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Host plant range of a fruit fly community 
(Diptera: Tephritidae): does fruit composition 
influence larval performance?
Abir Hafsi1,2, Benoit Facon1,3, Virginie Ravigné1, Frédéric Chiroleu1, Serge Quilici1, Brahim Chermiti2 
and Pierre‑François Duyck1,4* 

Abstract 

Background:  Phytophagous insects differ in their degree of specialisation on host plants, and range from strictly 
monophagous species that can develop on only one host plant to extremely polyphagous species that can develop 
on hundreds of plant species in many families. Nutritional compounds in host fruits affect several larval traits that may 
be related to adult fitness. In this study, we determined the relationship between fruit nutrient composition and the 
degree of host specialisation of seven of the eight tephritid species present in La Réunion; these species are known 
to have very different host ranges in natura. In the laboratory, larval survival, larval developmental time, and pupal 
weight were assessed on 22 fruit species occurring in La Réunion. In addition, data on fruit nutritional composition 
were obtained from existing databases.

Results:  For each tephritid, the three larval traits were significantly affected by fruit species and the effects of fruits on 
larval traits differed among tephritids. As expected, the polyphagous species Bactrocera zonata, Ceratitis catoirii, C. rosa, 
and C. capitata were able to survive on a larger range of fruits than the oligophagous species Zeugodacus cucurbitae, 
Dacus demmerezi, and Neoceratitis cyanescens. Pupal weight was positively correlated with larval survival and was 
negatively correlated with developmental time for polyphagous species. Canonical correspondence analysis of the 
relationship between fruit nutrient composition and tephritid survival showed that polyphagous species survived 
better than oligophagous ones in fruits containing higher concentrations of carbohydrate, fibre, and lipid.

Conclusion:  Nutrient composition of host fruit at least partly explains the suitability of host fruits for larvae. Com‑
pleted with female preferences experiments these results will increase our understanding of factors affecting tephritid 
host range.
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Background
Arthropods constitute the most diverse group of ani-
mals on Earth, and a large fraction of Arthropod spe-
cies are phytophagous [1]. Phytophagous insects range 
from those that are strictly monophagous, i.e., that are 
able to develop on only one host plant, to those that are 
extremely polyphagous, i.e., that are able to develop on 

hundreds of plant species belonging to numerous fami-
lies [2]. Most phytophagous insect species, however, are 
specialised for feeding on a small range of host plants, 
and this specialisation is thought to have contributed to 
the huge diversification of insects that consume plants [1, 
3, 4].

The diet breadth of phytophagous insect is shaped by 
many evolutionary and ecological processes [3, 5, 6]. In 
most species, females locate, recognise and accept host 
plants for oviposition, eggs hatch on the host plants, 
and larvae develop to the adult stage by consuming vari-
ous parts of the host plants. Diet breadth is therefore 
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the product of female choice and larval performance [1, 
7]. Both traits have been shown to evolve rather rapidly 
[8]. As a result of their joint evolution, female prefer-
ences generally but not always correlate with larval per-
formances [9]. The lack of correlation between female 
preference and larval performance has been previously 
reported in some studies [10–13]. In particular, the link 
between female preference and larval performance var-
ies with the degree of diet specialization [6] and depends 
on the taxonomic diversity of studied host plants [6, 
12]. Correlations between female preference and larval 
performance are more often observed for monopha-
gous insects than for polygophagous insects and across 
and within plant families than among genotypes within 
a plant species [6, 12]. Balgawi et al. [10] suggested that 
host preferences may not be the result of optimization of 
the preference-performance relationship but linked with 
other behavioural, physio-chemical and/or physiological 
associations between insects and their larval hosts. In the 
field, availability and abundance of host plants and pre-
dation may also modify this relationship [13, 14]. While 
females very rarely prefer a plant that does not support 
good performance of their offspring [6], larvae may often 
develop on a larger set of host plants than that selected 
by females [11, 15, 16]. Hence, larval performance can 
provide insight into the potential diet breadth of a species 
[17].

