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Abstract
Earlier models of plant-herbivore interactions relied on forms of functional response that related
rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate.
These models fail to predict a growing number of findings that implicate chemical toxins as
important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests
that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores
feeding on toxin-containing plants must avoid saturating their detoxification systems, which often
occurs before ingestion rates are limited by mechanical handling of food items. In light of the
importance of plant toxins, a new approach is needed to link herbivores to their food base. We
discuss necessary features of such an approach, note recent advances in herbivore functional
response models that incorporate effects of plant toxins, and mention predictions that are
consistent with observations in natural systems. Future ecological studies will need to address
explicitly the importance of plant toxins in shaping plant and herbivore communities.

The importance of plant-herbivore interactions
By definition herbivores depend on plants to survive. The
need to obtain suitable food in sufficient amounts drives
innumerable herbivore behaviors; for example, move-
ment decisions often are related to the distribution and
abundance of plant resources [1]. By the same token, her-
bivores can exert strong effects on plant growth, survival,
and population size by virtue of their feeding habits. Plant
demographic effects are especially severe during cyclical
peaks or irruptions in herbivore populations [2,3]. More-
over, the ecological effects of herbivores can extend
beyond populations. Differential foraging among species
can affect outcomes of competition, facilitate invasion of

extant communities, and alter patterns of plant succes-
sion, diversity, and dominance [4-6].

Conventional modeling approaches
When focusing on optimal diet choice by herbivores, ecol-
ogists traditionally have relied on linear programming or
linear dynamic programming methods [7,8]. Given a
choice of two or more non-equivalent food types, these
methods solve for optimal diet composition subject to
constraints imposed by daily energy requirements, feed-
ing time, digestive capacity, or nutrient requirements. Lin-
ear programming appears to provide reasonable
predictions of diet composition for many species [9].

Published: 24 February 2009

BMC Ecology 2009, 9:5 doi:10.1186/1472-6785-9-5

Received: 22 October 2008
Accepted: 24 February 2009

This article is available from: http://www.biomedcentral.com/1472-6785/9/5

© 2009 Swihart et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/1472-6785/9/5
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19239698
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Ecology 2009, 9:5 http://www.biomedcentral.com/1472-6785/9/5
However, it does not address population-level dynamics
of herbivores and plants.

Consumer-resource interactions at the population level
can be modeled using equations that relate the rate of
resource intake by a consumer to resource abundance
[10]. These so-called "functional-response" models link
herbivore behavior and plant characteristics to popula-
tion- and community-level consequences. In these mod-
els, upper limits to rates of consumption by herbivores are
determined, either implicitly or analytically, by combin-
ing mechanical factors such as bite size and rate with plant
quantity [11-13].

Ignore plant toxins
A problem with conventional plant-herbivore models is
their failure to incorporate factors related to plant quality
into decelerating functional responses. For many herbiv-
ores, plant toxicity plays an important role in diet choice
[14,15]. Indeed, plants in both tropical and temperate sys-
tems appear to have evolved a variety of chemical
defenses, many of which are unique to particular plant
species [16]. For instance, many Australian Eucalyptus trees
produce 1,8-cineole, a monoterpene that serves as a
potent deterrent to herbivorous marsupials such as brush-
tail possum, Trichosurus vulpecula [17]. Creosote bush
(Larrea tridentata) in the western United States produces
phenolic resins containing nordihydroguaiaretic acid,
which limits intake by desert woodrats, Neotoma lepida
[18]. Tree birches (Betula) in boreal North America pro-
duce the triterpene papyriferic acid as a deterrent to feed-
ing by snowshoe hares, Lepus americanus [19]. Although
most work on chemical defenses against vertebrate her-
bivores has involved mammals [14], plant toxins also
influence herbivorous birds. For instance, aspen (Populus
tremuloides) produces coniferyl benzoate, a phenylpropa-
noid ester that inhibits feeding by ruffed grouse, Bonasa
umbellus [20].

In addition to interspecific differences, production of tox-
ins varies ontogenetically within plants, and among indi-
viduals and populations within species. Intraspecific
variation in chemical defense often contains strong
genetic components [21-23]. When combined with spa-
tial variation in environmental conditions and herbivory,
substantial geographic variation in defense can occur
within species [24,25]. Ontogenetic variation in defensive
responses of many plants is shaped by constraints on
resource allocation and sensitivity to fitness consequences
of herbivory [26]. For instance, winter browsing of plants
by mammals has severe repercussions for fitness during
the juvenile stage and was linked to greater defense of
juveniles in a review of 37 woody species [27].

