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Abstract

Background: Studies of population genetic structures provide an indication of direction and
magnitude of larval transport and hence are an important component in the assessment of the
ability of reefs to recover from severe disturbance. This paper reports data on population genetic
structures in the coral Pocillopora damicornis from 26 reefs in Kenya and Tanzania.

Results: Gene flow among reefs was found to be variable, with a significant overall genetic
subdivision (Fs; = 0.023 + 0.004 SE; p < 0.001), however, only 34% of all pairwise population
comparisons showed significant differentiation. Panmixia could not be rejected between reefs
separated by as much as 697 km, while other sites, separated by only a single kilometre, were found
to be significantly differentiated. An analysis of molecular variance indicated that population genetic
differentiation was significant only at the smaller spatial scale (< 10 km), whereas panmixia could
not be rejected between groups of samples separated by over 100 km. Estimates of contemporary
gene flow showed similar results, with numbers of first generation migrants within each population
ranging from 0 to 4 (~5% of the total number of colonies sampled) and likely dispersal distances
ranging between 5 and 500 km.

Conclusion: This study showed that population differentiation in P. damicornis varied over spatial
scales and that this variability occurred at both evolutionary and ecological time scales. This
paradox is discussed in light of stochastic recruitment and small scale population structures found
in other species of coral. The study also identifies potential source reefs, such as those within
Mnemba Conservation area near Zanzibar and genetically isolated reefs such as those within
Malindi Marine National Park and Reserve in northern Kenya.

Background

Current threats to coral reefs, such as elevated sea water
temperatures, coral disease, pollution and destructive and
unsustainable fishing methods, have depleted or
degraded more than half of the world's coral reefs [1-4].
The poor condition of many of these reefs is attributable

to the extreme El Nino event in 1998, which functionally
destroyed approximately 16% of the world's coral reefs
through bleaching-induced mass mortality. In 2004,
slightly more than 40% of the reefs affected by the EI Nino
showed signs of recovery. Most of these reefs were
exposed to minimal anthropogenic influence either
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because they were situated within well-managed marine
reserves or were geographically remote [2,5]. A prerequi-
site for such recovery however, is successful recruitment of
new coral colonies from remnant source populations. A
range of statistics that are based on individual genotypes
rather than population level allele frequencies are now
available [6,7], which allow the assignment or exclusion
of genotypes within sampled populations and hence pro-
vide a more ecologically relevant measure of connectivity
[8,9]. Hence the results from population genetic studies
provides information that can be incorporated into
marine protected areas management strategies [10].

To date, the processes underlying the highly variable pop-
ulation genetic structures in corals remain poorly under-
stood [11-14]. Many studies have shown that life history
characteristics such as reproductive mode and larval com-
petency may serve as reliable predictors of dispersal pat-
terns in marine invertebrates including corals [9,15-17].
However, other studies have revealed that neither repro-
ductive mode [16,18] nor larval competency [19] are reli-
able predictors of levels of genetic connectivity. To further
complicate matters, many coral species display a range of
sexual and asexual reproductive modes that may vary geo-
graphically even within the same species [20]. Also, com-
plex morphological species boundaries [21,22],
hybridisation [23,24] and cryptic speciation (Souter in
review) all contribute to make population genetic studies
in corals a daunting task.

Pocillopora damicornis is a common scleractinian coral,
found on tropical coral reefs throughout the Indo-Pacific
region [25]. It has been extensively studied and its repro-
ductive modes and population genetic structures are well
documented in many geographic locations. As with its
pocilloporid congener Seriatorpora hystrix [21] its morpho-
logical species status is currently under question, with two
genetically distinct but morphologically indistinguishable
types (F and NF) occurring in sympatry on reefs in the
Western Indian Ocean (Souter 2009 in review). It is a her-
maphroditic species, which can reproduce both sexually
and asexually [26-28]. Sexual reproduction occurs prima-
rily by internal brooding and release of mature planulae,
although broadcast spawning has been reported from
Western Australia [28] and the Eastern Pacific [29]. Its
asexual reproduction is thought to occur primarily
through ameiotic production of brooded larvae, parthe-
nogenesis [26]. Population genetic studies of P. damicornis
indicate that populations that are influenced by asexual
reproduction are less panmictic [30-32] than populations
that rely mostly on sexual reproduction [33]. However,
small scale sub-divisions have been reported within pop-
ulations of putative sexual origin in the Eastern Indian
Ocean [34] and at Lord Howe Island [35]. In general, dis-
persal of asexual planulae has been calculated to occur at
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spatial scales of up to 1 km [30], whereas gene flow
between sexually reproducing populations has been
reported over distances of up to 1200 km [33]. Interest-
ingly, sexually reproducing populations have been found
to show more differentiation at small spatial scales, such
as between reef habitats, than over distances of thousands
of km [33,35,36]. However, long distance dispersal
between reefs on the GBR and high latitude coral reefs fur-
ther south is apparently exceedingly rare [35]