Larval performance is influenced by a number of fac-
tors related to the ecological context, i.e., which plants 
are present in the environment and their availability 
for insects [18, 19], and to plant intrinsic value for lar-
val development and survival [10, 20–22]. Plants furnish 
phytophagous insects with an array of vital resources. 
Moreover, plants in most families contain toxic com-
pounds, including secondary metabolites [23, 24]. Sec-
ondary metabolites have been widely described in the 
vast literature on insect-plant coevolution [25–27]. 
Chemicals can alter the nutritional value of plant tissues 
by making them poisonous [28, 29] especially to poly-
phagous species that feed on vegetative organs or inflo-
rescences. Some polyphagous insects, however, feed and 
develop in the pulp of fleshy fruits from a wide range of 
species and families. Frugivorous Tephritidae, for exam-
ple, feed on many kinds of ripening and commercially 
grown fruits whose defensive compounds disappear 
when fruits are ripe [30].

Various nutritional compounds in host plants affect 
the life history traits of phytophagous larvae [31, 32]. 
Carbohydrates and lipids in particular greatly affect lar-
val performance, while mineral nutrition may be more 
crucial for adult fecundity [25]. As a consequence, plants 
that differ in nutrient content often differ in their effects 
on insect fitness [21, 22, 26]. Understanding how larval 

performance relates to plant nutrient composition should 
therefore shed light on the determinants of insect host 
range.

Plant availability for insects depends on plant abun-
dance and phenology but also on biotic interactions. In 
most if not all natural or agronomic landscapes, the same 
plants can serve as hosts for several phytophagous insect 
species, whose host ranges may overlap at different scales 
[33, 34]. Understanding how phytophagous insect com-
munities organize on a given plant community requires 
the study of the determinants of diet breadth for the dif-
ferent insect species that share a large part of their host 
range in a given environment.

The tephritids of La Réunion Island are ideal for study-
ing the effects of fruit composition on a community of 
phytophagous insects. The tephritids, also called true 
fruit flies, are economically important because many spe-
cies in this family attack important fruit and vegetable 
crops in tropical and subtropical regions worldwide. La 
Réunion hosts eight tephritid species (two indigenous 
and six exotic) that infest a large number of cultivated 
and wild host plants in the same, rather small area; the 
island occupies 2512  km2. These eight species differ in 
diet breadth. Four species (Ceratitis catoirii, C. capitata, 
C. rosa, and Bactrocera zonata) are polyphagous [35]. 
Ceratitis rosa, for example, is found on 60  host species 
belonging to 20 families in La Réunion [36]. In contrast, 
the four other species are considered to be oligophagous, 
i.e., they have a limited host range; Dacus demmerezi, 
D. ciliatus, and Zeugodacus cucurbitae are found mostly 
on Cucurbitaceae, and Neoceratitis cyanescens is mostly 
associated with Solanaceae [36]. In spite of these impor-
tant differences, the diet breadths of the eight species do 
overlap in that the polyphagous species are able to infest 
Cucurbitaceae or Solanaceae and the oligophagous spe-
cies may infest some hosts belonging to families other 
than the Cucurbitaceae or Solanaceae.

Laboratory studies with C. catoirii, C. capitata, C. rosa, 
and B. zonata [37] and other studies with the tephritids 
B. dorsalis [38] and C. fasciventris [39] have indicated 
that larval performances can differ drastically on dif-
ferent host species. The nutrient content of a larval diet 
greatly affects larval growth, developmental time, and 
survival and also affects the number and the fitness of the 
adult fruit flies produced [38, 40–42]. For instance, the 
low concentrations of carbohydrate in the upper parts of 
papaya and orange fruits reduce the development of C. 
capitata, while the high concentrations in the lower parts 
of the fruits enhance larval development [43]. Similarly, 
Nash and Chapman [44] found that C. capitata develop-
mental time and larval survival are affected by protein 
quantity and quality as well as by carbohydrate quantity 
and quality.
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The studies cited in the previous paragraph suggested 
that fruit nutrient composition may be an important 
factor influencing the organization of tephritid commu-
nities. Determining whether this is true requires basic 
information on the relationship between fruit nutrient 
composition and the performance of individual tephritid 
species. In this study, we documented the potential host 
range of seven of the eight tephritid species in La Réun-
ion by measuring larval performance on 22 host plants 
belonging to 11 plant families (Table 1), representing the 
most common crops and wild plants affected by tephrit-
ids on the island. For these 22 host plants, we gathered 
information on fruit nutrient composition from the liter-
ature and examined the extent to which fruit biochemical 
composition was associated with the observed differ-
ences in tephritid larval performance.