And coping strategies of herbivores
One consequence of feeding on plants containing toxins
is that rates of ingestion may be limited by an herbivore's
ability to avoid toxins or detoxify food rather than to
mechanically process food. Not surprisingly, herbivores
have developed a host of physiological and behavioral
mechanisms to deal with plant secondary metabolites
[28]. Physiologically, vertebrates can regulate absorption
of plant toxins by gut cells, respond to chemically medi-
ated taste and trigeminal stimulation, and detoxify
lipophilic compounds via enzymatic biotransformation
[14]. For instance, marsupial folivores oxidize plant terpe-
nes using P450 enzymes, and species with diets high in
monoterpenes exhibit greater capacity for biotransforma-
tion of toxins than their generalist counterparts [29].
Behaviorally, vertebrates can select plants or plant parts
containing low concentrations of a toxin [30], manage
food to leach toxins from plants [31,32], self-medicate to
ameliorate effects of toxins [33], and adjust meal duration
and intake per meal [34,35]. An ability to regulate intake
of plant secondary metabolites has been reported for sev-
eral species of vertebrate herbivores [17,34,36]. For
instance, brushtail possums ate more of the toxin ben-
zoate when the rate at which it could be detoxified by con-
jugation was increased by adding glycine to the diet [37].
Herbivores also achieve greater intake of nutrients by
selecting mixed diets containing foods processed by dif-
ferent detoxification pathways, thereby avoiding satura-
tion of any particular pathway [38,39]. Regardless of the
strategies used by herbivores, costs of detoxification often
are high. For desert woodrats subsisting on a diet contain-
ing a toxin-rich juniper (Juniperus monosperma), detoxifica-
tion costs are comparable to energy needed for
reproduction [40]. For ruffed grouse feeding on aspen, 10
percent of metabolizable energy is lost each day in
biotransformation conjugates; additional losses of energy
in the conjugation process and of nitrogen due to excre-
tion of amino acid conjugates elevate the cost further [36].
In the face of such costs, vertebrate herbivores face life-his-
tory tradeoffs associated with allocation of resources to
growth and reproduction [41].

Needed: A toxin-determined functional 
response
In light of the widespread nature of plant toxins and their
influence on herbivores, a new approach to linking her-
bivores to their food base is needed if we are to under-
stand implications for herbivore populations and plant
communities. Traditional functional responses for verte-
brate herbivores have not considered the role of plant tox-
ins. At least three analytical modifications should be
considered when incorporating the effects of toxins on
plant-herbivore dynamics. Toxin-mediated functional
responses should (1) explicitly account for the negative
effects of plant toxins on herbivore growth; (2) permit
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herbivores to regulate intake of toxins; and (3) allow for
intake of multiple plants that are detoxified with inde-
pendent pathways. Recently, progress has been made in
the first two areas [42,43]. Specifically, a conventional
functional response has been modified [43,44] to take the
form of C(N):

where

The term f(N) is the traditional Holling Type 2 functional
response in which N is plant biomass, e is resource
encounter rate, h is handling time for each plant, and σ is
the fraction of encountered food items that are ingested,
thereby allowing herbivores to regulate their intake. The
second factor in C(N) explicitly accounts for the negative
effect of toxins. The parameter G stands for the ratio M/T,
where M is the maximum amount of toxicant per unit
time that the herbivore can tolerate and T is the amount
of toxicant per unit of plant biomass. The factor 4 simpli-
fies the peak value of C(N) as a function of N. In the limit
that 1/G << 1, the effect of the toxicant can be viewed as
purely a slowdown in feeding rate. For example, in that
limit C(N) above is an approximation of

So in (2), the presence of toxin simply results in an effec-
tive increase in the handling time that is proportional to
1/G.

Related functional response models have been formu-
lated to examine how plant growth is limited when the
presence of one resource interferes with another resource
or is toxic [45]. In other models, additive effects of nutri-
ent limitation of plant growth have been incorporated
[46]:

N1 and N2 represent the concentrations of nutrients limit-
ing plant growth, Cmax is the maximum possible rate of
nutrient-limited plant growth, and K1 and K2 are constants
reflecting the stoichiometry of the two nutrients in the
plant. Note that in the limiting case, as N1/N2 approaches
zero, (3) reduces to the traditional Michaelis-Menten

equation for N1, with K1 as a half-saturation coefficient
[47]. More importantly from our perspective, increasing
availability of the co-limiting nutrient, N2, causes growth
rate to increase in (3), whereas in (2) an increasing con-
centration of toxin in food relative to the rate of toxin
ingestion the herbivore can tolerate, 1/G, decreases
growth rate. In both equations, this change in C is due to
a change in size of the third term in the denominator.