Like most pocilloporid corals, P. damicornis exhibits low
tolerance to elevated sea surface temperatures [37,38] and
on surveyed reefs along the coast of Kenya more than 75%
(at some reefs 100%) of all colonies suffered bleaching-
induced mortality as a consequence of the extreme El
Nind event in 1998 [39,40]. However, pocilloporid corals
are effective colonisers of available space on reefs and
recent studies indicate that pocilloporid larvae dominate
settlement on artificial settlement tiles in the Mombasa
Marine National Park and Reserve [41,42] and new
recruits (colonies between 0.5 and 5.0 cm in diameter)
were found along the entire coast of Kenya by 2004 [5]. As
an effective colonist, this species is important to study in
relation to recovery of degraded reefs in East Africa.

The coast of East Africa displays a mixture of fringing-,
rock island- and patch-reefs. From Malindi to Kisite in
Kenya, the coast is lined by an almost unbroken fringing
reef, behind which extensive lagoonal reefs are found
[43]. Further south, along the coast of Tanzania, the reefs
are patchier and rock island reefs are found around the
islands of Pemba, Zanzibar and Mafia.

This study was implemented with the aim of examining
population genetic patterns in the NF-type of P. damicornis
at different spatial scales along the coast of East Africa.
Levels of connectivity were inferred at evolutionary and
contemporary time scales and related to geographic dis-
tance among and between reefs as well as the physical
location and habitat of the sampled populations. Due to
the lack of basic ecological data relating to the reefs
included in this study, the underlying project was of an
exploratory nature and not hypothesis driven. As a result
the discussion is organised around results rather than
addressing specific issues or hypothesis.

Results

From an initial 29 sites and 825 genotyped colonies, 661
NF-type colonies from 26 sites were included in the full
study (Figure 1; Table 1). Two loci (PV 6 and Pd3_002)
showed evidence of containing null alleles at 3 and 9 sites
respectively. However, as use of the corrected dataset did
not significantly alter the resulting F-statistics (Table 2),
the original data set was retained to enable comparisons
with the results from the exclusion tests. Significant over-
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Table I: Population statistics (* sd).

Population N Nne A He Ho Fis

Malindi 35 N 4.83 (£ 1.60) 0.66 (+ 0.08) 0.45 (+ 0.06) 0.293

Mombasa Marine National Park and Reserve (MMP)

Bamburi MMP | 30 30 7.00 (+ 2.28) 0.70 (+ 0.06) 0.50 (+ 0.04) 0.214
Coral Gardens MMP 2 34 34 7.83 (+ 1.47) 0.69 (+ 0.05) 0.52 (+ 0.04) 0.173
Starfish Gardens MMP 3 35 33 7.00 (£ 2.76) 0.69 (+ 0.05) 0.55 (+ 0.04) 0.138
Nyali MMP 4 33 28 6.83 (+ 1.83) 0.69 (+ 0.07) 0.49 (+ 0.04) 0.195
Tiwi DT | 19 19 5.50 (£ 2.59) 0.65 (+ 0.07) 0.49 (+ 0.05) 0.210
Diani North end DT 2 30 30 7.67 (+ 1.86) 0.72 (+ 0.05) 0.48 (+ 0.04) 0.340
Kisite 29 29 9.17 (£ 2.93) 0.73 (+ 0.07) 0.60 (+ 0.04) 0.176
Pemba Island Chake Bay (PEM)

Ataturks PEM | 29 29 7.00 (+2.61) 0.72 (+ 0.05) 0.55 (+ 0.04) 0.201
Le Cache PEM 2 23 23 6.50 ( 2.59) 0.68 (+ 0.06) 0.47 (+ 0.05) 0.244
Oh Canada PEM 3 22 22 6.67 (£ 1.51) 0.71 (+ 0.04) 0.54 (+ 0.05) 0.230
Anchor chain PEM 4 31 31 7.17 (£ 2.04) 0.71 (+ 0.05) 0.54 (+ 0.04) 0.127
Mnemba ZE | 27 27 8.67 (+ 2.88) 0.78 (+ 0.04) 0.52 (+ 0.04) 0.309
Paje ZE 2 28 27 6.67 (£ 2.25) 0.68 (+ 0.05) 0.46 (+ 0.04) 0.316
Kisiwani ZW | 28 28 7.00 (£ 1.90) 0.72 (+ 0.04) 0.43 (+ 0.04) 0.297
Bawi ZW 2 30 30 7.33 (£2.73) 0.71 (+ 0.06) 0.55 (+ 0.04) 0.172
Mdudya DAR | 30 22 7.17 (£ 2.14) 0.71 (+ 0.04) 0.52 (+ 0.05) 0.197
Bongoyo DAR 3 26 15 6.50 (+ 2.17) 0.74 (+ 0.07) 0.60 ( 0.05) 0.214
Mafia Island (MAF)