Methods
Tephritids
This study of tephritids in La Réunion included four pol-
yphagous species (C. catoirii, C. capitata, C. rosa, and B. 
zonata) and three oligophagous species (D. demmerezi 
and Z. cucurbitae are mostly associated with cucur-
bit hosts, and N. cyanescens is mostly associated with 
Solanaceae fruits). Dacus ciliatus could not be included 
because of difficulties in its rearing. The seven species 

were reared from specimens initially obtained from rose-
apple (Syzygium jambos) for C. catoirii, beach naupaka 
(Scaevola taccada) for C. capitata, rose-apple for C. 
rosa, Indian almond (Terminalia catappa) for B. zonata, 
cucumber (Cucumis sativus) for D. demmerezi, zucchini 
(Cucurbita pepo) for Z. cucurbitae, and bugweed (Sola-
num mauritianum) for N. cyanescens. No permissions 
were required to collect these samples from the field. 
Larvae of C. catoirii, C. capitata, C. rosa, and B. zonata 
were subsequently reared on an artificial diet [45, 46] for 
generations F147–F160, F4–F10, F1–F3, and F118–F131, 
respectively. Larvae of D. demmerezi and Z. cucurbitae 
were reared on zucchini for generations F10–F18 and 
F54–F69, respectively, and larvae of N. cyanescens were 
reared on potato (Solanum tuberosum) for generations 
F10–F18. The species were not reared on the same food 
substrate because each was placed on the adequate artifi-
cial diet or host plant that enabled optimal development 
under laboratory conditions. In addition, some of these 
species are difficult to find in the field or to maintain in 
the laboratory, which explains the variability in the num-
bers of generations among species. Populations were 
maintained at several thousands of individuals per gen-
eration. Laboratory rearing was conducted under con-
stant environmental conditions (25 ± 1 °C; 70 % relative 
humidity; L:D 12:12 photoperiod supplemented with nat-
ural light to maintain twilight conditions). Eggs were col-
lected using an inverted perforated plastic cup swabbed 
with the flesh of host fruits; citrus for C. catoirii, C. capi-
tata, C. rosa, and B. zonata; pumpkin for D. demmerezi 
and Z. cucurbitae; and potato for N. cyanescens. Eggs 
were placed in a 2 % Nipagine/sodium benzoate solution 
and were incubated in environmental chambers at a con-
stant temperature of 25 °C for 30 h for Z. cucurbitae, 55 h 
for N. cyanescens, and for 48 h for the other five species.

Experimental setup
An important technical challenge in measuring larval 
performance on intact fruits of many different plant spe-
cies is the heterogeneity in fruit decay. We developed 
simplified diets that contained 250  g of fruit pulp with-
out peel or seeds, 4 g of agar–agar (to provide a suitable 
texture), and 10  ml of a 4  % Nipagine/sodium benzoate 
solution (to prevent fungal and bacterial growth). While 
these diets differed from fresh fruits in term of physical 
texture, they allowed measuring individual fitness traits, 
following a high number of homogenous replicates, and 
obtaining comparable measurements of larval perfor-
mance with a focus on fruit nutrient value.

