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Abstract

Background: Studying the drivers and determinants of species, population and community spatial patterns is
central to ecology. The observed structure of community assemblages is the result of deterministic abiotic
(environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic
colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil
environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian “Llanos”.
We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether
these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the
“single tree effect” by exploring the spatial relationships between root-related variables and soil nutrient and
physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit
tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation
partitioning analyses.

Results: The relationship between the spatial organization of earthworm assemblages and soil environmental
parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population
structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to
medium-scale (10–20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0–5 cm.
Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot,
the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10–20 m) and very fine scales (<10 m). Variation
partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of
the observed earthworm spatial variation.

Conclusions: A large proportion of the spatial variation did not depend on the soil environmental variability for certain
species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured
relevant soil environmental variables.
Background
Ecological processes are spatially influenced on various
scales, ranging from global to local scales [1,2]. In natural
communities, the observed spatial pattern is the result of
environmental, biological and/or historical drivers [3],
which are not exclusive but rather complementary. The
existence of spatial structures of species assemblages
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suggests the influence of at least one structuring factor: i)
a spatially distributed environment is the driving force that
structures species assemblages according to niche theory
[4]; ii) species are assembled on certain spatial scales
through the influence of biotic interactions [5-10]; and iii)
historical contingency, according to neutral theory [10,11],
or stochastic variations in the history of species arrival
[12,13] drive this process, although the scale of the ran-
dom effect has not been fully identified [14]. It is chal-
lenging to determine which process has a larger effect
because historical species arrival data and past eco-
logical processes are usually unknown.
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When analyzing spatial datasets, striking and puzzling re-
sults are found if spatial autocorrelation is ignored because
response variables are structured on various spatial scales
[15-18]. Specific spatially explicit sampling protocols for
targeted organisms and different approaches are needed in
soil ecology studies [17,19,20], although these methods must
be used with caution [16,21]. Geostatistics [22] allows the as-
sessment of the spatial distribution of soil environmental
variability and soil organisms [22,23], but other powerful
statistical tools are necessary to model spatial structures on
various scales, such as principal coordinates of neighbor
matrices (PCNM) [3,24,25]. The PCNM approach is part of
the distance-based Moran’s eigenvector map (MEM) ana-
lysis, which is included in the spatial eigenfunction family of
tools [2,25,26] and is a powerful statistical method to model
spatial structures at all scales; in other words, the environ-
mental variability is linked to community structure on a
multi-scale level [3,24] to obtain new ecological insights [21].
It has also been used to test and separate the niche from
neutral mechanisms that influence the community structure
[15], although it may appear over-simplistic [27,28].
To date, few field studies have been performed on the as-

sembly of soil invertebrate communities to infer overall pat-
terns and draw conclusions on the importance of explicitly
accounting for multi-spatial scales. Soil organism communi-
ties have been reported to be spatially structured due to their
response to spatial variability in soil resources [12,19,29-33],
allowing the co-existence of competing species within the
same patch in spatially heterogeneous environments [32,34].
Although complex spatial patterns have been described for
soil invertebrates forming patch assemblages that range from
the scale of soil aggregates [35] to those of individual plants
[36], agricultural lands and natural ecosystems [37-42], no
study has assessed the multi-scale spatial relationship be-
tween soil invertebrates and environmental variability thus
far. The influence of disturbance and habitat heterogeneity
on Carabidae assemblages has been described recently, but
only on the landscape scale [19]. Studies and data analysis
using these multi-spatial analysis techniques to perform in-
vertebrate community research are needed, even if caution
must also be exercised [43]. In this study, we aimed to i)
analyze the spatial location of significant patches and gaps of
the species assemblages identified, ii) test whether the rela-
tionship between species assemblages and soil environmen-
tal variability occurs on very fine (<10 m), fine (10–20 m),
and medium scales (>30 m), and iii) investigate the spatial
relationship between root traits and soil parameters to test
the hypothesis of the “single tree effect” [44].

Results
Earthworm abundance and soil environmental
heterogeneity
A total of 688 earthworms were collected and included
seven species (Table 1) with three main ecological categories
present [45]: epigeics (litter feeders), Aymara sp. and one
unclassified species (new genus 1); endogeics (soil feeders),
Andiodrilus sp., Andiorrhinus sp., Glossodrilus sp., and one
unclassified species (new genus 2); and anecics (soil + litter
feeders), Martiodrilus sp.
The CA extracted three axes (72.9% of the total vari-

ance), and these three axes were used to discriminate
among the various species assemblages according to the
axis selected (Figure 1). Axis I (34.2% of the explained vari-
ance) discriminated new genus 1 versus all other species,
whereas the second axis (21.7% of the total variance) re-
vealed a clear distinction between endogeic and epigeic +
anecic species. Moreover, the position of species along
the positive side of axis 2 followed a body size increase
among endogeic species. Axis 3 (17.1% of the total vari-
ance) separated Aymara, Andiodrilus and new genus 1
from Martiodrilus, Glossodrilus and new genus 2.

Patches and gaps of species assemblages
The SADIE spatial Ia index and local vi and vj clustering
indices were statistically significant for endogeic species
and the group Martiodrilus, Glossodrilus and new genus 2
(1 anecic +2 endogeics), whereas only the vj index was
significant for Andiodrilus, Aymara and new genus 1, i.e.
one endogeic + two epigeics (Table 2). Significant spatial
dissociations were found when using those assemblages
identified with CA axes, i.e., −0.232 (p = 0.978) between
new genus 1 and the rest of species, −0.278 (p = 0.995) be-
tween endogeics and epigecis + anecic group, and −0.383
(p = 0.999) between the group Andiodrilus, Aymara and
new genus 1 from Martiodrilus, Glossodrilus and new
genus 2 group.
The number of significant clusters of the earthworm

assemblages ranged from 1 (new genus 1) to 9 (endo-
geics), with gaps occupying a larger area than that of
patches (Figure 2). The type of litter and tree root traits
may influence the patchy distribution of endogeic earth-
worms, which is known as the “single tree effect” [44].
The endogeic species assemblage was close to A. maripa
trees, except for the large patch at the central part of the
surveyed plot, where values of the coarse root length
and weight (CoRL, CoRW) were the lowest (Figure 3,
kriged contour maps).
The identity and location of tree species within the

surveyed plot did not appear to explain the observed
spatial patterns of the remaining species assemblages:

■ new genus 1: a significant gap in the lower half area
where multiple tree species, mainly A. maripa, were
present. The correlogram was not significant
(Figure 4a).
■ All other species: significant gaps and patches were
not linked to areas of tree presence. The correlogram
was not significant (Figure 4a).