Pinnacle MAF | 29 10 5.00 (+ 1.26) 0.70 (+ 0.07) 0.62 (+ 0.07) 0.052
Maueni Isl. MAF 2 29 25 6.33 (+ 1.03) 0.72 (+ 0.03) 0.50 (+ 0.04) 0.253
Jena Reef MAF 3 19 19 6.67 (+ 1.63) 0.68 (+ 0.05) 0.57 (+ 0.05) 0.103
Milimani MAF 4 26 25 7.00 (£ 2.19) 0.69 (+ 0.04) 0.48 (+ 0.04) 0.255
Mtwara

Mnazi Bay | MTW | 28 28 6.17 (+ 1.83) 0.69 (+ 0.03) 0.49 (+ 0.04) 0.298
Mnazi Bay 2 MTW 2 28 27 7.17 (x 1.60) 0.71 (+ 0.04) 0.56 (+ 0.04) 0.147
Lulu shoals MTW 3 25 20 6.33 (£ 2.16) 0.71 (x 0.07) 0.57 (+ 0.05) 0.123
Monoliths MTW 4 30 30 7.17 (£ 1.72) 0.66 (+ 0.06) 0.52 (+ 0.04) 0.192
Total 825 661 13.60 (+ 6.80) 0.74 (+ 0.04) 0.55 (x 0.01) 0.256

Total number of sampled colonies (N), number of NF-types (Ny), average number of alleles per locus (A), expected (Hg) and observed (Hp)
heterozygotisy. Bold Fs-values indicate a significant departure from Hardy-Weinberg equilibrium (p < 0.01). The four groups of populations
included in the AMOVA are MMP |4, PEM |-4, MAF |—4 and MTW |-4.

Table 2: Locus specific statistics (% s.d.).

Locus No alleles Fst Fis Fis: data corrected for null alleles
PVé 12 0.015(% 0.004) 0.226 (£ 0.022) 0.216 (£ 0.012)
PV7 12 0.032 (£ 0.012) 0.500 (+ 0.038) 0.500 (% 0.038)
Pd3_004 8 0.022 (£ 0.012) 0.278 (* 0.031) 0.278 (£ 0.031)
Pd3_002 9 0.036 (* 0.023) 0.489 (* 0.035) 0.401 (£ 0.021)
Pd3_005 24 0.024 (£ 0.009) 0.038 (+ 0.036) 0.038 (+ 0.036)
Pd2_006 14 0.014 (£ 0.006) 0.140 (£ 0.034) 0.140 (£ 0.034)
Total 13.17 (£ 5.74) 0.023 (* 0.004) 0.258 (* 0.070) 0.242 (£ 0.056)

Values in bold show significant deviations from the Hardy-Weinberg equilibrium (p < 0.001)
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all genotypic linkage disequilibrium was found between
locus PV6 and Pd2_006 and between PV7 and Pd3_005.
At the population level, this disequilibrium was only sig-
nificant in 2 (PV6 - Pd2_006) or 1 (PV7 - Pd3_005) of
the 26 populations. Fgpoutlier tests revealed a signature of
positive selection in locus Pd3_002 (probability that sim-
ulated Fq; < sample Fg;= 0.999). However, all significance
tests for the F-statistics were done by bootstrapping over
loci and the exclusion of locus Pd3_002 from the analysis
did not alter the results. As a result, Pd3_002 was included
in the study to maximise the power of the analyses. The
ratio of unique multi locus genotypes to sampled colonies
equalled 1.0 within all sampled populations but an iden-
tical multi-locus genotype was shared between DT 2 and
MTWS3 (see table 1 for reference to site locations). Num-
bers of alleles per loci ranged between 8 and 24 (average
number = 13.17; + 5.74 sd), and all loci displayed a signif-
icant population differentiation (Fg;) and a significant
deficit of heterozygotes (except Pd3_005) (Table 2). Site
specific diversity measures showed similar patterns of
high allelic and genetic diversity across all sampled popu-
lations. A significant heterozygote deficiency was found in
22 of the 26 sampled populations (Table 1).