Components of the diet were blended and placed in 
individual 5-ml plastic cups, each containing 5 g of mix-
ture. Each combination of tephritid species and fruit spe-
cies was represented by 50 replicate cups, giving a total 

Table 1  List of host species studied

Family Species Common name

Anacardiaceae Mangifera indica Mango

Annonaceae Annona reticulata Custard apple

Caricaceae Carica papaya Papaya

Combretaceae Terminalia catappa Indian almond

Cucurbitaceae Citrullus lanatus Water melon

Cucumis melo Melon

Cucumis sativus Cucumber

Cucurbita maxima Pumpkin

Cucurbita pepo Zucchini

Sechium edule Chayote

Moraceae Ficus carica Fig

Myrtaceae Psidium cattleyanum Strawberry guava

Psidium guajava Guava

Oxalidaceae Averrhoa carambola Star fruit

Rosaceae Eriobotrya japonica Loquat

Prunus domestica Plum

Prunus persica Peach

Rutaceae Citrus reticulata Blanco Mandarin

Solanaceae Capsicum frutescens Chilli

Solanum betacea Tree tomato

Solanum lycopersicum Tomato

Solanum melongena Eggplant
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of 7700 cups. One neonate larva (<2 h old) was placed in 
each cup. Each cup was set in a shallow pan with sand to 
allow pupation. Because temperature greatly affects teph-
ritid larval development, all experiments were carried out 
in environmental chambers at a constant temperature of 
25 °C, which is favourable for the seven species [45–48].

Larval performance
Three indicators of larval performance were assessed: 
survival rate, developmental time, and pupal weight. 
Pupal weight is a good indicator of female fecundity and 
therefore of individual female fitness in Tephritidae [49, 
50]. Every 48  h during 60  days, all cups were examined 
and pupae were collected. Larval survival was recorded 
as the number of pupae recovered from each host. Devel-
opmental time was recorded as the time from placement 
in the cup to pupation. Each pupa was weighed (Sarto-
rius® Germany, precision: 10−4 g).

Fruit nutrient composition
To study the relationship between tephritid larval perfor-
mance and fruit nutrient composition, we gathered data 
on nutrient composition from the United States Depart-
ment of Agriculture (USDA) National Nutrient Database 
for Standard Reference, the ANSES (French Agency for 
Food, Environmental and Occupational Health Safety) 
French Food Composition Table, and published studies 
(data used and references are presented in Additional 
file  1). For the 22 plant species, data on the content of 
water, proteins, total carbohydrates, fat, fibres, sodium, 
magnesium, potassium, phosphorus, calcium, iron, and 
vitamin C are presented in a data set available in Addi-
tional file  1. Nutrients that could not be documented 
for all 22 plant species were excluded from the analysis 
to avoid problems caused by missing data. While nutri-
ent content obtained from the literature probably did 
not strongly differ from the diets used for trait meas-
urements, water content could have been more affected 
during the processing of diets. In order to check if water 
content in database and diets were representative of fresh 
fruits, we measured water contents in diets and fresh 
fruits for six fruit species (Annona reticulate, Carica 
papaya, Cucumis sativus, Cucurbita maxima, Psidium 
gujava, and Solanum lycopersicum). A strong linear 
relationship was observed between the water contents 
of artificial diets and the water contents estimates from 
database (R2 = 0.87; P < 0.001; Y = 0.90X + 12.13) and 
between water contents in fresh fruits and water contents 
in artificial diets (P < 0.0001; R2 = 0.97, Y = 0.96X + 6.28) 
(Additional file  1). While artificial diets tend to contain 
more water than expected from literature data (intercept 
different from 0), differences between fruits were con-
served (slope close to 1).

Statistical analyses
All analyses were performed with R-3.2.2-win [51]. Lar-
val survival was analysed using a general linear model 
(GLM) with a binomial error as a function of plant spe-
cies, tephritid species, and interaction. Developmental 
time and pupal weight were analysed by analysis of vari-
ance (ANOVA) as a function of plant species, tephritid 
species, and interaction. The relationship between the 
three indicators of larval performance was investigated 
using linear models.

Canonical correspondence analysis (CCA) [52] was 
used to study the relationship between nutrient com-
position of the 22 host fruits and larval survival of the 
seven tephritid species using the function pcaiv in the 
ade4 package [53]. The CCA analysis consist of carrying 
out a factorial correspondence analysis (FCA) on the fit-
ted variables (larval survival of seven tephritid species on 
22 fruit species) after the regression on the instrumental 
variables (chemical composition of 22 fruit species). The 
significance of CCA was tested by a Monte-Carlo test 
[54] that evaluated the significance and the stability of 
decomposition of the total inertia of larval survival with 
only permutation of the rows of biochemical composi-
tion table.