Table 1 Earthworm abundance and main morphological traits

Species Family Ecological category1 Pigmentation Size2 (mm) Weight2 N Average density

Length Diam. (g.f.w.) ± standard error

Andiodrilus sp. Glossoscolecidae Endogeic Unpigmented 109.0 4.4 1.38 22 3.1 ± 0.7

Andiorrhinus sp. Glossoscolecidae Endo-anecic Pink anterodorsal 188.0 7.6 7.10 10 0.1 ± 0.1

Aymara sp. Glossoscolecidae Epigeic Dark-red dorsal 58.1 1.5 0.06 15 6.5 ± 1.3

New genus 1 NC3 Epigeic Dark-green dorsal 117.9 3.8 0.69 18 9.5 ± 5.1

Glossodrilus sp. Glossoscolecidae Endogeic Unpigmented 83.9 1.5 0.10 13 8.5 ± 1.4

Martiodrilus sp. Glossoscolecidae Anecic Dark-grey anterodorsal 194.3 9.3 11.2 29 10.3 ± 1.4

New genus 2 Ocnerodrilidae Endogeic Unpigmented 22.8 0.7 0.006 157 24.0 ± 2.6
1Epigeic: live and feed on the soil surface; Endogeic: live and feed within the soil; Anecic: live within the soil and dig vertical or semi-vertical burrows to feed on
the soil surface (after [45,46]). Endo-anecic worms have characteristics of anecic (anterodorsal pigmentation, flattened rear end) and endogeic worms
(horizontal burrowing).
2Average biometric data for adults (g.f.w.indicates grams of fresh weight in 4% formalin, gut contents included).
3NC: not classified.
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■ Endogeics group: four significant patches close to the
location where the A. maripa tree species was
observed. The correlogram was significant (Figure 4b).
■ epigeics + anecic group: same as described for the
rest of species (CA1-). The correlogram was not
significant (Figure 4b).
■ Andiodrilus, Aymara and new genus 1: two
significant gaps in the lower half area and two
significant patches in the plot edge where the A.
maripa tree species was found. The correlogram was
not significant (Figure 4c).
■ Martiodrilus, Glossodrilus and new genus 2 group:
one significant patch in the western zone of the plot
where trees were present and a large significant gap in
the upper part; another two significant patches were in
the eastern zone. The correlogram was significant
(Figure 4c).

Cross-correlogram analysis
Regarding the spatial cross-correlation between root-
related variables and soil nutrient-related and physical
variables, significant positive cross-correlations were
identified at short lag distances (h) between the FiRL
and SOC0–5, P0–5 and C:N5–10 (Table 3), whereas P5–10
showed a significant negative cross-correlation (Monte
Carlo permutation). With regard to the CoRL, the cross-
correlation at short distances was positive for SOC5–10

and C:N5–10 and negative for N5–10 and P5–10. Regarding
root biomass, the FiRW showed significant positive
spatial cross-correlation with P0-5 and P5–10, whereas it
was negative for the variables SOC5–10, C:N0–5 and C:
N5–10 at short lag distances (Table 3). The CoRW
showed a positive spatial relationship with SOC5–10 and
C:N5–10 and a negative relationship with P5–10. A signifi-
cant positive spatial cross-correlation was observed be-
tween the FiRL and soil aggregates of less than 5 mm in
size, whereas it was negative for larger soil aggregates
and moisture at short lag distances (Table 4). Regarding
the FiRW, a significant negative spatial cross-correlation
at short distances was especially observed for <0.5 and
2–5 mm size soil aggregates, and a positive cross-
correlation was observed for >10 mm aggregates and
bulk density (BD). Finally, the CoRL showed a positive
spatial cross-correlation with 0.125-0.5 and 1–5 mm soil
aggregates and hydraulic conductivity, and a negative
spatial cross-correlation was observed for >10 mm soil
aggregates and soil moisture. The CoRW showed a positive
spatial cross-correlation with 0.125-0.25 and 0.5-5 mm
size soil aggregates and a negative spatial cross-correlation
for >10 mm soil aggregates (Table 4).

Decomposing multiple scale spatial patterns of species
assemblages
Significant multi-scale spatial structures were obtained
for the earthworm community, species and assemblages,
especially in the case of new genus 1. The forward selec-
tion procedure resulted in various numbers of PCNM
variables, ranging from 1 to 9 out of 69 positively auto-
correlated spatial eigenvectors (significant Moran’s I at
p < 0.05). Variogram modeling [25] provided information
on the scales of PCNM variables. The PCNM eigenfunc-
tions selected to model the distribution of earthworm
community are depicted in the Additional file 1.
These parameters indicate clear spatial structures on

a medium (>30 m), fine (10–20 m) and very fine scale
(<10 m), except for Andiodrilus (which presented only
one significant PCNM). Regarding new genus 1, PCNM3
and PCNM8 defined the medium-scale patterns, whereas
PCNM12 and PCNM16 encompassed the fine-scale pat-
terns; PCNM29, PCNM33 and PCNM51 described very
fine scales (Additional file 1). The maps of the fitted scores
of the significant canonical axes in the PCNM analysis for
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Figure 1 Ordination plot of species in the factorial plan following
correspondence analysis of earthworm density (N m−2) in the
gallery forest: (a), axes 1 and 2; (b), axes 2 and 3; and (c) and (d),
“eigenvalues”. The species Andiorrhinus was not included in the
analysis because it only represented 1% of the total earthworm
abundance.

Table 2 SADIE aggregation indices and associated p
levels for the various combinations of earthworm
assemblages identified in the three axes extracted from
the CA

Species assemblages Ia vi (patch) vj (gap)

New genus 1 0.997 NS 0.871 NS −1.003 NS

Rest of species 1.018 NS 0.944 NS −1.015 NS

Endogecis 1.414 * 1.485 ** −1.430 *

Epigeics + Anecic 1.011 NS 1.188 NS −1.061 NS

Andiodrilus, Aymara and new
genus 1

1.222 NS 1.343 * −1.222 NS

Martiodrilus, Glossodrilus and
new genus 2

1.453 * 1.320* −1.428 *

Ia = global index of aggregation; vj = mean negative index value (gap);
vi = mean positive index value (patch). Departure from randomness is tested
using 5,967 permutations. * p < 0.05; ** p < 0.01; NS, not significant.
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species (A), species assemblages and the whole commu-
nity (B) are depicted in Additional file 2.
The significant explanatory environmental variables

that best described the multi-spatial structure varied for
the earthworm community, species and species assem-
blages (Table 5). The nutrient-related variables explained
much of the structure of new genus 1 on the medium
and fine scales, whereas the physical variables were
better explained on a very fine scale, such as soil compaction
(negatively) and humidity (positively). The variables C0–5

(pcorr < 0.001) and moisture content (pcorr < 0.05) contrib-
uted positively to the spatial structure model of new genus
1, whereas C5–10 (pcorr < 0.05), N0–5 (pcorr < 0.001), C:N0–5

(p < 0.01) and compaction (pcorr < 0.05) contributed nega-
tively to medium-scale patterns (Table 5).
With regard to the endogeic Andiodrilus sp., the

medium-scale spatial structure was explained by physical
variables associated with the size of soil aggregates, al-
though the values were not significant (pcorr > 0.05). When
species assemblages were used instead, new environmental
variables were detected (Table 5), i.e., variable P0–5 was
negatively correlated to the medium-scale pattern of as-
semblage of endogeics, and litter contributed nega-
tively to this pattern. For the epigeics and anecic
assemblage, litter and moisture contributed positively
to the medium-scale spatial structure model, although
this contribution was not significant (pcorr > 0.05).

