampled for tick abundance were included to derive average values, also those plots where we did not find any ticks. 
The gray area on the map indicates the known distribution of I. ricinus in January 2016 (taken from [72])
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Dermacentor sp. were encountered, particularly in south-
ern France, but only I. ricinus received further considera-
tion. Tick counts per 100 m2 were averaged over all plots 
within one forest patch. Subsequently the averages were 
log-transformed, using the formula x′ = log10(x+ 1).

Vegetation survey
The same subset of plots as for the tick sampling was sur-
veyed for forest stand structure (Additional file  1). For 
each plot we recorded the tree species, height and num-
ber of stems, diameter at breast height (D130), the dis-
tance and azimuth direction for each tree from the plot 
center and whether the tree was dead or alive. Distance 
and height measurements were performed using a Vertex 
IV Hypsometer (Haglöf Inc.). Sampling was restricted to 
a 20 m radius from the plot center.

Additionally, plant species composition was surveyed 
during the 2012 and 2013 growing seasons in the same 
plots with emphasis on the presence and abundance of 
all plant species. These estimations were performed sepa-
rately for the herb, shrub and tree layers, by assigning one 
of the abundance categories 1 (<5 individuals), 2 (5 indi-
viduals—30%) or 3 (>30%) to each of the recorded plant 
species [38].

We derived structural and functional properties at 
the plot level from the forest stand and vegetation data. 
We derived stand height, tree density, basal area, tree 
slenderness coefficients and diameter distributions to 
describe the structural properties of each forest stand 
[41]. To capture structural diversity, we calculated the 
coefficient of variation (for log-normal data) of the tree 
diameters and of the potential height of the herb layer, the 
latter derived from the TRY database [42]. Using both, 
the TRY- [42] and LEDA [43] databases on the vegeta-
tion abundance data, we derived functional traits. Based 
on the detected tree species we derived metrics that are 
related to the leaf economics spectrum (i.e. traits deter-
mining amongst others the decomposition of leaf-litter) 
[44] (Additional file 2). For herb species growth and life 
forms, branching types and specific leaf area were deter-
mined (all defined in [43]), because they were assumed 
to influence the suitability of the herb layer as questing 
habitat for ticks. We determined the richness of differ-
ent weight-classes of dispersules (lightweight: <0.1  g, 
medium: 0.1–2  g, heavy: >2  g) [43, 45] and the average 
overall dispersule mass, separately for all vegetation lay-
ers. This served as a proxy for the quality and amount of 
high energy food potentially available for different tick-
hosts, feeding on these dispersules [46]. We weighted 
tree leaf traits by the summed diameter per tree species 
and all other traits were weighted by the specie’s abun-
dance to calculate community-weighted means (CWM) 
of these traits. These CWM values were then averaged 

over all plots per patch. Plant species diversity was esti-
mated for the herb-, shrub- and tree layers as average 
species richness (i.e. α-diversity) over all plots per patch. 
To describe the overall diversity we calculated for each 
vegetation layer γ-diversity per patch and β-diversity 
(1-(plot-scale diversity/patch-scale diversity)) as between 
scale variability [38] (Additional file 2).

Soil survey
Soil samples were collected between July and October 
2012 before leaf fall so that mostly leaves of the previ-
ous growth period were part of the leaf litter layer. The 
subset of plots selected for this survey differed from 
the tick/stand structure survey and were independ-
ent from the latter. Soil was sampled in between three 
and 31 plots per patch (on average 6.0). In each plot an 
area of 25 cm × 25 cm of the forest floor was sampled 
according to the method described by [47]. After col-
lecting the forest floor material, the topmost 10  cm of 
mineral soil was sampled using a soil corer with a diam-
eter of 4.2  cm. The forest soil layers were analyzed in 
the laboratory to determine carbon, nitrogen, phosphor 
(organic, inorganic and total), ratios thereof and pH 
(Additional file 3).