Results of CCA analyses (presented in Additional 
file  2) showed that the first axis of the factorial space 
explained 64.5  % of the global variability. The variabil-
ity in larval survival of the seven tephritid species was 
mostly explained (64.9 %) by the contents of 12 nutrients 
in the 22 fruit species. A Monte-Carlo test showed that 
the inertia projected by 1000 permutations was not sig-
nificant (P = 0.141). Water, lipid, carbohydrate, and fibre 
were the nutrients most correlated with the first axis 
(correlations >0.5). A second CCA analysis restricted to 
these four nutrients was carried out to clarify their influ-
ence on larval survival and to increase the stability of the 
decomposition of inertia.

Results
Influence of host fruit on larval survival
Larval survival rates differed significantly among the fruit 
species (ΔDev21,  1119 =  7948, P  <  0.001) and among the 
tephritid species (ΔDev6, 639 = 7942, P < 0.001); the inter-
action between tephritid and fruit species was also sig-
nificant (ΔDev125, 2120 = 7817, P < 0.001) (Fig. 1). Larvae 
of the polyphagous species B. zonata, C. catoirii, C. capi-
tata, and C. rosa survived on a wide range of hosts (on 
17–20 of the 22 fruit species tested). On these host fruits, 
the four polyphagous tephritid species had a larval sur-
vival rate ranging from 2 to 100 %, with the highest lar-
val survival exceeding 60 % in tree tomato, guava, mango, 
and Indian almond. Dacus demmerezi and Z. cucurbitae, 
which are considered specialised on Cucurbitaceae fruits, 
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survived on 13 and 10 fruit species, respectively; survival 
of D. demmerezi was highest on six of the cucurbit spe-
cies, and survival of Z. cucurbitae was highest on five of 
the cucurbit species. Dacus demmerezi and Z. cucurbitae 

also survived on fruits from the Solanaceae (eggplant and 
chilli), the Anacardiaceae (mango), and the Combreta-
ceae (Indian almond). Neoceratitis cyanescens, which is 
considered specialised on the Solanaceae family, had the 

Fig. 1  Larval survival for seven tephritid species reared on 22 host fruit species occurring in La Reunion. Values are mean ± SE. Host fruits belong‑
ing to the Cucurbitaceae and Solanaceae are indicated by green and red, respectively. Host fruits are ordered by coordinate of the first axis of CCA 
analyses (see “Methods” section)
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highest survival rate on fruit species belonging to the 
Solanaceae but also on mango, and was able to survive, 
albeit with lower survival rates, on cucumber and zuc-
chini fruits.

Influence of host fruit on pupal weight
Pupal weight differed significantly among fruit spe-
cies (F21,  24593  =  51.1, P  <  0.001) and among tephritid 
species (F6,  198010  =  418.7, P  <  0.001); the interaction 
between tephritid and fruit species was also significant 
(F76,  4457 =  9.4, P  <  0.001) (Fig.  2). Across fruit species, 
pupal weight was lowest for C. capitata and highest 
for D. demmerezi. For the four polyphagous tephrit-
ids, pupal weight was highest on peach and tree tomato 
for C. catoirii; on guava, mango, and tree tomato for C. 
capitata; on guava for C. rosa; and on custard apple for 
B. zonata. For the three oligophagous tephritids, pupal 
weight was highest on cucumber for D. demmerezi, on 
zucchini and cucumber for Z. cucurbitae, and on tree 
tomato for N. cyanescens.

Relationship between pupal weight, larval survival, 
and developmental time
Developmental time differed significantly among fruit 
species (F21,  965  =  31.2, P  <  0.001) and among teph-
ritid species (F6, 6410 = 207.2, P < 0.001); the interaction 
between tephritid and fruit species was also significant 
(F76,  451  =  14.6, P  <  0.001) (Additional file  3). On all 
fruits that supported larval survival, pupal weight was 
positively correlated with larval survival for C. catoirii 
(P < 0.001), C. capitata (P < 0.001), C. rosa (P = 0.0013), 
and B. zonata (P < 0.001), and was negatively correlated 
with developmental time for C. catoirii (P  <  0.001), C. 
capitata (P < 0.001), B. zonata (P < 0.001), and Z. cucur-
bitae (P = 0.022) (Table 2; Additional file 4). Similar but 
statistically insignificant relationships were also observed 
for the other species.