Soil environmental control on earthworm species and
assemblage spatial patterns
The variation partitioning analysis revealed differences
among species regarding the explanatory variables (Table 6).
The entire set of environmental and spatial variables ex-
plained the various percentages of variation within the
community, species and species assemblage. In the case of
the earthworm community, the explained variation was
41.9%, of which 32.3% was explained by the soil environ-
ment but not the spatial variables (p = 0.005). The environ-
ment and fine-scale structure explained 4.98% of the total
variation, whereas the environment and medium-scale
structure together explained 2.93%. For the species alone,
the Ra

2 coefficient for the environmental fraction ranged
from 1% for Aymara to 48.0% for new genus 1. The
medium and fine spatial scales explained 15.4% and 13.4%
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for Aymara and 2% and 2.2% for new genus 1, respectively.
The amount of variation explained only by spatial variables
independent of the environment differed among species; it
ranged from 1.3% to 28.8% for new genus 2 and Aymara,
respectively (Table 6).

Discussion
Both spatial and environmental variables structured the
species, assemblages and earthworm community, although
variations were found in the explained contribution of en-
vironmental factors, i.e., 33.3% of the total variation of the
global spatial structure of the earthworm community was
explained by soil environmental variability. The specific
soil environmental variables that were significantly linked
to particular spatial scales for species and assemblages
were also observed in other studies of nematodes in a
forest [35]. To a certain extent, our results agree with
Hutchinson’s environmental control model [4], although a
large portion of the variation was also linked to a purely
spatial component (Table 6).
The selected PCNM variables highlighted significant
spatial patterns in earthworm assemblages from a gallery
forest, allowing us to identify the spatial scale at which
the earthworm community was structured. In general,
the very fine scale of autocorrelation detected in our
study represents spatial patterns of less than 10 m
(PCNMs 33, 51; Figure S1 in Additional file 1), fine
scales depicted patterns of 15–20 m (PCNMs 12), and
medium scales (PCNMs 3, 5, 8) represented spatial
patterns of >30 m (see details in Additional file 1). Fur-
thermore, our observation of very fine-, fine- and
medium-scale spatial relationships indicates the import-
ance of considering multiple scales during ecological
studies of soil organisms. In our study, we carefully
chose the scale used to sample earthworms to focus on
small-scale patterns. Additional studies are needed to in-
crease the scale of the sampling design, i.e., hundreds of
meters to several kilometres.
The influence of environmental constraints on the

spatial distribution of species assemblages has previously
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been demonstrated in a nearby savanna [29]. Moreover,
earthworm activity also contributes to soil heterogeneity
[33,37]. The joint influence of the soil environment and
species-created heterogeneity, i.e., the so-called “functional
domain” [47] of soil parameters, could explain the spatial
patterns observed on several scales. On very fine scales, the
environmental variables associated with the spatial distri-
bution of earthworms were more difficult to detect, i.e., the
concentration of soil C0–5 and moisture better explained
the spatial pattern of new genus 1 on fine and medium
scales compared with very fine scales, whereas Andiodrilus
sp. was mostly associated with physical variables, such as
size class aggregated distributions, because this medium-
size species produces compact casts that influence the sur-
rounding soil environment [32]. Very fine scales (PCNMs
32 and 50) may be overlooked by classical multivariate
analyses, as their relationships may be masked by those of
other explanatory variables associated with larger scales,
such as PCNM 3. As a detailed analysis of the soil environ-
mental variables was performed within a relatively small
area, some of the variation could be attributed to unmeas-
ured variables, leading to incomplete predictions [48].
Moreover, the fraction attributed solely to space was
smaller than all other fractions, except for Aymara (28.8%),
Glossodrilus (14.1%), and assemblages epigeics + anecic
and Andiodrilus, Aymara and new genus 1, which repre-
sented 23.5% and 22.2% of the total variance, respectively.
The factors affecting the spatial distribution of soil or-

ganisms at larger scales include gradients in soil organic
matter and vegetation structure [49], whereas at very
fine scales (<10 m) earthworm spatial distribution could
be influenced by local factors, such as the plant charac-
teristics, soil moisture and micro-topography. A variety
of plant species is likely to support important levels
of soil heterogeneity [50]. The root architecture or
fine-scale spatial patterns within the plant community
determine the spatial structures of earthworm popula-
tions through fine-scale soil environmental variations,
which is known as the “single-tree effect” [44]. Through
litter input and root leachates, trees directly influence
earthworm populations. They also indirectly influence
earthworm populations by altering the soil properties,
forming patches beneath tree canopies that influence
community structure and ecosystem function [51,52].
Species exclusion was also reported for the savanna
grass Imperata brasiliensis, as earthworms become in-
jured upon contact with its sharp-pointed roots [38]. In
our study, significant positive cross-correlations were
found for the CoRL and CoRW and the soil nutrient-
and physical-related variables. These close associations
between soil variables and vegetation structure have also
been described for epigeic invertebrate assemblages [19].
Regarding the importance of soil environmental vari-
ables, it should be noted that the influential factors ac-
cording to our analyses did not operate independently
but interacted (e.g., root traits and nutrients); these com-
plex interactions are characteristic of most ecological
systems [53].
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The idea that species distributions can be linked to
key abiotic variables on multiple scales is not new [54].
Our analysis for empirical data has shown that environ-
mental variables are indeed most important on broad
scales, whereas purely spatial patterns appear to domin-
ate on finer scales [55]. Applying PCNM analysis toward
large-scale assessment of species-environment relation-
ships is a well-established method [19,56,57]. Gilbert and
Bennett [43] and Smith and Lundholm [28] criticized the
application of variation partitioning to study the relation-
ship between environmental variables and space, although
they admitted that it yields useful results when carefully
used. Our present analysis supports an optimistic view of
this approach. All environmental patterns are spatially cor-
related on some scale [28], and all ecological processes are
spatial to some extent [1]. The common fraction of vari-
ance explained jointly by environment and space appears
to represent patterns generated by both environmental
factors and the limitations on species dispersal [28]. In our
study, the highest level of pure spatial variation was ob-
tained for the epigeics + anecic assemblage (23.5%),
whereas the endogeics assemblage showed the lowest level
(1.6%, Table 6). Species, or even earthworm ecological cat-
egories, show specific dispersal behaviors [58], with endo-
geics typically showing less dispersal than do epigeic and
anecic species.
We carefully selected the sampling scale and the spatial

statistics tools to address the ecological question at hand
[43]. We benefited from our previous knowledge regard-
ing the biology and ecology of the species found in the re-
gion where the survey was undertaken [29,32,33,37,38].
Our study lays the groundwork for further detailed ana-
lysis of spatial structuring environmental factors and spe-
cies assemblages on several scales, while also providing



Table 3 Cross-correlograms of the root- and nutrient-related soil variables (significant Bonferroni corrected two-sided p-values (0.05/11 = 0.0045) for each
distance class were tested using 999 permutations under the null hypothesis)

Variables Distance (number of pair points) Global

Plant below-ground1 Nutrient-related 5.0 (360) 8.5 (644) 12.8 (1112) 17.5 (1192) 22.6 (1548) 27.5 (1264) 32.1 (1128) 36.9 (1108) 42.0 (848) 47.3 (516) 52.8 (120) significance, p’