Between population differentiation accounted for 2.3% of
the overall deviation from HWE (total FST = 0.023 +
0.004; p < 0.001) (Table 2) with 34% (p < 0.003; a =
0.01) of all pairwise population comparisons showing
significant differentiation (Additional file 1). The degree
of isolation varied, with some sites (Malindi, MMP 1, ZE
1 and ZW 1) being significantly differentiated from over
88% of all other sites sampled, while others (DT 1 and
PEM 2 - 4) were in HWE with 21 of the other 25 sites
(Additional file 1). The Principal Component Analysis
(PCA) further illustrated the differentiation of Malindi
along the first axis, ZE 1 and ZW 1 along the second axis
and MMP1 along the third axis, with the addition of MAF
1 (Figure 2). By removing Malindi from this analysis, PEM
4 and ZE 1 were differentiated along the first and second
axis (Figure 3). The results of the AMOVA showed that the
level of isolation did not increase with increased spatial
scales but rather that sample subdivision was greater
among sites within groups (FSG 0.009; p = 0.002) than
among groups (FGT 0.001; p = 0.343), with no significant
deviation from HWE found at the larger spatial scale
(Table 3). Mantel tests of the reduced major axis regres-
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sion analysis showed no significant correlation between
log (genetic) and log (geographic) distance among all
sites (R2 = 0.012; p = 0.053), nor among sites within any
of the seven groups (p values ranged from 0.33 - 0.83).
This remained the case also after excluding highly diver-
gent sites such as Malindi, MMP 1, ZE 1 and ZW 2 (R2 =
0.0015; p = 0.248).

Exclusion tests revealed that 32 colonies (5%) had a prob-
ability of less than 0.01 of being derived from within the
site at which they were sampled (hence, these were iden-
tified as first generation immigrants). Out of these, 14 col-
onies had a probability of being derived from a genetically
divergent, sampled site of > 0.05. Six populations (MMP
1 and 3, DT 1, PEM 2, MAF 1 and MTW 3) showed no
signs of recent immigration and Mnemba Conservation
Area near Zanzibar (ZE 1) was found to be the most likely
source population for six colonies sampled across the
entire geographic range of the study (Additional file 2).

Occurrence of F-types (i.e., the colonies belonging to the
putative cryptic species that were excluded from the anal-
yses above) showed no consistent pattern or correlation to
any obvious difference in habitat and the proportion of
the F-types sampled at each site varied from 0 (15 sites) to
100% (Kanamai) (Table 1).

Discussion

Population genetic patterns

It is important to emphasise that although a very small
amount of migration is enough to counteract genetic drift,
not rejecting panmixia does not equate to open popula-
tions that are capable of seeding degraded neighbouring
or distant reefs. In fact, replenishing severely depleted
populations requires hundreds or thousands of successful
migrants per generation [44]. Conversely, given enough
samples and loci, almost any pair of data will be signifi-
cantly different unless there is complete panmixia. The
impact of cryptic speciation on this study resulted in a
somewhat diminished dataset. Naturally this had an affect
on the power of the statistics employed, as does the fact
that only six microsatellite loci are available and produced
acceptable results. Nonetheless, according to simulations
by Kalinowski [45], the significance of Fg;values derived
from 6 loci with an average of 13 alleles per loci (>78
independent alleles) results in a coefficient of variation of

Table 3: Results from the AMOVA showing the partitioning of genetic variation among and within groups and individuals.

Source of variation df Variance component Fixation index p-value
Among groups (Fgr) 3 0.001 0.001 0.343
Among sites within groups (Fsg) 12 0.015 0.009 0.002
Among individuals within sites (F) 398 0.330 0.190 <0.001
Within individuals (F7) 414 1.403 0.198 <0.001
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< 0.25, suggesting that the power of the statistics
employed herein with is sufficient.

Due to the difference in polymorphism between alloz-
ymes and microsatellites, a direct comparison between
reported Fgvalues from previous spatial genetic studies is
inappropriate [46]. However, the variable levels of disper-
sal that were found between populations examined in this
study are consistent with earlier findings from a range of
coral species (c.f. [16,47]) and previous studies of genetic
connectivity in marine invertebrates from the coast of East
Africa, which have all reported gene flow over distances of
hundreds of kilometres [48-51]. Small scale population
differentiation, such as that found between sites within
groups in this study, has previously been reported for this
species [32,34,52] and other brooding corals such as Seri-
atopora hystrix [47,53,54] and could be attributed to local-
ised recruitment, due to short dispersal distances of
brooded larvae, or site specific selection, which may not
be equally apparent when groups of populations are com-
pared over larger distances.