Landscape metrics
We extracted landscape metrics at the patch and land-
scape scale (Additional file  3). At the patch scale we 
determined the size and age of all forest patches and the 
area covered by edge habitat (using buffers of 5, 10 and 
20  m into the patch). At the landscape scale, we deter-
mined landscape composition in the form of proportion 
of different land-use types (forest, arable land, pasture) 
in concentric buffers (Additional file 3). Fragmentation is 
quantified in the form of length per hectare (density) of 
hedgerow and patch edge, the proximity index and dis-
tance of the nearest neighbor forest patch (NND). Addi-
tionally we determined the amount of edge habitat inside 
forest patches (as above) in concentric buffers around 
focal patches (Additional file 3).

Climate
We recorded ambient microclimate at the same time 
as the tick/stand structure survey with Testo 175-H2 
Data-Loggers (temperature precision  =  ±0.5  °C, rela-
tive humidity accuracy  =  ±3%). Measurements were 
taken every minute for approximately half an hour in the 
plot center. Air temperature and relative humidity were 
measured at both 5 and 130 cm height. Soil temperature 
was measured at a depth of 5 cm. We calculated satura-
tion deficit according to [36], based on values averaged 
between 5 and 130 cm height for both, relative humidity 
and air temperature.
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Macroclimate data were extracted from the “Global 
Summary of the Day” (GSOD) dataset hosted on the 
web-servers of NOAA’s National Centers for Environ-
mental Information (NCEI). We extracted climate met-
rics for the period from 1st of January 2013 to the day of 
sampling and for 30  days prior to tick sampling. Addi-
tionally, we calculated growing (above 8 °C) and chilling 
(below 8  °C) degree days from the beginning of 2013 to 
the day of sampling. All metrics were averaged over all 
climate stations within a 20  km radius of the landscape 
window (mostly two but sometimes only one station was 
available).

Statistical analyses
All statistical work was carried out in R version 3.3.1 
[48]. An explanatory factor analysis (EFA) was carried 
out based on maximum likelihood to derive factors of 
correlated variables (Additional files 4, 5) within vari-
able groups with the ‘psych’ package [49]. These correla-
tion factors are assumed to represent the combined (and 
more general) influence of a set of correlating variables, 
which would not be significant separately because they 
might be too specific.

We built three linear mixed models (LMMs) to explore 
the effect of all environmental variables on the abun-
dance of the three ontogenetic stages (larvae, nymphs 
and adults) using the ‘lme4’ package [50]. We included 
the preceding stage’s abundance to consider and com-
pare indirect effects of the drivers of the previous stage 
relative to the other environmental drivers. Both ‘region’ 
and ‘window’ were implemented as random factor (two 
windows nested in each of eight regions =16 levels) to 
account for the nested structure of our sampling design. 
As several of the tested variables (such as latitude and 
longitude or nearest neighbor distance and the proxim-
ity index) could explain spatial patterns which would be 
detected as spatial autocorrelation, given they would be 
meaningful, while accounting for other significant varia-
bles, we did not test for spatial autocorrelation in advance 
of model-building.

Our standardized, semi-automatic model-building/
variable selection procedure is described in Additional 
files 6 and 7. To capture optimum (i.e. hump-shaped) or 
pessimum (i.e. u-shaped) conditions in drivers, we also 
tested second-order polynomials of the variables. The so-
derived models were eventually fit using restricted maxi-
mum likelihood (REML). The ‘lmerTest’ package [51] was 
used to determine type-III ANOVA tables with ‘Wald 
F-Test with Satterthwaite degrees of freedom’ for fixed 
effects. Response profiles based on partial residuals were 
determined with the ‘visreg’ package [52] and plotted 
with the ‘ggplot2’ package [53]. We derived the relative 
importance as proportion of each significant driver of the 

overall variation, based on partial eta2 values (Additional 
file 8, [54]). Due to the large number of known effects on 
tick abundance, it can be expected that several of the sig-
nificant drivers are small or moderate in their individual 
importance. Detailed R-code can be found in [55].