Relationship between fruit nutrient composition and larval 
survival
CCA analysis showed that the first eigenvalue, which 
explained 74.33 % of the total variation, was overwhelm-
ingly larger than the second one, which explained only 
14.26 % of the total variation. Most of the common struc-
ture of the two data matrices is therefore contained in the 
first axis. Water, lipid, carbohydrate, and fibre explained 
30.05 % of the variability in survival of larvae of the seven 
tephritid species reared on 22 fruit species. A Monte-
Carlo test showed significant inertia projected for 1000 
permutations (Pvalue  = 0.028).

CCA analysis (Fig.  3a) showed that all tested fruits 
fell into two distinct groups, with species in the Sola-
naceae (tomato, tree tomato, eggplant, and chili) and 

Cucurbitaceae (pumpkin, zucchini, cucumber, and water 
melon) in the first group, and the other species in the 
second group. Shorter arrows (like those for zucchini, 
melon, guava, mango, Indian almond, and strawberry 
guava) indicate a better concordance between fruit nutri-
ent composition and survival of tephritid species larvae.

The direction of the vector for water concentration was 
opposite to the direction for the vectors for carbohydrate, 
fibre, and lipid concentration (Fig.  3b), which indicated 
a negative correlation between these components. The 
length of these vectors indicates the importance of the 
components in explaining the structure of the two data 
matrices; importance decreases with vector length. Vec-
tors of larval survival of D. demmerezi and Z. cucurbitae 
(Fig.  3c) were pointed in the same direction as the vec-
tor for water and in the opposite direction as the vectors 
for carbohydrate, fibre, and lipid (Fig. 3b), indicating that 
survival of D. demmerezi and Z. cucurbitae larvae was 
positively correlated with the concentration of water in 
fruits and was negatively correlated with the concentra-
tion of carbohydrate, fibre, and lipid in fruits. Larval sur-
vival of B. zonata, C. catoirii, C. capitata, and C. rosa was 
positively correlated with the concentration of carbohy-
drate, fibre, and lipid in fruits and negatively correlated 
with the concentration of water in fruits. Larval survival 
of N. cyanescens depended slightly on the components 
represented by the first axis of the CCA analyses, and 
was positively correlated with concentration of water and 
lipid in host fruits.

Discussion
The present study aimed to evaluate the contribution 
of available host plants to the performance of tephritid 
larvae occurring in sympatry. We established that host 
identity had a marked influence on larval survival, devel-
opmental time, and pupal weight. In general, these three 
fitness traits were positively correlated with each other, 
i.e., larvae reared on fruits supporting high survival had 
high pupal weights and short developmental times. More 
specifically, pupal weight was positively correlated with 
larval survival for B. zonata, C. catoirii, C. capitata, and 
C. rosa and was negatively correlated with developmental 
time for B. zonata, C. catoirii, C. capitata, and Z. cucur-
bitae. Similar relationships between the three traits were 
also observed for D. demmerezi and N. cyanescens but at 
a non-significant level, probably because the statistical 
power was limited by the low number of host fruits that 
supported survival of these oligophagous species. Pupal 
weight has previously been shown to be positively cor-
related with female fecundity in several tephritids [37, 
40, 49]. This absence of trade-offs between fitness com-
ponents suggests that hosts differ in nutritional value for 
tephritid development [55]. Some fruits have sufficient 
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Fig. 2  Pupal weight (10−4 g) for the seven tephritid species reared on 22 host fruit species occurring in La Reunion. Values are mean ± SE. Host 
fruits belonging to the Cucurbitaceae and Solanaceae are indicated by green and red, respectively. Host fruits are ordered by coordinate of the first 
axis of CCA analyses (see “Methods” section). Pupal weight scales among species were changed for better representation
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nutritional value to maximize all three of the measured 
performance traits. This is the case for guava, mango, and 
Indian almond, which supported relatively high survival 
(up to 60 %) and high pupal weights for the four polypha-
gous tephritids. In other geographical areas, these fruit 
species are the most utilized by the Bactrocera dorsalis 
complex of fruit flies [56]. Interestingly, the host range 
measured in the laboratory for the oligophagous tephrit-
ids like Z. cucurbitae included fruit species that are not 
hosts in the field in La Réunion but are hosts in other 
areas. Zeugodacus cucurbitae has been reported to cause 
damage on mango fruit in Africa and on papaya fruit 
in India [57, 58], confirming that Z. cucurbitae may use 
these plants in other ecological contexts.