For the purpose of managing coral reef ecosystems, proc-
esses at ecological time scales need to be separated from
those at evolutionary time scales [13]. This can be
achieved by exclusion and assignment tests, which have
been found to provide a relevant measure of contempo-
rary gene flow [14,55,56]. As only a minuscule proportion
of the total number of populations was sampled for this
study, the assignment of individuals to "home" should be
interpreted with some caution. With that in mind, results
from exclusion tests suggest that contemporary dispersal
between populations occurs at both spatial scales. How-
ever, it does not occur among or between all sampled pop-
ulations, which concurs with the variable levels of
divergence indicated by the F-statistics. Exclusion tests fur-
ther increased the number of potentially isolated reefs by
showing that six reefs show no signs of first generation
migrants. MMP 1 was the only site that showed consistent
genetic isolation at both evolutionary and contemporary
time scales. MMP 1, which is a reef slope site off Bamburi
Beach, was isolated from nearby lagoonal populations,
corroborating previous results for the massive coral Platy-

Page 6 of 13

(page number not for citation purposes)



BMC Ecology 2009, 9:19

First axis (19.48%) 000

Figure 3

http://www.biomedcentral.com/1472-6785/9/19

-2,0007 —
-1,000

A PCA plot depicting genetic distances between less divergent samples, constructed by removing the sample

from Malindi.

gyra daedalea [51]. Furthermore, and in accordance with
what was found in P. daedalea [51], MMP 1 was not signif-
icantly differentiated from the only other reef slope site
sampled along the fringing reef of the Kenyan coast (DT
1). The results from these two studies may indicate that
dispersal is limited between the reef slope and lagoon in
this region, while gene flow occurs along the outer reef
slope. A similar pattern of differentiation between
lagoonal and reef slope sites was found by Benzie et al
[36] who proposed that differential selection acting at the
two habitats could be a plausible explanation. However,
as reef slope sites sampled in this study are not consist-
ently differentiated from lagoonal sites and as five out of
the six studied loci show no evidence of being functional
and hence are not prone to selection, this hypothesis is
unlikely to explain the differentiation. Another possible
explanation may be found in local hydrodynamic pat-
terns, such as the impact of boundary currents at the reef
edge. Boundary currents arise by a decoupling of inshore
and offshore currents and are generated on the Great Bar-
rier Reef when wind and current directions are opposed
[57]. Such a decoupling would result in limited across
shelf mixing, which would hamper larval dispersal across
reef shelves, while maintaining dispersal in a north -
south direction. However, as no detailed, small scale
hydrodynamic data is published from this region, this
hypothesis remains un-tested.

A lack of successful dispersal from southerly reefs may
explain the divergence of Malindi from other sampled
populations. Malindi was found to be genetically isolated
from the southerly lagoonal reefs, (with the exception of
Kanamai), also in P. daedalea [51]. Studies from the West-
ern Indian Ocean suggest that coral reproduction prima-
rily occurs during the northeast monsoon between
October and March [58-61]. Along the coast of Kenya this
monsoon counteracts and slows down the north flowing
East African coastal current, which may hamper long dis-
tance dispersal of larvae and give rise to more isolated
populations further north. Conversely, results from the
exclusion tests indicate that 2 out of 11 colonies may be
first generation migrants. With such a high proportion of
recent migrants, the inferred level of differentiation
between Malindi and other sites may potentially be
eroded, assuming that the current populations persist. A
more extensive data set, which includes additional reefs in
this area, would undoubtedly reveal more information
regarding this genetic break and may shed light on the

underlying ecological or physiological processes that
drive this divergence.

Mnemba conservation area on the northeast tip of Unguja
Island, Zanzibar (ZE 1) is genetically differentiated from
all sites except DAR 3 and MAF 1, yet is the most likely
source population for 6 of the 31 detected first generation
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migrants in the data set. This population has the highest
genetic diversity, and hence has an increased likelihood of
being perceived as the source population of colonies har-
bouring alleles that are rare or absent in other popula-
tions. Another population on Zanzibar (ZW 1) is equally
isolated, indicating that these two sites, along with MMP
1, harbour predominantly self seeding populations.

Surveys conducted after the 1998 coral bleaching event
showed that reefs off the coast of Dar es Salaam were not
significantly affected by the bleaching; in fact, hard coral
cover increased between 1997 and 1999 [62]. Despite this
obvious difference in recent bottleneck and founder
events, these populations (DAR 1 and 3) show a similar
level of genetic diversity and variable levels of differentia-
tion to the recently depleted populations in Kenya, with
no significant differentiation between the two sites and
genetic similarity to a majority of the other sampled sites.

All four sites from Mafia are sampled within Chole Bay
and within a kilometre of each other. No pairwise com-
parisons within the group showed significant differentia-
tion, nor are they significantly differentiated to other
sampled sites with the exception of the six isolated sites
discussed earlier. No comparative data from before and
after the 1998 coral bleaching event is available for Chole
Bay on Mafia. However, hard coral cover was reported to
be 30% in 1999, which would suggest that bleaching had
not significantly affected these reefs [62].