Results
Tick survey
We collected a total of 24,479 ticks in all stages, of which 
12,396 (50.6%) were larvae, 10,992 (44.9%) nymphs and 
499 (4.5%) adults. Among adults, 46% were females and 
54% were males. Average abundance of ticks per 100 m2 
differed noticeably between regions (Fig.  2). Western 
Germany, Belgium and southern Sweden were regions 
with the highest and southern France and Estonia with 
the lowest average larval abundance (Fig.  2; Additional 
file  2). In all regions except Belgium, western Germany 
and central Sweden larvae made up less than 50% of 
the total number of collected ticks. The proportion of 
nymphs varied between 31% (western Germany) and 87% 
(southern France) of all ticks collected per region. Adults 
usually constituted less than 10% per region, except in 
Estonia and northern France, where they made up 54 and 
21%, respectively.

During the tick surveys, the average air temperature 
ranged from 11.6 to 32.7  °C (median  =  19.3  °C); soil 
temperature at 5  cm depth ranged from 7.6 to 18.7  °C 
(median  =  13.8  °C); relative humidity at 5  cm height 
ranged from 31.7 to 99.9% (median =  74.2%) and from 
25.8 to 99.7% (median = 63.8%) at 130 cm height.

Model results
Across all ontogenetic stages, combined drivers of Mac-
roclimate, Landscape, Habitat and Ontogeny 
had, on average, a relative importance of 4.2, 10.0, 44.7 
and 10.1% respectively. However, the ontogenetic stages 
showed pronounced differences in all driver groups 
(Fig.  3). The overall model can be found in Additional 
file 9.

Larvae
Macroclimate did not have an effect on the abundance 
of larvae (Fig. 3).

The combined contribution of Landscape variables 
on larval abundance was only moderate (9.2% of the total 
variation) (Fig.  3). The number of forest patches within 
a 500 m buffer around focal patches (2.5%) and patches 
size (2.1%) were the most important drivers of this group 
(Fig. 4), the latter being positively correlated with larval 
abundance. Moreover, we found a small negative relation-
ship of larval abundance with the proportion of pastures 
at landscape scale and a small positive relationship with 
agricultural cover at local scales (Additional file 10B).
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Drivers of Habitat had a large effect on larval abun-
dance, explaining together 64.8% of the total variation. 
Drivers associated to the Microhabitat made up 53.6% 
of the variation whereas Macrohabitat accounted for 
10.7%. Microclimatic variables had the greatest contribu-
tion (22.6%), with soil temperature explaining 15%, and 
relative air humidity explaining 8% of the total variation. 
In both cases we found a unimodal, hump-shaped rela-
tionship (Fig. 4; Additional file 10D). Functional proper-
ties of the habitat explained 17.8% with several drivers 
related to the abundance of dispersules showing a posi-
tive effect on larval abundance. Only heavy dispersules 
showed a negative relationship (Additional file 10C). The 
soil (13.6%) and structural properties of the forest stand 
(10.0%) followed in importance. For example, there was 
a positive effect of the proportion of carbon in leaf-litter 
(Fig. 4), as well as of tree species richness on larval abun-
dance (Additional file 10C). Structural properties as driv-
ers were mainly associated with the understory layers 
(microhabitat). For instance, deadwood (6.2%) and the 
coefficient of variation of the potential height of plants 
in the herb layer (2.3%) partially contributed to larval 
abundance.

The abundance of adult ticks (Ontogeny) found in the 
patches, which was considered to be the previous ontoge-
netic stage for larvae, had no significant effect (Fig. 4).

Nymphs
The combined effect of Macroclimate had a low influ-
ence on the abundance of nymphs, with a relative contri-
bution of 9.3% of the total variation (Fig. 1). The number 
of chilling degree days had a unimodal, hump-shaped 
effect on the abundance of nymphs (Fig. 4).

The driver group Landscape accounted for 15.5% of 
the total variation in nymphal abundance. The propor-
tion of pasture within a 1000  m buffer had the largest 
effect within this group (9.4%) making it, together with 
the chilling degree days, the second most important sin-
gle driver of the overall model. More nymphs were gen-
erally found in landscapes with a higher percentage of 
forest cover (Fig. 4).

