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Abstract
Background: Variation in carrying capacity and population return rates is generally ignored in traditional
studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the
environment in order to obtain statistical replicates, and because of the scale and expense of
experimenting on populations. There may also be ethical issues. To circumvent these problems we used
detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real
Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks
Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra.
This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the
population dynamics of the four species.

Results: Both spatial and temporal heterogeneity affected the relationship between population growth
rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance
in population growth rate after accounting for the effects of density, reflecting big differences in local
carrying capacity associated with the landscape features important to individual species. Temporal
heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The
associated temporal variation in carrying capacity would be problematic in traditional analyses of density
dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and
beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations
in local population sizes.

Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates,
but these are now seen as varying continuously over the landscape depending on habitat quality and the
mechanisms of density dependence. The importance of our results lies in our demonstration that the
effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive
models for use in management and conservation. This is an area which until now has lacked an adequate
theoretical framework and methodology.
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Background
Population ecology takes the population as the unit of
study, identifies factors responsible for population growth
or decline, and quantifies their effects. Variations in the
circumstances of individuals in time and space (heteroge-
neity) are generally ignored. However real landscapes
rarely approximate to homogeneity, and spatial and tem-
poral heterogeneity are the norm in the fragmented land-
scapes of the natural world. Thus it is important to know
whether and how spatial and temporal heterogeneity
affects population dynamics.

Population dynamics often begins by analysing the rela-
tionship between a population's density and its growth
rate [1,2]. Population growth rate, pgr hereafter, is defined
as the per capita growth rate of the population. The rela-
tionship between pgr and the natural logarithm of density
determines whether a population will return to equilib-
rium after a disturbance, and the slope of the relationship
determines how fast any such return will be. The negative
of the slope is referred to as return rate [3] or as the
strength of density dependence (e.g. [4]), and is some-
times estimated from the first coefficient in an autoregres-
sion analysis (e.g. [5,6]. In discrete generation models a
return rate of one per unit time means that a population
returns to equilibrium after perturbation in a single time
unit in the absence of further perturbations [3]. Positive
return rates less than two indicate population stability,
and return rates less than one indicate that population
density approaches equilibrium smoothly without oscil-
lating (see [6] for further discussion).

Return rates and carrying capacities are key measures in
the analysis of population dynamics. Until recently most
studies of population dynamics have assumed that both
are constant in space and time, and spatial and temporal
heterogeneity has generally been ignored. However heter-
ogeneity can affect vital rates (e.g., [7-9]) and density
dependent processes (e.g., [10,11]), for example return
rates have been shown to vary with predator density in a
tropical damselfish (Dascyllus fiavicaudus) [12]. Since het-
erogeneity is widespread in real landscapes, it is important
to know whether and how spatial and temporal heteroge-
neity affect local carrying capacities and return rates.

Several approaches to incorporating heterogeneity into
population dynamic analyses have been taken. The sim-
plest ignores landscape structure and studies resem-
blances between the autocorrelation coefficients of
spatially separated populations. Using this method return
rates have been shown to decrease with latitude in grouse
populations in North America [13], in caribou and rein-
deer in Greenland, Finland and Russia [14], and in voles
(Microtus arvalis) in Fennoscandia and eastern Europe
[5,15] but cf. [16]. Return rates of large herbivore popula-

tions are increased by temporal heterogeneity in weather,
but decreased by spatial heterogeneity in resources in the
Rocky Mountains, USA [17]. However return rates of red
kangaroos (Macropus rufus) did not vary among pastoral
zones in South Australia [18]. At the other end of the spec-
trum landscape ecology provides more realistic treatments
of the effects of heterogeneous landscapes on the animals
that live there, but has so far little considered their popu-
lation dynamics. However some progress has been made
identifying landscape features that predict species pres-
ence, persistence and dispersal [19]; using analytic spa-
tially explicit models to determine population spread
rates [20] and growth rates [21]; and using our system to
study how landscape framentation affects predator-vole
dynamics [22].

There is therefore a need for population dynamics theory
that effectively incorporates realistic effects of spatial and
temporal heterogeneity. Here we use agent-based models
(ABMs) to explore the mechanics and dynamics of four
ecologically-contrasting species in a heterogeneous Dan-
ish landscape. Spatial variation in local carrying capacity
is expected because habitats vary across landscapes (e.g.,
[23]), but return rates are expected to be invariant unless
the mechanisms of density dependence vary. These pre-
dictions are largely supported.

Methods
In this paper population density is described by loge(Nt),
where Nt is the number of adult females in a specified area
in year t; pgr is estimated as loge(Nt+1/Nt); return rate as the
negative of the slope of the relationship between density
and pgr; i.e. as – [dpgr/dlogeNt]K ≡ - [Nt dpgr/dNt]K, where
local carrying capacity, K, is defined as population size in
a specified area when pgr = 0. In practice the specified
areas are 500 × 500 m grid squares as described below.