Larval performance measured in tephritid colonies 
reared in laboratory for several generations may rep-
resent an important limitation of this study. Reports of 
differences between laboratory reared and wild insect 
strains and populations have gained much attention 
because of the relevance of such changes in behav-
iour and life history traits of phytophagous insects 
[59–62]. However, female oviposition preferences are 
generally found to change more rapidly than larval per-
formance that is considered more conservative. For 
example in the bruchid beetle, after 11 generations of 
natural and artificial selection, genetic changes occurred 
in the behavioural response to host change, but not in 
the physiological performance of larvae [63]. Our study 
has other important limitations. First, we did not assess 

some potentially important components of specialisa-
tion. Female choice, for example, was not measured but 
can greatly affect fruit fly abundance [13] and represent 
an important factor that facilitates host-plant adapta-
tion [64]. Second, while symbiotic bacteria in the insect 
gut can impact larval development and adult fitness [65], 
these effects were not measured in our study. Symbiotic 
bacteria assemblages play a major role in detoxification 
processes thus making plant tissues edible for phytopha-
gous insects and promote adaptation between phytopha-
gous insects and host plants [66, 67]. Finally, we did not 
assess interactions among fruit fly species. Intra- and 
interspecific competition among larvae of different spe-
cies within fruits and between adult females for egg lay-
ing sites are potentially important factors affecting host 
plant use by phytophagous insects in the field [68, 69].
So additional research is needed to determine how the 
results of current study relate to community dynamics.

Multivariate analyses (CCA) indicated that the water, 
lipid, carbohydrate, and fibre content of fruits may 
explain 30 % of the variability in the larval performance 
of the seven tephritid species. Larval survival of the poly-
phagous species B. zonata, C. catoirii, C. capitata, and C. 
rosa was positively correlated with carbohydrate, lipid, 
and fibre contents and negatively correlated with water 
content. In contrast, larval survival of the two species D. 
demmerezi and Z. cucurbitae associated with cucurbit 
hosts was positively correlated with water content and 
negatively correlated with carbohydrate and lipid con-
tent. Larval survival of N. cyanescens, which was the one 
species associated with Solanaceae fruits, was positively 
correlated with water and lipid contents.

Carbohydrates were previously identified as potentially 
important determinants of fruit nutritive value for teph-
ritid larvae. Zucoloto [70], and Fernandes Da Silva and 
Zucoloto [43] showed that larvae of C. capitata moved 
to the part of the fruit containing the highest quantities 
of carbohydrate. These and current results are consistent 
with those reported for C. capitata [44], Acrididae [71], 
Drophila [72], and Noctuidae [73].

Behmer [74] suggested that the larvae of some phy-
tophagous insect species prefer high-carbohydrate diets 
whereas others prefer high-protein diets. Our results 
suggest that polyphagous tephritids differ from oligopha-
gous tephritids in terms of nutrient requirements. The 
performance of polyphagous species was strongly asso-
ciated with carbohydrate, lipid, and fibre contents and 
was not associated with protein content. This contra-
dicts previous experimental findings that decreases in 
protein quantity and quality reduced larval development 
and survival for C. capitata [44]. An explanation may be 
that the protein concentration of host fruit is generally 
low and invariant among fruits, whereas carbohydrate 

Table 2  Analyses by  linear models of  pupal weight as  a 
function of  larval survival and  developmental time 
for seven Tephritidae species reared on 22 fruit species