Drivers of Habitat determined nymphal abundance 
to a relatively large degree (36.6%, Fig.  3). For nymphs, 
drivers of the Microhabitat added up to 15.6% and 
Macrohabitat accounted for 20.6%. Structural prop-
erties explained 15.6% of the total variation and this was 
mostly due to the average distance between trees (7.7%) 
and the total abundance of trees and shrubs (5.6%, Fig. 4). 
Functional properties were more important (9.9%) than 
soil conditions (8.4%) and functional properties were 
mostly found in the microhabitat of ticks. For instance, 
if berries were present in the tree-layer, their abundance 
correlated positively with nymphs (Additional file  11C). 

a b1 b2

Fig. 3  a Relative importance of groups of drivers in percent. Within the Habitat group, drivers were further grouped according to (b1) scale within 
habitat and (b2) sub groups. Relative importance is the relative contribution of all partial eta-squared (η2) values of a group to the total variation in 
the tick abundance data related to the fixed-effects part of the models
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Fig. 4  Subset of important response profiles. Each graph has a prediction line, confidence band (alpha = 0.05) and shows the partial residuals. The 
relative importance of the respective driver is given by partial eta-squared (η2). See Additional file 9 for full response profiles, ns not significant, disp. 
dispersules, …(+e) also including evergreen species, abund. abundance, temp temperature, FA correlation factor, CV coefficient of variation, CWM 
community weighted mean
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Microclimate explained a minor fraction (2.8%) of the 
total variation in nymphal abundance.

The abundance of larvae (Ontogeny) was the most 
decisive driver (16.6%) of nymphal abundance, with a 
strong positive effect (Fig. 4).

Adults
Variables of Macroclimate together explained only 
3.4% of the total variation in adult abundance (Fig.  3), 
with number of days above 8 °C since the 1st of January 
being the only significant driver, with a hump-shaped 
relationship (Fig. 4).

Overall, the combined contribution of Landscape 
variables was minor (5.3%). The patch size was the most 
important driver (2.1%) and had a positive effect. Simi-
lar to the results for nymphs, an increase in overstory 
cover was also associated with higher adult abundance, 
although this effect was not strong (Additional file 12C). 
Across all patches, fewer ticks were found in landscapes 
with higher percentage of agricultural land-use.

Habitat was the most important group of drivers for 
adult ticks (combined 32.6% of the total variation, Fig. 3). 
Drivers of the Microhabitat made up 2.4% and Mac-
rohabitat accounted for 27.2% of the total variation in 
the abundance of adults. Functional properties (16.4%) 
such as the richness of dispersules heavier than 2 g (6.2%) 
and the abundance of plants with nuts in the tree layer 
(5.8%), both with a hump-shaped relationship, were 
shown to be important drivers of adult abundance. Stand 
structural properties, explaining 13.1%, were slightly less 
important than functional properties. Basal area (7.3%) 
was the second most important single driver, although 
this relationship was largely driven by a few, extreme val-
ues (Fig. 4). The abundance of species producing nuts in 
the shrub layer, potentially providing food for tick-hosts, 
was positively correlated with adult tick abundance. 
Microclimatic variables and soil conditions played no 
role for adult abundance.

The abundance of nymphs (Ontogeny) was the most 
important single driver (13.8%) determining the abun-
dance of adults, again with a positive relationship (Fig. 4).

Discussion
We showed that numerous single drivers only had a mod-
erate or small (<5% of the total variation) effect on abun-
dance within each ontogenetic stage. This reflects the 
complex ecology of I. ricinus. Only some drivers, which 
exceed 5% of the total variation, are of major impor-
tance. However, combining single drivers into related 
groups, our results demonstrate that foremost drivers of 
the Habitat group and hereafter the Landscape group 
explained most of the total variation in abundance across 
all stages. Macroclimate on local scale explained only 

a minor part of the total variation for nymphs and adults, 
and no variation of the abundance of larvae.