FiRL N0–5 0.090 0.028 0.021 −0.022 0.026 −0.011 0.005 −0.036 −0.004 −0.069 −0.133 NS

N5–10 −0.015 −0.042 −0.036 −0.034 0.046 * 0.027 0.008 −0.011 0.001 0.033 −0.088 NS

SOC0–5 0.063 0.039 0.027 −0.022 0.012 0.011 0.014 −0.043 −0.009 −0.097 * −0.076 NS

SOC5–10 0.051 0.077 * 0.082 ** 0.039 0.065 ** −0.027 −0.044 −0.092 ** −0.059 * −0.091 * −0.128 Significant

P0–5 0.025 0.024 0.060 * 0.016 0.033 0.007 0.010 −0.032 −0.079 * −0.175 ** −0.063 Significant

P5–10 −0.089 * −0.133 ** −0.060 * −0.013 0.025 0.055 * 0.028 0.038 0.001 −0.002 0.044 Significant

C:N0–5 −0.061 0.030 0.010 −0.001 −0.034 0.043 0.025 −0.011 −0.010 −0.045 0.122 NS

C:N5–10 0.053 0.099 * 0.093 ** 0.054 * 0.020 −0.043 −0.040 −0.069 ** −0.049 −0.101 ** −0.034 Significant

Litter 0.081 0.066 −0.020 −0.068 ** −0.008 −0.012 0.035 0.055 * −0.019 −0.053 −0.022 NS

CoRL N0–5 −0.019 0.028 0.016 0.015 −0.003 0.043 0.015 0.002 −0.057 * −0.142 ** 0.019 Significant

N5–10 −0.146 ** −0.036 −0.013 −0.020 −0.006 0.072 ** 0.054 * 0.030 −0.006 −0.085 * −0.009 NS

SOC0–5 −0.022 0.026 0.012 0.022 0.005 0.041 0.015 −0.005 −0.055 −0.139 ** 0.026 NS

SOC5–10 −0.007 0.093 ** 0.098 ** 0.030 0.001 0.037 −0.003 −0.084 ** −0.098 ** −0.121 ** 0.004 Significant

P0–5 0.014 0.048 −0.001 0.028 0.042 * 0.033 0.005 −0.030 −0.079 * −0.125 ** −0.068 NS

P5–10 −0.127 ** −0.122 ** −0.088 ** −0.028 0.026 0.063 ** 0.089 *** 0.076 ** −0.003 −0.042 −0.039 Significant

C:N0–5 −0.012 −0.003 −0.015 0.010 0.021 −0.006 0.003 −0.017 0.007 0.015 0.032 NS

C:N5–10 0.103 * 0.104 * 0.090 *** 0.041 0.005 −0.023 −0.045 −0.094 ** −0.077 * −0.033 0.007 Significant

Litter −0.036 0.005 0.010 −0.014 −0.002 0.012 −0.016 0.031 −0.020 0.035 −0.081 NS

FiRW N0–5 0.028 −0.021 −0.017 −0.062 * 0.012 0.015 0.044 −0.010 0.013 −0.069 0.001 NS

N5–10 0.062 0.010 −0.009 −0.006 0.062 ** −0.013 0.005 −0.047 −0.038 −0.052 −0.061 NS

SOC0–5 −0.043 −0.044 −0.013 −0.059 * −0.012 0.007 0.058 * 0.014 0.059 * −0.072 0.044 NS

SOC5–10 −0.075 −0.071 * −0.036 −0.058 * 0.022 −0.018 −0.021 0.012 0.109 *** 0.108 ** 0.125 Significant

P0–5 0.103 * 0.083 * 0.099 *** 0.041 0.022 0.036 0.005 −0.092 ** −0.150 ** −0.243 ** −0.157 Significant

P5–10 0.149 *** 0.145 ** 0.094 *** 0.086 ** 0.067 ** 0.028 −0.074 * −0.119 ** −0.192 ** −0.213 ** −0.203 * Significant

C:N0–5 −0.168 ** −0.040 0.011 0.017 −0.053 ** −0.025 0.025 0.051 0.105 ** 0.004 0.068 Significant

C:N5–10 −0.111 * −0.070 * −0.023 −0.048 * −0.027 −0.005 −0.020 0.045 0.122 ** 0.132 ** 0.154 Significant

Litter 0.060 0.054 −0.061 * −0.078 ** −0.001 −0.023 0.039 0.020 0.018 0.020 0.192 * Significant

CoRW N0–5 0.005 0.013 0.027 −0.023 −0.007 −0.003 0.020 0.025 −0.018 −0.084 * 0.015 NS

N5–10 −0.090 −0.020 0.021 −0.049 * −0.017 0.030 0.069 ** 0.037 0.028 −0.110 ** −0.014 NS

SOC0–5 0.003 0.014 0.020 −0.006 0.004 −0.004 0.019 0.004 −0.010 −0.092 * 0.021 NS
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Table 3 Cross-correlograms of the root- and nutrient-related soil variables (significant Bonferroni corrected two-sided p-values (0.05/11 = 0.0045) for each
distance class were tested using 999 permutations under the null hypothesis) (Continued)

SOC5–10 0.025 0.069 * 0.092 *** −0.018 −0.014 0.015 −0.001 −0.062 * −0.052 −0.031 −0.025 Significant

P0–5 −0.088 −0.061 −0.060 * −0.026 0.039 0.048 * 0.051 * 0.058 * 0.018 −0.095 * −0.148 * NS

P5–10 −0.183 ** −0.130 ** −0.104 ** −0.045 * 0.018 0.084 ** 0.115 *** 0.109 *** 0.024 −0.085 * −0.103 Significant

C:N0–5 −0.014 0.008 −0.019 0.039 0.029 −0.001 −0.003 −0.052 * 0.017 −0.011 0.037 NS

C:N5–10 0.091 * 0.074 * 0.063 * 0.022 0.003 −0.014 −0.056 * −0.082 ** −0.064 * 0.062 −0.015 Significant

Litter −0.059 0.050 0.011 0.028 −0.017 0.005 −0.033 0.002 0.017 0.003 −0.101 NS
1FiRL, fine root length; CoRL, coarse root length; FiRW, fine root weight; CoRW, coarse root weight.
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant.
The number of pair points (within brackets) and the lower and upper limits for each distance class employed while computing the cross-correlograms are indicated.
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Table 4 Cross-correlograms of the root- and soil physical variables (significant Bonferroni corrected two-sided p-values (0.05/11 = 0.0045) for each distance
class were tested using 999 permutations under the null hypothesis)

Variables Distance (number of pair points) Global

Plant below-ground1 Physical 5.0 (360) 8.5 (644) 12.8 (1112) 17.5 (1192) 22.6 (1548) 27.5 (1264) 32.1 (1128) 36.9 (1108) 42.0 (848) 47.3 (516) 52.8 (120) significance, p’

FiRL Agg0.053-0.125 −0.121 * 0.010 0.080 ** −0.001 0.036 −0.012 −0.061 * −0.034 0.046 −0.038 0.067 NS

Agg0.125-0.25 −0.005 0.103 ** 0.106 *** 0.038 0.037 −0.059 * −0.096 ** −0.055 * 0.030 −0.069 −0.112 Significant

Agg0.25-0.5 0.010 0.060 0.099 *** 0.049 * 0.043 * −0.040 −0.068 ** −0.069 ** 0.032 −0.131 ** −0.058 Significant

Agg0.5-1 0.043 0.125 ** 0.106 *** 0.054 * 0.029 −0.057 −0.069 * −0.073 * −0.008 −0.144 ** −0.098 Significant