The toxin-determined functional response (1) differs
from plant-nutrient models (3) because toxins can do
more than reduce feeding rate. Specifically, when 1/G is
large (and hence each gram of plant is quite toxic to her-
bivores), the functional response can represent a more
serious deterioration of the herbivore's ability to feed or
survive. Analysis has demonstrated the critical importance
of σ to herbivore dynamics; in the presence of a toxin,
selection should act strongly to regulate intake below the
herbivore's detoxification threshold [43].

Because most vertebrate herbivores are generalists, a
toxin-mediated functional response should be able to
consider multiple plant species. Fortunately, the single-
species framework [43] extends directly to multiple spe-
cies. Recent analysis of a multi-species model with inde-
pendent pathways for detoxification [48] yielded
predictions that matched remarkably well with empirical
studies of moose (Alces alces) and snowshoe hares feeding
on woody plants. Under conditions of the multi-species
model, herbivores switch feeding on plant species to
avoid saturating detoxification systems. One consequence
of toxin-induced switching is that herbivores are predicted
to spend a disproportionate amount of time foraging on
less abundant plant species, resulting in depensatory mor-
tality that can limit invasion by more palatable species
(Figure 1). Consistent with this prediction, disproportion-
ate foraging on rare but more palatable food items has
been observed in experimental studies with foods that
vary in quality [49,50]. Another likely consequence of
toxin-determined herbivory is a shift in plant species com-
position to communities dominated by more toxic plants,
as observed in taiga [51,52], southern boreal forest [53],
and temperate grasslands [54]. Toxin-determined forag-
ing also may play a role in population cycles of herbivores
[55].

Future directions
Evidence for the importance of plant toxins as determi-
nants of herbivore functional response is indisputable.
Recent modeling efforts implicate toxins as potentially
key drivers of change in plant communities and herbivore
populations. Future models should consider the role of
resource patchiness and tri-trophic interactions on plant
communities. For instance, adaptive foraging by herbiv-
ores is hypothesized to have important effects on ecosys-
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tem processes such as nutrient cycling rates, and predators
may alter herbivore effects by changing their density or
behavior [56]. How do tradeoffs from toxin-induced
resource patchiness and risk of predation influence eco-
system properties? From the perspective of evolutionary
ecology, models of tradeoffs in plant growth and defense

[16] as well as spatio-temporal variation in selection for
toxin production [57] may afford greater insight into
genetic diversity and geographic structuring of plant pop-
ulations. At the very least, ecologists conducting work in
the future should address explicitly the importance of

Dynamics of two-species plant communities subjected to a population of herbivores that feed optimallyFigure 1
Dynamics of two-species plant communities subjected to a population of herbivores that feed optimally. N1 and 
N2 refer to biomasses of edible plants. The functional response used to generate the plots is the one shown in equation (1) of 
the text, modified to permit two plant species [48]. When toxins are not incorporated into the functional response (panel A), 
the plant species coexist. Note that herbivores feed exclusively on plant species 1 initially, i.e., σ1 = 1, σ2 = 0 (panel C), since 
the starting density of species 1 is higher. Once the density of species 2 exceeds that of species 1, the consumption constants 
switch to σ1 = 0, σ2 = 1, and the switches continue to occur (the switches occur so rapidly that it appears as a black area in 
panel C). When toxins are incorporated into the functional response and the resident plant species (species 1 in panel B) is 
more toxic than a prospective invading species (species 2 in panel B), simulation results demonstrate that the less toxic plant 
fails to establish. The failure is tied to the adaptive foraging behavior of the herbivore, resulting in a disproportionate fraction of 
its effort being expended on the less abundant (but less toxic) species 2 (panel D). Parameter values: c12 = 0.9, c21 = 0.9, r1 = r2 
= 0.007, K1 = K2 = 7*105, B1 = B2 = 3.4*10-5, e1 = e2 = 0.0007, h1 = h2 = 0.008, mp = 0.0013. For simulations of plants containing 
toxins (panels B and D): G1 = 35, G2 = 60, initial density of species 1 = 5 × 105, initial density of species 2 = 5 × 103.
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plant toxins as potential agents of change for plant and
herbivore communities.
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