Despite the relatively large geographic distance between
the sites at Mtwara and the other reefs, significant differ-
entiation was only found between these sites and the iso-
lated sites of Malindi, MMP 1, ZE 1 and ZW 1 as well as
DT 2. Hence, sufficient gene flow to counteract the effects
of random genetic drift seemingly occurs at spatial scales
of up to 697 km (between Mtwara and Mombasa marine
national park and reserve). The exclusion test further
reveals that first generation migrants are likely to have dis-
persed from Mtwara to Zanzibar, a distance of over 500
km. If dispersal occurs primarily through a stepping stone
model, a significant isolation by distance should, in the-
ory, be apparent. However, this was not found to be the
case for this dataset. Significant isolation by distance has
been detected at spatial scales similar to those between
sites within groups (1 - 50 km) for the brooding corals
Balanophyllia elegans [63] and Seriatopora hystrix [53]. The
results obtained from the present study revealed a more
disordered genetic structure with no significant correla-
tions between genetic and geographic distances at either
of the two spatial scales. Such "chaotic genetic patchiness"
is commonly reported in marine invertebrates. This phe-
nomena is explained by factors such as pre- or post-settle-
ment selection and different genetic origins of settling
larvae [64]. Indeed, long distance dispersal, coupled with
site specific selection or small scale hydrodynamic pat-
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terns, would serve to explain the fact that distant groups
of samples, separated by over 100 km, show a higher
degree of similarity than sites within groups that are sam-
pled at geographic scales of 0.5 — 10 km. At larger spatial
scales, a lack of correlation between genetic and geo-
graphic distance may be attributed to a higher impact of
genetic drift, whereas at very small spatial scales gene flow
may not be sufficiently unidirectional to cause a signifi-
cant correlation [13]. Further support for the chaotic
genetic patchiness theory is derived from the heterozygote
deficiencies and population specific linkage disequilibria.
A majority of the sampled populations and loci showed a
significant deficit of heterozygotes. The exception to this
finding is locus Pd3_005 (the most polymorphic locus),
which appears to be in HWE. As the presence and poten-
tial impact of null alleles could not explain this large def-
icit across all loci and populations, other theoretical
explanations are needed. In most coral genetic studies, a
heterozygote deficit is explained by inbreeding and non-
random mating [49,65]. However, a heterozygote defi-
ciently coupled with high genetic diversity and popula-
tion specific linkage disequilibrium may indicate recent
admixture. Indeed, several recent studies have incorpo-
rated admixture and spatial and temporal variability of
larval sources in the explanation [50,55,66] and it is
widely accepted that population genetic structure can be
affected by temporal variability in recruitment sources
and rates [55,67-69]. The variable impact of coral bleach-
ing on these reefs (see for example [40]) may well cause a
temporal shift in source populations as population sizes
fluctuate over time. Hence, the results of this study, which
includes multiple cohorts and populations impacted by
recent founder events, is likely to be affected by spatially
and temporally variable recruitment events, which in turn
would cause a deficit of heterozygotes across both loci and
populations. Also, many locations and reefs remain un-
sampled and the structure of the hierarchal sampling
design would be greatly improved by increasing the
number of sites at the smaller geographical scales. Despite
this, the data provides important information from many
previously un-studied reef areas and is the most compre-
hensive study of population genetic patterns of reef build-
ing corals in the Western Indian Ocean to date.

The F-types

In a separate study, colonies of P. damicornis were geneti-
cally characterised at one nuclear and two mitochondrial
sequence markers and six microsatellite loci. Both
genomes support the existence of two reciprocally mono-
phyletic clusters of WIO origin indicative of two reproduc-
tively isolated species within P. damicornis. Some
interesting observations regarding the 154 colonies that
were found to belong to the F-types and hence excluded
from the population genetic statistics are worth reporting
here. The most striking difference related to the prevalence
of asexual reproduction, which would suggest that the two
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types differ in their preferred, or most commonly utilised,
reproductive mode. Among the F-types, 105 colonies out
of 154 were found to belong to 14 clonal lineages (Table
4), while among the NF-types, only a single identical
multi-locus genotype was encountered among the 661
samples.

Also, the fact that no NF-types were sampled at Kanamai
reef indicates a lack of successful recruitment onto this
reef. The lagoon at Kanamai is very shallow and has the
most extreme temperature variations recorded among
Kenyan lagoonal reefs [70]. During low tide, much of the
reef is exposed or submerged in water that reaches temper-
atures of above 34°C. Unlike other surveyed reefs, Kana-
mai lagoon showed no significant decline in hard coral
cover following the extreme El Nin6 event of 1998 [70].
In addition, it hosted the only recorded, remnant popula-
tion of P. damicornis along the coast of Kenya [71], which
may suggest that the F-types are better adapted to the pre-
vailing conditions at Kanamai.