Agg1-2 0.037 0.089 ** 0.065 ** 0.074 ** 0.022 −0.063 ** −0.058 * −0.037 0.013 −0.133 ** −0.095 Significant

Agg2-5 0.143 ** 0.127 ** 0.080 ** 0.061 * 0.016 −0.053 * −0.068 * −0.073 ** −0.025 −0.096 * −0.164 Significant

Agg5-10 −0.038 −0.027 −0.104 ** −0.008 −0.030 0.031 0.023 0.031 0.028 0.025 0.243 ** Significant

Agg > 10 −0.107 * −0.127 ** −0.085 ** −0.057 * −0.006 0.045 0.059 * 0.074 * −0.005 0.137 ** 0.062 Significant

BD −0.022 −0.045 −0.025 −0.015 −0.002 0.011 −0.001 0.028 −0.015 0.090 * 0.127 NS

Comp −0.128 ** −0.064 −0.047 0.011 0.009 0.003 0.013 0.041 −0.017 0.115 ** 0.167 * NS

Conduc 0.149 ** 0.123 ** 0.076 ** −0.002 0.003 −0.044 −0.031 −0.034 −0.029 −0.109 * −0.211 * Significant

Hum −0.233 ** −0.125 ** −0.118 ** −0.029 0.019 0.048 0.073 * 0.078 ** 0.003 0.102 * 0.219 * Significant

CoRL Agg0.053-0.125 0.025 0.016 0.040 0.038 0.019 −0.052 −0.022 −0.054 −0.020 0.034 0.030 NS

Agg0.125-0.25 0.099 * 0.121 ** 0.092 *** 0.063 * 0.003 −0.075 ** −0.056 * −0.094 ** −0.058 −0.006 0.035 Significant

Agg0.25-0.5 0.087 * 0.111 ** 0.093 ** 0.074 ** −0.001 −0.049 * −0.036 −0.108 ** −0.067 * −0.037 −0.086 Significant

Agg0.5-1 0.123 0.173 *** 0.095 *** 0.071 ** 0.006 −0.063 ** −0.061 * −0.114 ** −0.078 * −0.035 −0.052 Significant

Agg1-2 0.085 * 0.104 ** 0.069 * 0.046 * 0.015 −0.038 −0.033 −0.070 * −0.090 * −0.023 −0.088 Significant

Agg2-5 0.156 *** 0.173 *** 0.098 *** 0.058 −0.003 −0.058 * −0.062 * −0.102 ** −0.081 * −0.072 0.008 Significant

Agg5-10 −0.057 0.000 −0.080 ** −0.051 * 0.007 −0.035 0.029 0.060 * 0.080 ** 0.062 0.034 Significant

Agg > 10 −0.133 ** −0.174 ** −0.082 ** −0.070 ** −0.013 0.067 * 0.059 * 0.119 *** 0.074 * 0.048 0.055 Significant

BD −0.061 −0.061 −0.053 * −0.014 0.008 0.030 0.022 0.013 0.024 0.070 * −0.068 NS

Comp −0.027 −0.064 −0.040 −0.041 −0.006 0.000 0.027 0.035 0.045 0.086 * 0.044 NS

Conduc 0.068 0.149 *** 0.064 * 0.031 −0.005 −0.015 −0.038 −0.049 −0.070 * −0.102 ** −0.017 Significant

Hum −0.123 ** −0.163 ** −0.114 ** −0.030 0.018 0.011 0.087 *** 0.070 ** 0.070 * 0.088 * 0.068 Significant

FiRW Agg0.053-0.125 −0.099 * 0.017 0.073 ** 0.014 0.004 −0.027 −0.050 −0.022 0.055 0.006 0.032 NS

Agg0.125-0.25 −0.134 ** −0.033 −0.007 −0.033 −0.008 −0.055 * −0.024 0.041 0.149 *** 0.100 ** 0.070 Significant

Agg0.25-0.5 −0.087 * −0.043 0.001 −0.041 −0.001 −0.030 −0.010 0.015 0.144 *** 0.016 0.080 Significant

Agg0.5-1 −0.069 −0.020 0.004 −0.051 * −0.006 −0.030 0.017 0.013 0.092 *** −0.008 0.100 Significant

Agg1-2 −0.073 −0.018 −0.064 * −0.048 0.001 −0.014 0.032 0.043 0.107 *** −0.021 0.081 Significant

Agg2-5 −0.098 * −0.082 * −0.080 ** −0.065 ** −0.029 −0.026 0.042 0.057 * 0.174 *** 0.086 * 0.093 Significant

Agg5-10 0.019 0.048 −0.027 0.034 −0.021 0.041 0.009 −0.040 −0.075 * 0.004 0.055 NS
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Table 4 Cross-correlograms of the root- and soil physical variables (significant Bonferroni corrected two-sided p-values (0.05/11 = 0.0045) for each distance
class were tested using 999 permutations under the null hypothesis) (Continued)

Agg > 10 0.091 * 0.056 0.063 ** 0.057 * 0.036 0.022 −0.039 −0.047 * −0.155 ** −0.084 * −0.087 Significant

BD 0.090 * 0.112 ** 0.049 0.060 * 0.049 * 0.000 −0.098 ** −0.082 ** −0.119 ** 0.033 −0.015 Significant

Comp −0.072 −0.011 −0.014 0.011 0.016 0.020 −0.044 * 0.028 −0.020 0.096 * 0.006 NS

Conduc −0.016 −0.055 −0.042 −0.036 −0.052 * 0.010 0.066 * 0.048 * 0.058 * −0.023 −0.003 NS

Hum −0.037 −0.006 0.002 0.017 0.004 0.029 −0.008 0.009 −0.068 * 0.039 −0.011 NS

CoRW Agg0.053-0.125 0.056 0.001 0.033 0.038 0.000 −0.069 ** −0.012 −0.042 −0.017 0.079 * 0.044 NS

Agg0.125-0.25 0.135 ** 0.112 ** 0.076 ** 0.042 −0.020 −0.091 ** −0.050 −0.087 ** −0.042 0.076 * 0.097 Significant

Agg0.25-0.5 0.103 * 0.081 * 0.073 ** 0.040 −0.017 −0.076 ** −0.019 −0.082 ** −0.056 0.047 0.037 NS

Agg0.5-1 0.120 ** 0.113 ** 0.070 ** 0.049 −0.025 −0.083 ** −0.049 −0.073 * −0.019 0.041 0.029 Significant

Agg1-2 0.088 0.103 ** 0.052 * 0.042 −0.024 −0.056 * −0.046 −0.047 −0.055 0.062 0.026 Significant

Agg2-5 0.169 *** 0.165 *** 0.085 ** 0.053 * −0.042 * −0.083 ** −0.080 ** −0.076 ** −0.036 0.012 0.122 Significant

Agg5-10 −0.052 0.038 −0.045 −0.008 −0.017 −0.004 −0.010 0.044 0.080 * −0.010 −0.062 NS

Agg > 10 −0.140 ** −0.155 ** −0.081 ** −0.054 * 0.029 0.079 ** 0.082 *** 0.090 *** 0.038 −0.034 −0.081 Significant