Macroclimate vs. habitat
Seasonal population dynamics (i.e. phenology) of all 
ontogenetic stages are largely dependent on tempera-
ture sums driving the tick’s developmental processes 
[17]. Regions with different annual climatic patterns 
lead to different temperature sums following the course 
of the year and this leads to region-specific macrocli-
matic effects on the potential tick abundance [13, 17, 56]. 
Window nested into region was used as random term in 
our LMMs and accounts for regional differences in tick 
response to all environmental conditions we did not 
record and which may correlate with region [16]. The 
optimum type (i.e. hump shaped) response of nymphs 
and adults to temperature accumulation indicates a mac-
roclimatic niche for nymphs and adults. Obviously, low 
and high temperatures are detrimental to ticks, pre-
sumably due to either slow development or desiccation, 
respectively [17]. As we tested various macroclimatic 
metrics and found no significant effects otherwise, it 
shows that temperature sums are likely the most relevant 
macroclimatic drivers of tick abundance at local scales, 
when simultaneously considering other drivers such as 
Landscape, Habitat and Ontogeny.

Larvae dwell close to the forest floor [34], where mac-
roclimate is buffered by the habitat properties [21]. This 
is consistent with our result showing that the combined 
effect of microclimate and other microhabitat proper-
ties explain the largest part of the total variation in lar-
val abundance (Fig. 3). Even though macroclimate had an 
effect on the abundance of nymphs and adults, the effects 
of the abundance of shrubs and trees were also signifi-
cant, suggesting a buffering by the habitat, both with 
respect to daily fluctuations and average values [21]. In 
answer to the first research question we thus conclude 
that Habitat properties, which buffer the macroclimate, 
have a considerable influence on tick abundance.

The suspected confoundedness between habitat and 
macroclimate is critical for the interpretation of the dif-
ferent driver groups, because macroclimatic factors 
modify and determine the habitat. For example, ther-
mophilization, where warmer temperatures lead to an 
increasing dominance of warm-adapted plant species, 
may modify the tick microhabitat [57]. This is driven by 
climate buffering due to macrohabitat properties, such 
as the canopy cover [57, 58]. Microhabitat, as a place for 
tick questing, is hence indirectly modified, mediated by 
the abundance/cover of vegetation or the habitat type. It 
moreover becomes clear that ‘habitat suitability models’, 
which are often solely based on macroclimate proper-
ties, should be complemented with actual habitat related 



Page 10 of 14Ehrmann et al. BMC Ecol  (2017) 17:31 

variables [16, 59]. For that matter, the largest part of cli-
mate stations are, by definition, located in open, non-for-
ested sites [60], which rarely support high tick abundance 
[35], and are therefore not suitable to model the biocli-
matic envelopes of forest-dwelling species like ticks [61].

Habitat fragmentation
No clear effects of forest fragmentation or connectivity 
(higher edge density or nearest neighbor distance and 
lower proximity index) on tick abundance were observed. 
This is in contrast to what has been reported earlier [28, 
30]. Forest fragmentation per se and habitat loss are two 
distinct processes [62], which often correlate but differ in 
their functional meaning [24]. Additionally, forest frag-
mentation creates habitat (edges and ecotones between 
habitat types), which is suitable for a variety of tick-host 
species [23], such as roe deer (Capreolus capreolus) and 
various small mammal species [30, 63]. This process of 
habitat creation for tick-hosts presumably has positive 
cascading effects on tick abundance.

The landscape metrics indicating forest fragmenta-
tion correlate with the proportion of landscape covered 
by forest (Additional file  4). The effects of habitat loss 
on the abundance of ticks can hence not clearly be dis-
entangled statistically from habitat fragmentation per se. 
This finding, that more forest cover in the surrounding 
landscape increase tick abundance of all stages, seems to 
support the ‘amount of suitable habitat’-hypothesis [23] 
for ticks and tick-hosts (Fig. 4). The first part of our sec-
ond research question can, however, neither be clearly 
negated, nor supported.

We also found an adverse effect on tick abundance, 
brought about by an increase in non-forest land-use 
types such as pastures or arable lands, which are consid-
ered unsuitable to most tick-hosts, corroborating once 
more the assumption of habitat amount as driving fac-
tor. In answer to the second part of our second research 
question, we found that landscape composition in terms 
of land-use classes other than forest, surrounding habitat 
patches, is a stronger driver of tick abundance than for-
est fragmentation per se. These effects may be based on 
influencing movement of tick-hosts [64], because pas-
tures and arable land are unsuitable as habitat for various 
tick-hosts.