Conclusion

In summary, the spatial genetic patterns reported in this
study indicate a variable degree of isolation of popula-
tions at both ecological and evolutionary time scales, with
certain sites showing a high degree of connectivity and
others relying mostly on self seeding. The results highlight
the importance of identifying and protecting reefs that
harbour high levels of genetic biodiversity and that act as
potential source reefs, such as Mnemba conservation area
on Zanzibar. It also provided further evidence that certain
reef slope sites are unique, such as MMP 1, which was
shown to be isolated from closely positioned lagoonal
populations in the Mombasa marine national park and
reserve in both the present study as well as previous stud-
ies of another species of coral (Platygyra daedalea). With-
out a doubt, the incorporation of ecological,

http://www.biomedcentral.com/1472-6785/9/19

hydrodynamic and temporal data into the spatial genetic
studies would provide a more comprehensive picture of
reef connectivity in this region and improve management
decisions and conservation efforts. Unfortunately, such
data is yet largely unavailable for most of the reefs in the
WIO region despite the vital role these ecosystems play
both as biodiversity hot spots as well as by providing
essential goods and services for rapidly growing coastal
towns and communities.

Methods

Sites

Samples of P. damicornis were collected from a total of 29
sites along the coasts of Kenya and Tanzania, from
Malindi marine national park and reserve (3°18'35S;
40°06'57E) to Mtwara marine national park (10°11'33 §;
40°12'04 E), spanning a distance of approximately 860
km (Figure 1). A majority of the collections in Kenya were
made in shallow (< 5 m) back reef lagoons except sites at
Bamburi and Tiwi, which were collected from the reef
slope at a depth of 10 - 15 m. Samples from Pemba, ZE 1
and 2, MTW 3 and 4 and MAF 3 were collected at a depth
of 10 - 15 m. All other samples from Tanzania were col-
lected on shallow reefs (< 5 m). The total area sampled
varied depending on the abundance of the species at the
site. Most commonly the collections were made along a
transect ranging between 100 - 500 m in length. In order
to investigate various scales of connectivity, a nested sam-
pling design was used in four areas (Mombasa Marine
National Park and Reserve, Pemba Island, Mafia Marine
National Park and Mtwara). The four areas were separated
by between 120 - 700 km and the four sites within each
area were separated by 0.7 — 10 km.

Sample collection and preparation
A small fragment (~1 cm) was cut off a central branch of
19 - 35 colonies at each site, making a total of 825 sam-

Table 4: Identical multi-locus genotypes of the F-type and their associated probability of being sexually produced (p,.,) based on global

allele frequencies and the total number of colonies associated (n).

Clone no PV 7 PV 6 Pd3 _004 Pd3 _002 Pd3 _005 Pd2 _006 Psex n Site
I 224 224 192 206 159 162 184 199 213 213 197 197 I.41E-11 10 Malindi/Kanamai
2 224 224 192 204 159 162 184 199 216 216 197 197 0.0003 4  Malindi/Kanamai
3 224 224 192 206 162 168 184 184 213 213 195 195 0.001 4  Kanamai
4 224 224 192 206 159 162 184 184 213 213 195 195 0.0006 4  Kanamai
5 224 224 206 206 159 162 184 184 207 208 195 199 2.75-26 21 DT3
6 224 224 206 206 159 162 184 196 207 213 195 199 0.001 5 DT3
7 224 224 204 204 159 162 196 199 210 224 195 195 46lE-17 6 DAR3
8 224 224 198 202 159 159 184 199 213 233 195 195 209e-35 7  DARI
9 224 224 204 204 159 162 184 184 213 224 195 195 4.66E-28 20 DAR2
10 224 224 200 204 159 159 187 187 213 222 195 195 5.50E-11 5 MAFI
I 224 224 204 204 159 159 187 199 213 213 195 195 3.42E-23 13 MAF I/MAF 4
12 224 224 204 204 159 162 184 184 207 213 195 199 3.12E-05 2  MAF2
13 224 224 202 202 159 159 199 199 213 213 195 195 26lE-05 2 MAF2
14 224 224 202 202 162 162 184 184 230 233 195 195 1.58E-06 2 MTW3
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ples. Samples were collected at least five metres from their
nearest sampled neighbour to minimise the inclusion of
clones that were a result of fragmentation, and were kept
at ambient temperature in 70% ethanol until further
processing.

DNA was extracted using the Qiagen® DNEasy kit accord-
ing to a modified protocol for rodent tails (fragments were
placed directly into lysis buffer and Proteniase K and kept
in a water bath at 56°C over night). A polymerase chain
reaction (PCR) was carried out using six fluorescently
labelled microsatellite primers developed for Pocillopora
spp-: PV 6 and PV 7 (Magalon et al. 2004b), and Pd3_002,
Pd3_004, Pd2_006, and Pd3_005 (Starger et al. 2008).
The PCR was conducted in 10 pl reactions using 25 ng of
DNA, 0.25 U AmpliTaq® (Applied Biosystems), and a con-
centration of 0.25 mM of each dNTP, 0.1 mM of MgCl,
and 0.4 mM of each primer. The thermal cycling protocol
was initiated with 5 minutes at 95°C followed by 30 x (30
sat 95°C; 30sat 53°C (PV 6 & PV 7) or 58°C (Pd3_002,
Pd3_004, Pd2_006 and Pd3_005) and 1 min at 72°C)
and ended with a 10 minute extension at 72°C. Non
amplifying samples were re-run at a 5°C lower annealing
temperature than those stated above. PCR products as
well as positive and negative controls were visualised on
an ABI Prism 3700 DNA Analyzer (ABI, Applera Coopera-
tion) together with a GeneScan 500-Rox ladder and geno-
typed automatically and verified manually using
GeneMapper® version 4.0-software (ABI, Applera Cooper-
ation).