BD −0.106 * −0.096 * −0.058 * 0.008 0.009 0.060 * 0.033 0.035 0.001 0.018 −0.109 NS

Comp 0.003 −0.012 −0.007 −0.018 −0.027 0.026 0.006 0.021 −0.024 0.059 0.063 NS

Conduc 0.047 0.097 ** 0.049 * 0.026 −0.026 −0.029 −0.054 * −0.024 0.007 −0.054 −0.009 NS

Hum −0.102 * −0.084 * −0.044 −0.018 0.022 0.019 0.056 * 0.052 * −0.019 0.023 0.052 NS
1FiRL, fine root length; CoRL, coarse root length; FiRW, fine root weight; CoRW, coarse root weight.
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant.
The number of pair points (within brackets) and the lower and upper limits for each distance class employed while computing the cross-correlograms are indicated.
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Table 5 Significant positive/negative relationship between the spatial characteristics of earthworm species and the soil
environmental variables measured in this study
Earthworm community, species and
assemblages

Scales

Medium >30 m Fine 10-20 m Very fine <10 m

Vars Coeff Pinit
§ Pcorr Vars Coeff Pinit Pcorr Vars Coeff Pinit Pcorr

Community P5–10 Positive * NS Litter Negative * NS N5–10 Positive *** **

- - - - Comp Positive * NS C5–10 Negative ** *

- - - - - - - - C:N5–10 Positive ** *

- - - - - - - - Humidity Negative * NS

New genus 1 C0–5 Positive *** *** C0–5 Positive *** *** Comp Negative ** *

N0–5 Negative *** *** N0–5 Negative *** *** Humidity Positive ** *

C:N0–5 Negative *** ** C:N0–5 Negative *** *** - - - -

Compaction Negative ** ** Compaction Negative ** ** - - - -

Humidity Positive ** * C5–10 Negative ** * - - - -

C5–10 Negative ** * Litter Negative ** * - - - -

- - - - Humidity Positive ** * - - - -

Andiodrilus Ag0.25-2 Positive * NS - - - - - - - -

Ag2 Positive * NS - - - - - - - -

>Ag5 Positive * NS - - - - - - - -

<Ag0.25 Positive * NS - - - - - - - -

Glossodrilus - - - - Compaction Positive * NS - - - -

New genus 2 - - - - P0–5 Positive ** * - - - -

- - - - Ag0.25.2 Negative * NS - - - -

- - - - Ag2 Negative * NS - - - -

- - - - >Ag5 Negative * NS - - - -

- - - - <Ag0.25 Negative * NS - - - -

- - - - Litter Positive * NS - - - -

- - - - N5–10 Negative * NS - - - -

- - - - PR5 Positive * NS - - - -

Aymara Compaction Positive ** NS PR20 Negative * NS - - - -

Humidity Negative ** NS - - - - - - - -

FiRL Positive * NS - - - - - - - -

Martiodrilus Humidity Positive * NS P5–10 Positive * NS - - - -

FiRL Negative * NS

Endogeics P0–5 Negative *** ** Litter Negative * NS - - - -

Epigeics + anecic Compaction Negative ** NS PR20 Negative ** NS PR10 Positive * NS

Litter Positive ** NS BD Negative * NS - - - -

Humidity Positive * NS PR5 Positive * NS - - - -

Andiodrilus, Aymara and new genus 1 Litter Positive ** NS BD Negative ** NS Compaction Negative ** NS

Compaction Negative ** NS PR20 Negative * NS Humidity Positive ** NS

Humidity Positive * NS P5–10 Positive * NS C0–5 Positive * NS

- - - - N5–10 Negative * NS N0–5 Negative * NS

Martiodrilus, Glossodrilus and new genus 2 P0–5 Positive * NS - - - - - - - -

Compaction Negative * NS - - - - - - - -

CoRW Negative * NS - - - - - - - -

Cond Negative * NS - - - - - - - -
§A false discovery rate (FDR) procedure was applied to correct the initial p-values (see text for explanation).
* p < 0.05; ** p < 0.01; *** p < 0.001; NS, not significant.
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Table 6 Significant PCNM variables (spatial models with eigenfunctions associated with a positive Moran's I) for
medium, fine and very fine spatial scales and results of the variation partitioning analysis using adjusted R coefficients
(Ra

2), i.e., the amount of variance explained by the environment, the spatial scales and residuals

Species and
assemblages

Number of PCNM
eigenvectors

Scales Variation partitioning, Ra
2 Residual

unexplained

Medium Fine Very fine Environment Medium
scale

Fine, very
fine scale

Pure
spatial

Community 6 3, 5, 8 12 33, 51 0.330 ** 0.031 NS 0.01 NS 0.018 0.581

Andiodrilus 1 - 24 - 0.129 ** 0.041 * - 0.041 0.777

Aymara 9 1, 2, 5 15, 20, 24 30, 44, 47 0.002 NS 0.154 ** 0.134 ** 0.288 0.623

Glossodrilus 3 - 13, 24 50 0.053 * 0.081 ** 0.056 ** 0.141 0.785

Martiodrilus 2 5 - 56 0.032 * 0.038 * 0.048 * 0.096 0.867

New genus 1 7 3, 8 12,16 29, 33, 51 0.480 * 0.020 * 0.022 * 0.042 0.369

New genus 2 3 - - 29, 33, 49 0.176 ** - 0.012 NS 0.013 0.812

Endogeics 4 1, 10 21 65 0.153 ** - 0.015 NS 0.016 0.816

Epigeics + anecic 7 8, 11, 15 20, 33 47, 51 0.145 ** 0.098 ** 0.118 ** 0.235 0.639

Andiodrilus, Aymara and
new genus 1

6 8, 11 20, 33 56, 63 0.198 ** 0.123 ** 0.077 ** 0.222 0.526

Martiodrilus, Glossodrilus
and new genus 2

2 2, 5 0.101 ** 0.058 * - 0.058 0.762

* p < 0.05; ** p < 0.01; NS, not significant.
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clues for developing an accurate and spatially explicit sam-
pling design for earthworm communities. In addition, the
utility of the tools used to select species assemblages and
analyze their spatial attributes relative to the soil environ-
mental variability was clearly demonstrated. We are
confident that our results provide crucial insight into the
spatial relationship between species assemblages and soil
environmental variability on scales that range several tens
of meters. The selection of assemblages from the corres-
pondence analysis, in this case epigeics versus endogeics,
and the statistical methods used to draw our conclusions
provide insights that improve understanding regarding
why particular species assemblages are found at particular
sites. From an ecological point of view, our study not only
suggests that specific environmental factors determine the
structure and spatial distribution of earthworms in the gal-
lery forest but also indicates that a large proportion of un-
explained variation exists. Whether this variation is the
result of unmeasured soil environmental variables or null
model (random) patterns is a subject for further research.

Conclusions
Earthworms were spatially structured within a relatively
small but highly heterogeneous plot; i.e., even at ranges of
just a few meters, a multi-scale spatial pattern was ob-
served. The amount of variation jointly explained by the
environment and space was not high. However, these
sources of variation should not be neglected because they
represent unmeasured soil environmental factors and pro-
cesses that limit species dispersal. Further studies are
needed because dispersal traits, for example, remain largely
unknown in many earthworm communities. In conclusion,
specific abiotic factors were responsible for the observed
patterns, and the importance of these patterns needs to be
elucidated, even if the multi-scale approach carries add-
itional difficulties and caveats when interpreting the results.