Relevant habitat properties
As a response to our third research question, we found 
that structural and functional properties of forest stands 
were more important than the potential effects of his-
torical continuity of the stand. In fact, patch age was not 
significant at all. In contrast to our expectation, habitat 
diversity had only a minor relative importance on the 
abundance of all ontogenetic tick stages (second part of 

our third research question). Apparently, the presence 
of certain structural (and morphological) or functional 
properties is more important for the tick cycle, than the 
diversity of such elements.

Many of the macrohabitat related drivers are indirect, 
mediated by tick-hosts (in fact this indirect nature is a 
premise for a habitat driver to also be considered a mac-
rohabitat driver). For example, there is no known direct 
link between ticks and dispersules other than tick-hosts 
feeding on dispersules and hosting ticks at the same time 
[22, 65]. Dispersules, as food resource for tick-hosts, do 
play a considerable role in explaining tick abundance. The 
fact that we found an effect of not only nuts, but also ber-
ries as important dispersules, suggests that birds and not 
only small mammals are tick-hosts in fragmented forest 
patches. The relative importance of functional habitat 
properties is on par with that of structural properties. 
Many stand structural properties are indirect drivers 
because they indicate the provision of shelter for tick-
hosts or, as outlined above, are related to buffering the 
macroclimate and hence the creation of more suitable 
ambient conditions for ticks.

Many of the microhabitat drivers are directly related 
to the survival and questing success of ticks. An effect 
of plant communities and associated soil and micro-
climate conditions on tick abundances has for example 
been shown by [11] and [66]. Several of our potentially 
driving variables were comprised in the categorical vari-
able plant community in these studies. In our models we 
showed that several of these plant community associ-
ated drivers, such as herb-layer properties, microclimate 
and soil conditions generally drive tick abundances at all 
ontogenetic stages, also when retained simultaneously in 
a model as distinct variables (in contrast to as plant com-
munity in [11]). While ontogenetically older ticks often 
quest in higher vegetation layers [34], they can relocate, 
if their preferred questing habitat shows less suitable cli-
matic conditions [36]. Since larvae dwell in or close to 
the forest floor without being able to climb into higher 
vegetation due to faster desiccation there, they can often 
not evade climatically adverse conditions [36]. It is hence 
not surprising that leaf litter, soil conditions and particu-
larly microclimate are amongst the most important driv-
ers o larval abundance compared with nymphs and adults 
(Fig. 3).

Niche differences between ontogenetic stages
With respect to our fourth research question, we found 
clear differences in drivers (Fig.  4; Additional file  13) 
between the different ontogenetic stages of I. ricinus and 
also a positive effect of the previous stage’s abundance 
for nymphs and adults. The result that larvae were not 
driven by adults is somewhat trivial and may depend on 
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their aggregated occurrence. It is known that ontoge-
netic stages of ticks occupy different niches [34, 36]. The 
relatively large effect of the preceding stage indicates that 
a certain part of the total variation in one stage’s abun-
dance can be explained indirectly by the drivers of the 
previous stage’s abundance. This indicates general habi-
tat suitability for ticks or their hosts and hence that ticks 
are affected by similar drivers to the degree of the effect 
size of the previous stage’s abundance. It is however not 
clear if this is due to effects of harmonized local survival 
of the respective stages or due to habitat suitability for 
tick-hosts, which constantly disperse new ticks to this 
habitat patch. Both, survival and tick-host suitability may 
interact with ontogeny, because with increasing ontoge-
netic age ticks are driven increasingly by the macrohabi-
tat (Fig. 3a), which is associated to the carrying capacity 
of the habitat patch towards tick-hosts [67, 68].