DT developmental time, Survival larval survival

Significant effects (P < 0.05) are indicated in italic

Tephritidae 
species

Effect Residuals; Df Estimate F value P value

Ceratitis catoirii Survival 1; 393 6.71 86.06 <0.001

DT 1; 393 −2.49 290.38 <0.001

Ceratitis capitata Survival 1; 413 30.40 161.40 <0.001

DT 1; 413 −0.45 15.95 <0.001

Ceratitis rosa Survival 1; 288 22.91 10.43 0.0013

DT 1; 288 −0.09 0.29 0.5880

Bactrocera 
zonata

Survival 1; 406 24.40 188.58 <0.001

DT 1; 406 −2.27 126.27 <0.001

Neoceratitis 
cyanescens

Survival 1; 590 68.42 3.37 0.0714

DT 1; 590 −0.51 0.99 0.3245

Dacus dem-
merezi

Survival 1; 141 −9.04 0.05 0.8152

DT 1; 141 −0.15 0.03 0.8568

Zeugodacus 
cucurbitae

Survival 1; 193 5.59 2.35 0.1265

DT 1; 193 −0.66 5.32 0.0221
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concentration in fruits is higher and more variable [75]. 
Carbohydrate concentration but not protein content was 
retained in our canonical correspondence analysis. In 
contrast to polyphagous species, the oligophagous teph-
ritids D. demmerezi and Z. cucurbitae performed better 
on fruits with high water content than on fruits with high 
carbohydrate, fibre, and lipid contents. The results of this 
study are consistent with the hypothesis that polypha-
gous and oligophagous insects differ in their nutritional 
requirements [76]. Because pulpy fruits have less struc-
tural diversity than stems, leaves, or inflorescences, fruit-
feeding tephritids have better prospects to evolve wide 
host ranges than those tephritids that feed on other plant 
parts [77].

In the current study, we used those nutrients whose 
contents in all 22 of the studied fruits were available in 
published data bases. It follows that some chemical com-
pounds were not included. While nutritional quality of 
fruit pulp of the plant greatly influences larval perfor-
mance, host specialisation often cannot be predicted 

solely by classical nutritional measures. It is also affected 
by defensive chemicals (secondary metabolites and vola-
tile compounds) and plant physical characteristics (fruit 
and peel texture) [13, 78, 79]. Plant secondary metabo-
lites are commonly thought to directly or indirectly 
deter the fecundity or the oviposition of phytophagous 
insects by being toxic or by reducing nutrient assimila-
tion [25]. Erbout et al. [80] found that larvae of the poly-
phagous tephritid C. fasciventris did not survive in fruits 
containing high alkaloid concentrations. Among insect 
herbivores, oligophagous species are less affected than 
polyphagous species by defensive chemicals in the tissues 
that they typically consume [81]. This is well illustrated 
by N. cyanescens, which is the only tephritid in La Réun-
ion Island able to survive on the fruits of most species 
belonging to the Solanaceae; such fruits often contain 
toxic compounds [49]. Volatile compounds of the fruit 
peel may determine the attractivity or non-attractivity 
of host plants to Tephritidae, and thus enable flies to 
discriminate between host and non-host plants [13, 82]. 
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Hardness of the pericarp/peel determine the ability of the 
female to ovipositor [79, 83]. While physical and chemi-
cal properties of the peel may also affect larval survival, 
this was not taken into account in our study. For example 
early instar larvae may suffer from heavy mortality as a 
consequence of flavedo essential oils and gum secretion 
in Citrus [84–86], of the formation of hardened calluses 
around egg cavities and of peel mechanical resistance 
that prevent larvae to reach the fruit pulp [84].

Conclusions
Our results suggest that nutrient composition at least 
partly explains the suitability of host fruits for larvae 
of the seven tephritids in La Réunion Island. From an 
applied perspective, information on the performance of 
phytophagous larvae on potential hosts is essential for 
predicting future host range expansion, population size, 
and plant damage [32, 87]. Future studies should also 
investigate female preference to increase our understand-
ing of the factors driving tephritid host range.
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