Methods
Study area
Sampling was conducted in a gallery forest (GF) at the
CORPOICA-CIAT Carimagua field research station in the
Eastern Plains of Colombia (4° 37’ N, 71° 19’W, 170 m a.s.l.).
The study area is a well-drained savanna forming a young
alluvial plain consisting of Pleistocene and Holocene sedi-
ments of Andean origin. The terrain is characterized by
open herbaceous savannas where GFs follow a dense
braided drainage network of rivers toward the Orinoco
catchment. The yearly average temperature and precipita-
tion are 26°C (iso-hyperthermy) and 2,200 mm, respect-
ively, with clayey Oxisols of low pH (4.2-4.4 in water) and
fertility, with low available P (1–2 ppm Bray II) and Al sat-
uration >90% (CIAT data).
The plant community of the GF is characterized by

several tree species, including Dendropanax arboreus (L.)
Decne. & Planch. (1854) (Araliaceae), Enterolobium spp.
(Leguminosae), Ficus spp. (Moraceae), Jacaranda copaia
(Aubl.) (Bignoniaceae), Copernicia tectorum (Kunth)
Mart. (Caesalpiniaceae), and Cecropia sp. (Cecropia-
ceae). Other species include Mauritia flexuosa L.f. and
Mauritiella (Palmaceae), Attalea maripa (Palmaceae),
Nectandra membranacea (Sw.) Griseb. (Lauraceae),
Didymopanax morototoni (Aubl.) Decne. & Planch.
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(Araliaceae), Virola sp. (Myristicaceae), and Hymenaea
courbaril L. (Caesalpiniaceae) [59].
Earthworms and soil sampling
Earthworms and soil samples were collected at 100 sam-
pling points evenly distributed within a 45 × 45 m2 grid
with 5 m of inter-sample distance (Figure 5). The earth-
worms were identified, and their abundance was counted
in situ from soil blocks of 25 × 25 cm2 and a depth of
20 cm [60]. Previously, the fresh, tower-like casts depos-
ited on the soil surface by Martiodrilus sp. (anecic) were
counted at each point within 1 m2 quadrats, as they are re-
liable indicators of the number of active individuals [61].
In total, 400 soil samples were collected for physical

and chemical analyses. Soil cores were collected along
the four sides of each sampling point (Figure 5). The
core method (5 cm depth and 5 cm diam. metal cylin-
der) was used for bulk density (soil dry mass per vol-
ume) following [62]. Water content (soil water per
volume and soil water per dry mass) was determined
gravimetrically, and hydric conductivity and susceptibil-
ity to compaction were also measured [63].
A second core (10 cm depth and 5 cm diam. metal cy-

linder) was used for soil organic carbon (SOC), nitrogen
(N) and phosphorous (P) measurements at 0–5 and 5–
10 cm. The soil was then oven dried at 75°C for 48 h
and finely ground (<200 μm). A standard colorimetric
method was used after digestion in H2SO4 to measure
SOC, and the Kjeldahl method was used to assess the
total N. Available P was determined using the Bray-II ex-
traction method. C:N and C:P ratios were calculated as
the SOC concentration divided by the total N and P
concentrations, respectively.
Another soil core (15 cm depth and 10 cm diam.) was

taken to assess the size-class aggregate distribution; ca.
100 g of air-dried soil was mechanically shaken in a sieve
column of 4.75, 2, 1, 0.5 and 0.250 mm for 30 min. The
last soil core (15 cm depth and 10 cm diam.) was used
for root length and biomass quantification. Soil was
washed in the lab and sieved to separate the fine
(<2 mm) and coarse roots (>2 mm) and then oven dried
at 105°C for 48 h.
Resistance to penetration (RP) was measured (3 repli-

cates) using a hand penetrometer at each sampling
point. The soil moisture content (volumetric) of the top-
soil at the time of sampling was ca. 38% (pF = 2.8).
Multivariate ordination analysis (CA)
Species abundance (raw data) was analyzed using corres-
pondence analysis (CA). When the species abundance was
<5% of the total, it was removed from the species matrix.
The extracted factorial axes allowed us to identify various
species assemblages, i.e. these were defined according to
the sum of the individuals of all species linked to positive
or negative row scores of the three axes.

Species assemblage patches and gaps
SADIE (Spatial Analysis Distance IndicEs) analysis [64,65]
was used to assess the presence of significant patches and
gaps within species assemblages. The index uses count
data, i.e., the total number of individuals who corre-
sponded to any of the assemblages identified per sampling
point. A global index of aggregation (Ia) is computed:

Ia ¼ D=Ea;

where D is the distance moved to achieve the regular
pattern for the observed data and Ea is the arithmetic
mean distance to regularity for non-regular randomized
samples [64].
Ia equals 1 for a random distribution, whereas it is >1

or <1 for either a clumped (aggregated) or regular spatial
pattern, respectively [65].
SADIE identifies clusters of high (patches) and low

(gaps) mean density, respectively, and these clusters are
categorized as vi (positive) and vj (negative cluster
index). A patch or gap comprises at least one sample lo-
cation where the cluster index (vi or vj) is significant at
the heuristic threshold of 1.5 and −1.5, respectively. Ad-
jacent sample locations with significant index values
form a single cluster [65]. The observed vi or vj indices
are tested using random permutations against the H0 of
complete spatial independence of counts [66].
In this study, we used positive and negative row scores

extracted from the CA to obtain count data and compute
the SADIE vi and vj cluster indices. Factorial coordinates
have been used as a typical procedure to analyze the inner
structures of data matrices for community analysis
[29,33,37-39,67,68]. Because the row scores and factorial
coordinates are not count data, which is a requisite for ap-
plying SADIE statistics, the various assemblages were ob-
tained by summing the earthworm count data linked to
the positive and negative row scores along the CA axes.
Finally, a spatial association/dissociation index was com-

puted between species assemblage pairs [66]. The local as-
sociation indices calculated from their individual sampling-
unit clustering indices are correlated between species
assemblage pairs. The observed value of the association
index is tested against the H0 of complete spatial independ-
ence of the counts (based on random permutations). The
two-tailed associated probability levels at α = 5% are <0.025
and >0.975 for significant association and dissociation,
respectively [66].