Such ontogenetic niche differentiation is scale-depend-
ent. At the habitat scale, the developmental stages occupy 
different height strata for questing. This vertical niche 
differentiation is a result of the stage-specific require-
ments for microclimatic conditions and physical struc-
tures for questing. An ontogenetic niche differentiation 
additionally extends at the landscape scale, because of the 
host-mediated movement of ticks (Fig. 1), which depends 
on the life-history traits of the host. As the ontogenetic 
stages are restricted to different hosts to a certain degree, 
they may be transported from several hundreds of meters 
(e.g. larvae and nymphs on resident hosts such as small 
mammals within a habitat patch) up to tens of kilome-
ters (nymphs and adults on dispersal hosts such as birds 
or ungulates within a landscape) [69]. However, know-
ing the resident-to-dispersal hosts  ratio in response to 
habitat properties poses one recent challenge. We should 
nevertheless consider a pronounced ontogenetic niche 
differentiation, which may not only be relevant for dif-
ferent heights of questing within one habitat, but could 
as well extend to landscape scale. This may have impor-
tant implications for the dynamics of Borrelia burgdorferi 
genospecies, which are associated to specific host groups 
[70, 71].

Limitations of our study
We are aware that our sampling of ticks is biased as 
it does not consider a region-specific life cycle, which 
might have an unimodal but also bimodal distribution of 
tick abundance throughout the year in different regions 
[13, 17, 56]. Such a snapshot does not consider inter-
annual changes in the role of the environmental drivers, 
which may well be important. By collecting ticks only 
once in each patch, smaller patches may not be as well 
represented as larger patches, because a higher probabil-
ity of uncontrolled-for variation sources can influence 

the measurement here. However, by collecting ticks in 
a window within 1 week, we ensured that tick numbers 
were comparable within each region, irrespective of their 
current mode of activity or macroclimatic events. This 
allowed us to test for the relevance of drivers within each 
region. In addition, the random effect in our LMMs sta-
tistically accounts for variation accountable to regions 
and makes the other environmental predictors compa-
rable across regions. Nevertheless, studying population 
dynamics, with a higher sampling effort over time in each 
region will certainly reveal additional, region specific 
trends. The trends we revealed are valid for the overall 
studied (European) gradient representative of lowland 
agricultural landscapes.

Finally, various herb layer characteristics may influence 
the sampling success of the cloth dragging method, pos-
sibly obscuring the true abundance of ticks, particularly 
larvae [39]. For instance, dense vegetation may limit the 
detection of larvae and nymphs questing close to the 
ground. We did, however, not find a negative effect of 
general vegetation density, but of the proportion of her-
baceous plants with ascending or prostrating habitus. 
These plants form a denser layer of vegetation, some-
times even with thorns, which is basically impenetrable 
with the cloth. Although we deliberately avoided such 
sites, even small differences in the abundance of such 
plant species could potentially affect the sampling effec-
tiveness. Nevertheless, there is no reason to assume that 
the sampling success of the cloth dragging method was 
systematically correlated with most of the selected driver 
variables, suggesting that our results are rather robust 
with respect to the sampling procedure.

Conclusions
Abundance of I. ricinus in forest fragments of agricultural 
landscapes is shaped by a rather large number of drivers 
and this emphasizes the complex ecology of ticks. Even 
though most drivers had a modest to small explanatory 
power, their combined effect was substantial. We showed 
that landscape and particularly habitat quality play an 
important role, outweighing the effects of macroclimate 
by far to explain local variation in tick abundance.

These patterns may, however, be context specific. The 
studied forest patches comprise one relatively similar 
type of tick habitat. A wider range in various environ-
mental gradients and in habitat types beyond forest, 
where ticks are also present (grasslands, hedgerows, wet-
lands, etc.) is required to reliably quantify the niche of I. 
ricinus.

Further investigations on the influence of forest and 
landscape management on ticks are urgently required 
to disentangle the influence of anthropocentric manage-
ment decisions impacting the abundance of I. ricinus, 
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and hence the ecosystem disservice of TBD prevalence. 
Such management decisions affect a large variety of the 
tick drivers we identified here, including the amount of 
suitable forest and ecotone habitat, the cover and com-
position of the herb layer, and hence the habitat and 
resource availability for tick-hosts.