Data analysis

Due to the prevalence of two genetically distinct but mor-
phologically similar types (F and NF) being present on
reefs in East Africa (Souter, in review), the population
genetic statistics presented in this study are based only on
the NF-type, which was found in sufficient numbers on 26
out of the 29 sampled reefs. All downstream calculations
are based on 661 NF-type individuals from 26 popula-
tions. The sample from Kanamai was entirely made up of
F-types and only 3 and 6 individuals from DT 3 and DAR
2 respectively were of the NF-type, hence those three sites
were excluded from further analysis.

Resulting genotypes were checked for scoring errors and
potential null alleles using Micro-Checker [72]. Loci were
also tested for linkage disequilibrium (LD) using Arlequin
v 3.1.1 [73] and signatures of selection by comparing
locus-specific Fg;-values to 10,000 simulated Fg-values
according to the FST-outlier method using the Selection
Workbench [74].

To avoid over-estimating genetic divergence between pop-
ulations, the microsatellite Excel toolkit [75] was used to
identify identical multi-locus genotypes that were likely to
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be a result of asexual reproduction within each popula-
tion. The toolkit was also used to infer levels of genetic
diversity, measured as observed (H,) and expected levels
of heterozygosity (H), according to Nei [76] and average
numbers of alleles per locus and population.

The programme Fstat [77] was used to calculate allele fre-
quencies (Appendix 1), and inbreeding coefficients parti-
tioned among individuals within sample (F), sites
within total (Fg;), and individuals within total (F),
according to Weir and Cockerham [78]. By using this test
statistic, the differences in sample sizes are considered as
allele frequencies are weighted according to sample size.
Significant genetic differentiation between population
pairs was detected after correction using the false discov-
ery rate (FDR) [79] as presented by Narum [80] (a =
0.01). To test the spatial scales of connectivity, an analysis
of molecular variance (AMOVA) within (< 10 km) (Fy()
and between (> 100 km) (Fy) four groups of samples was
done using the Arlequin software (see Figure 1 and Table
2 for details on groups). The software Genetix [81] was
used to construct a principal component analysis (PCA)
to visualise the genetic distance between genotypes using
each locus as an independent binary variable according to
She et al[82]. As a large number of individuals were geno-
typed, the output of the PCA was simplified by plotting
the centre of gravity of all colonies within a sample (cen-
droid), as proposed by the authors of the software. A sec-
ond PCA was constructed after removing the site at
Malindi to visualise the partition among the remaining
cluster of samples.

According to a review by Jones et al [14], exclusion test
implemented by the programme GeneClass v 2.0 [6] has
shown promising results regarding inferring contempo-
rary gene flow. The test statistic used for this data set was
the likelihood of the individual genotype originating
within the population where the individual was collected
(L-home), which is the appropriate statistic to use when
not all possible source populations have been sampled
[6]. Assignment tests using a partial Bayesian have been
verified to be an accurate prediction of dispersal, espe-
cially when levels of natal dispersal are less than 18%
[56]. Hence, first generation migrants were inferred using
the partial Bayesian criterion according to Rannala and
Mountain [83] which was compared with the distribution
of likelihoods for 10,000 simulated genotypes created by
a Monte Carlo algorithm according to Paetkau et al. [7].
Individuals with a genotype that showed a probability of
< 0.01 of being generated within their sampled popula-
tion were considered immigrants. A possible source pop-
ulation was identified as the sample with the highest
likelihood of being "home" to the genotype. Re-assign-
ments were only made if the likelihood of home had a
higher probability than 0.05 and if the putative source
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population was significantly differentiated from the sam-
pled population.

The isolation by distance web service (IBDWS) [84]http:/
/ibdws.sdsu.edu/~ibdws/aboutibdws.html was used to
estimate the correlation between the genetic and logarith-
mic geographic distance by a reduced major axis (RMA)
regression. Significance values were obtained through a
Mantel test using 1000 randomisations. This test was con-
ducted twice, once including all samples and once exclud-
ing the most divergent sites (Malindi, MMP 1, ZE 1 and
ZW 2).
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