Spatial autocorrelation analysis
In the presence of a spatial dependence, the observation
made at one location is more similar to observations



Figure 5 (See legend on next page.)
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Figure 5 Sampling protocol used with a regular grid of 10 x 10 sampling points and a 5 m inter-sample distance. A total of 400 soil
samples were collected for the various soil analyses and 100 soil monoliths for earthworm species counts. The location of tree species (>5 m
diameter at breast height, DBH) within the surveyed 0.2 ha plot are shown together with the soil pit where the earthworms were sampled,
identified and counted, as well as the four soil cores taken for physical and chemical determinations from each of the 100 sampling points.
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made at nearby sites [2], breaking the rule of sample in-
dependence for statistical analyses [23]. To assess the
degree of spatial autocorrelation, the (semi)-variogram is
a function that describes the spatial pattern of any vari-
able with increasing inter-sample (lag) distance. When
positive autocorrelation exists, the semi-variance γ(h) in-
creases until it reaches a maximum value (the “sill”) for
a given lag distance, which is referred to as the range.
This parameter defines the limit of spatial dependence
of the variable concerned (detailed in [22,69]). Estimated
values of γ(h) are adjusted using a theoretical model
[70,71] that is later applied with an interpolation tech-
nique called “kriging” to estimate values of the variable
under study at non-sampled sites [22]. In our study,
interpolated maps were used for root-related variables
using only the modeled parameters obtained in the
variogram [33].
Cross-variograms can be calculated to assess how two

variables co-vary in space [72]. Similar to univariate var-
iograms, cross-covariances may be computed using the
values of two distinct variables observed at locations
separated by lag h [73]. However, variograms and cross-
variograms are not associated with formal testing for de-
partures from randomness (an r2 correlation coefficient
could be used to adjust the curve). However, in our
study, spatial cross-correlation among the root-related
variables, soil nutrient contents and physical variables
was assessed by calculating the spatial cross-correlogram
[55,74]. A spatial autocorrelation coefficient, named
Moran’s I, is plotted in the correlogram for increasing
distance classes [75]. Data were allocated to 11 distance
classes with a minimum of 50 pairs of points for each
distance class to compute the cross-correlogram. The
significance of the correlogram is tested with a Monte
Carlo simulation [20]; it is significant when at least one
coefficient is lower than the Bonferroni corrected p′ of
α′ = α/k for the k distance classes used [76]. Data nor-
mality was tested with a Kolmogorov–Smirnov test;
when the normality assumption was not confirmed, a
Box–Cox transformation was used [77]. The gstat and
ncf packages of the R program 2.15.1 [78] were used to
compute the variograms and cross-correlograms and to
depict the kriged maps.

Principal coordinates of neighbor matrices (PCNM) and
variation partitioning
The multi-scale spatial analysis of fauna data and soil
environmental variability was performed using PCNM
analysis [24,79]. This method allows to capture ex-
tremely complex structures [80] and is based on the
principal coordinate analysis (PCoA) of a truncated pair-
wise geographic distance matrix between sampling sites
[25]. It creates PCNM variables (spatial predictors or
eigenfunctions) and a spectral decomposition of spatial
relationships from broad to fine spatial scales [81] that is
encompassed by the data matrix among sampled sites
and then determines to which PCNM variables the re-
sponse data (uni- or multivariate) respond statistically
[79]. Only spatial eigenfunctions associated with positive
eigenvalues based on Moran’s I were used to define the
spatial structures [3], which represents a highly conser-
vative method due to its penalization of degrees of free-
dom and adjusted R2 statistics [43].
The PCNM variables that significantly contribute to-

ward explaining the species response data are grouped
into a small number of submodels, whereas they are
normally assigned to broad, intermediate, and fine
scales. The predicted values generated for each submo-
del can then be reanalyzed using canonical analysis
against environmental variables to identify the environ-
mental variables associated with species distributions
on the scale represented by each submodel [25]. The
forward-selection procedure was used [82] to reduce
Type I error, as it is known to underestimate the re-
sidual variance [83]. In other words, the probability of
selecting at least one PCNM is greater than the chosen
significance level, even if the response variable is not
spatially structured [80]. Appropriate and rigorous ap-
proaches for submodel selection have been argued by
[43] and [81] is support of improving the methodo-
logical developments in MEM-based methods. Scale is
generally defined according to the main features of the
sampling design, such as the extent of the study area or
the size and spacing of the sampling units [84]. Given
the dimensions of the plot (45 × 45 m) and our know-
ledge on the spatial distribution of various earthworm
species in the area [33,37,38], the scales were grouped
for convenience into medium (>30 m), fine (10–20 m)
and very fine (<10 m).
The next step is to relate the spatial components using

significant Bonferroni-adjusted p values extracted from
the species matrix with soil variables. In other words,
species-soil environment regression analysis is per-
formed independently on each scale identified by the
PCNM variables. Variogram analysis for each PCNM
variable is performed to identify the spatial scale at
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which the relationship was significant. The lowest value
of the Akaike information criterion (AIC) identifies the
best spatial model.
Partitioning the variation of a species response data

table among two or more explanatory tables is per-
formed using multivariate variation partitioning [85],
which determines how much of the species variation is
spatially structured and associated with the measured
environmental variables [57,80]. The variation partition-
ing analysis is based on the adjusted R2 statistic Ra

2 [86],
and patterns on finer scales identified by the PCNM
variables appear smoother compared to other spatially
explicit models, such as nested variograms and filter
kriging [79].
The data matrix included count data for 6 earthworm

species, 23 soil environmental variables (Additional files 3
and 4) and xy coordinates for 100 sampling points. It has
been recommended that fauna data should be detrended
and transformed during PCNM analysis. Contrary to cor-
respondence analysis, earthworm abundance data were
Hellinger transformed because PCNM has been found to
be inappropriate for raw data that includes many null
abundances [87]. Earthworm spatial distribution is repre-
sented by patches, and clearly meaningful trends are rarely
observed; consequently, the data were not detrended. In
other words, we were cautious with the use of tests to de-
termine the presence of trends because they are likely not
appropriate for patchy patterns. The packages vegan, mass
and packfor were used for all the calculations needed dur-
ing PCNM analysis in R 2.15.1 [78].

Adjustment of the probability level
The α < 0.05 probability level was corrected using the false
discovery rate (FDR) procedure for multiple comparisons
[88], in which the power of multiple tests is optimized
while controlling for the proportion of significant results
that might be Type I errors. The p values from the individ-
ual tests are used to perform the corrections and search
for significant differences at the corrected probability level.
The comparison starts with the highest p value obtained
from the individual tests, then each value is checked until
encountering the first value that meets the requirement,
i.e., the highest p value that is smaller than the corrected p
[89]. The transformations include the following:
p(i) ≤ (α/m)*i , where m is the number of tests (vari-

ables) and i is the test (variable) ranked in ascending
order, i.e., p(1) ≤….. ≤ p(m). The final p value corre-
sponded to the following correction:

pcorr ¼ 0:05 � number of variablesð Þ=ranked p maximumð Þ

During PCNM analysis, three tests were performed
that corresponded to the three spatial scales used: the
medium, fine and very fine scales.
Additional files

Additional file 1: Plot at the grid nodes of the PCNM variables
selected to model earthworm distribution. A square size is
proportional to the value associated to positive (black squares) and
negative (white squares) spatial autocorrelation with medium- to
fine- and very fine-scale spatial models. Lower order vectors represent
broad-scale groupings, and higher order vectors represent more
fine-scale groupings. These eigenvectors represent a multi-scale metric
for grouping sites, and thus do not represent any computed soil
parameter that was measured at sampling sites. The size of the
symbols is proportional to the PCNM variables.

Additional file 2: Map of the fitted scores of the significant
canonical axes in the PCNM analysis for species (A) and species
assemblages and the whole community (B). The size of squares is
proportional to its associated value; black and white colors indicate
positive and negative signs of the value associated to the square,
respectively.

Additional file 3: Raw count data of species in each sampling point
and the resulting assemblages obtained from the positive and negative
row scores of the three axes extracted in the correspondence analysis.
These data were later use to calculate SADIE vi and vj cluster indexes.

Additional file 4: Summary statistics of soil environmental variables
analysed in this study.
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