Certainly, habitat and landscape management effects 
should be separated from effects of climate change, 
which are largely out of reach of direct human ecosys-
tem management. However, climate only has a relatively 
small explanatory value on local scales, when accounting 
for the effect of habitat properties. The local scale is what 
really matters for the contact between ticks and humans 
and effects of climate change may thus be less important 
than ecosystem management for TBD risks in humans. 
We suggest that drivers that can be, and were historically, 
manipulated by humans have a lot larger relative impor-
tance than assumed before.
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Additional file 11. Response profiles for nymphal abundance. Each 
graph has a prediction line, confidence band (alpha = 0.05) and shows 
the partial residuals. Drivers of (A) Macroclimate (B) Landscape, (C) Macrohabi‑
tat, (D) Microhabitat, (E) Method control, (F) Ontogeny. ‘ns’ = not significant, 
‘abund.’ = abundance, ‘tree1/tree2’ = upper/lower tree-layer, FA = correla‑
tion factor, CWM = community weighted mean.

Additional file 12. Response profiles for adult abundance. Each graph 
has a prediction line, confidence band (alpha = 0.05) and shows the 
partial residuals. Drivers of (A) Macroclimate (B) Landscape, (C) Macrohabitat, 
(D) Microhabitat, (E) Method control, (F) Ontogeny. ‘ns’ = not significant, 
‘disp.’ = dispersules, ‘…(+e)’ = also including evergreen species, ‘abund.’ = 
abundance, ‘temp’ = temperature, CV= coefficient of variation.

Additional file 13. Overall relative importance incl. sampling method. 
Similar to Fig. 3, this graph shows the relative importance values of all 
significant drivers, when variables controlling for the method are included 
in the model. Relative importance of categories of drivers in percent, 
including the relative importance of metrics capturing the impact of our 
method. See Fig. 3.

Additional files

Additional file 1. Meta-data on study setup. A table outlining the most 
important meta-data, such as center of each studied landscape window, 
dates of sampling, number of forest patches and a couple of landscape 
metrics to characterize the respective landscapes.

Additional file 2. Focal variables as drivers of tick abundances. An exten‑
sive list of all focal variables considered in this study. They are classified 
according to the driver groups outline in the methods section.

Additional file 3. Methods – technical details. The text outlines some 
technical details of the methods. These descriptions help understanding 
in detail what has been done, but are not necessary to understand what 
has been measured.

Additional file 4. Correlation factors. The text-file describes how correla‑
tion factors were derived and what the name components of our internal 
variable names mean. The spreadsheet presents the loadings of all corre‑
lation factors, which are above |0.5| and hence indicate that the respective 
variable is correlated to the correlation factor.

Additional file 5. Refer to the caption of Additional file 4.

Additional file 6. Outline of model-building procedure (also Additional 
file 7). Text outlining in detail the model building/variable selection proce‑
dure. The figure presents a flow chart of the different steps taken.

Additional file 7. Flow chart of data preparation and model selection 
procedure.

Additional file 8. Equations to calculate effect sizes for significant drivers 
of tick abundance.

Additional file 9. Overall response profiles and model-output (also Addi‑
tional files 10, 11, 12). Figure for each tick stage, outlining the response for 
its respective linear mixed model. Each graph has a prediction line, confi‑
dence band (alpha = 0.05) and shows the partial residuals. η2 represents 
the relative importance of the respective driver.

Additional file 10. Response profiles for larval abundance. Each graph 
has a prediction line, confidence band (alpha = 0.05) and shows the 
partial residuals. Drivers of (A) Macroclimate (no significant effects) (B) Land-
scape, (C) Macrohabitat, (D) Microhabitat, (E) Method control, (F) Ontogeny. 
‘ns’ = not significant, ‘abund.’ = abundance, ‘disp.’ = dispersules, ‘asc./pro. 
hab.’ = ascending or prostrating habitus, ‘reg. leaf-dist.’ = leaf distribution 
regular on stem, FA = correlation factor, CV = coefficient of variation, 
CWM = community weighted mean.
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