The study species were Alauda arvensis (skylark), Microtus
agrestis (field vole), Bembidion lampros (ground beetle) and
Erigone atra (linyphiid spider). These were selected
because they represent different functional groups, and
each has qualities that make them representative of many
other species. They are also each of particular interest in
the management and conservation of the study landscape.
The behaviour and ecology of each species were modelled
using agent-based models (ABMs) in a realistic environ-
ment. ABMs simultaneously model the independent
autonomous behaviours of many interacting agents, here
animals. They are used where the factors influencing the
behaviour of individual agents are known, but the needed
analyses are done at the population level [24]. Thus ABMs
provide a means of linking analyses at the individual level
to analyses at the level of the population. The ABMs of the
study species are described in [25-27]. While the models
are necessarily detailed and complex they do incorporate
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as much as possible of what is known of the behavioural
ecology of each species. They simulate the behaviours of
numerous autonomous individuals in a 10 × 10-km Dan-
ish landscape mapped to a precision of a metre (Figure. 1)
using a time step of one day. The behaviours of individu-
als vary continuously being determined by local geo-
graphical features (roads, hedges, habitat type, which in
turn depend on plant growth and the actions of individual
farm managers and other dynamic features of the Danish
environment [28]) as well as weather conditions and
interactions with conspecifics. The overall population
dynamics emerge from the consequences of interactions
among individuals in the model. The four ABMs used
have previously been shown to reproduce a wide range of
patterns observed in actual field data, both quantitatively
(e.g. abundance or sex-ratio against time) and qualita-
tively where detailed data were not available but qualita-
tive patterns were known. Detailed documentation of the
vole and beetle models describing their components
down to the level of the source code is provided as a large

number of interlinked html documents at http://
www.dmu.dk/International/AnimalsPlants/ALMaSS/
Documentation/. This documentation includes a com-
plete description of the field vole and beetle models
together with documentation of central ALMaSS con-
structs including a class for handling population level
functionality and farm and crop management. Documen-
tation follows a combination of the overview and design
sections of the ODD protocol [29] with detailed program
code comments extracted and integrated using Doxygen
[30] and covers the main features of the approximately
70,000 lines of C++ code.

These simulation tools gave us an opportunity to carry out
experiments on dispersing animals with complex life his-
tories within Danish landscapes. Simulations were initi-
ated with individuals distributed in the landscape at
random, their number being close to the overall carrying
capacity of the landscape, and run for 200 years repeating
a real 10 year weather data sequence 20 times. This was to

Maps of the study landscapeFigure 1
Maps of the study landscape. Left hand panel shows the physical map. Remaining maps showing carrying capacities of each 
species in 1995. Densities (loge(K) are indicated by colour (see key). Contours linking similar densities were fitted using R [31].
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allow for the analysis of temporal variation using 'weather
years' as explanatory variables in the GLM models
described below.

A GLM population model
For analysis of spatial variation the landscape was notion-
ally divided into 500 m × 500 m squares in each of which
the local population was counted on 1 June each year, and
pgr calculated. Only 50 evenly distributed non-contiguous
squares were entered into the analysis to avoid the possi-
bility of statistical dependence between population sizes
in neighbouring squares; however the results were essen-
tially unchanged if all squares were entered. Extensive
inspection of how within-square density affected pgr
showed that the effects of density were linear (examples in
Figures. 2 and 3), so for further analysis we used general
linear models (GLMs), with the pgr for the square as the
dependent variable. Population density for each square,
defined at the start of Methods, was entered as a covariate,
and weather year and square identities were entered as fac-
tors. Our design allowed us to analyse the effects on the
fundamental pgr-density relationship of variation
between squares and years. The full design comprised 50

squares and 10 weather years each replicated 20 times, a
total of 10000 data per species. However pgr could not be
calculated for the last year, and data from the first 11 sim-
ulation years were excluded from the analyses (burn-in
period) since these sometimes yielded populations far
from equilibrium, violating the assumption of linear
effects. This left a dataset of 50 × (200 - 12) = 9400 for
each species. Some datasets were further reduced because
empty squares were removed from the analysis. Carrying
capacities were estimated as the intersections with the
horizontal axes (pgr = 0) of the fitted linear pgr-loge(N)
relationships for each grid square and year. Analyses were
carried out in R [31].

Results
The effects of weather year and spatial variation on the fun-
damental relationships between pgr and local population
density are illustrated in Figures. 2 and 3. The panels within
each figure show plots of pgr vs. loge(N) for each of the four
species. Figure. 2 shows the effects of variation between
weather years, denoted by colours, for a randomly chosen
grid square. Note that in all cases density had a linear effect
on pgr for each weather year, and the slopes of the lines were

The effects of weather year on the relationship between pgr, y-1, and local population densityFigure 2
The effects of weather year on the relationship between pgr, y-1, and local population density. Each panel shows a 
plot of pgr vs. loge(N) for one of the four study species for a randomly chosen grid square. Results for each weather year are 
indicated by a single colour (see key). Each point specifies the density and pgr of one replicate of one weather year.
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similar within species. There was not much difference
between weather years in voles, skylarks and spiders (points
overlie) but weather years were clearly segregated in the bee-
tle. We quantified these effects using GLMs: the resulting
summary ANOVA tables are shown in Table 1. The propor-
tion of variance explained by each effect is shown as R2. The
difference between weather years accounted for only 0.03 –
0.13 of the total variance in the voles, skylarks and spiders,
but 0.43 in the beetles (Table 1). This large value of R2 for
weather years for the beetles reflects the segregation of lines
in the beetle data in Figure. 2.

Figure. 3 shows the effects of variation between grid
squares, denoted by colours, for a randomly chosen
weather year. Density had a linear effect on pgr for each
grid square, with similar slopes within species except the
vole, where it appears squares showing larger population
fluctuations had shallower slopes (this is discussed further
below). The lines intersect pgr = 0 at carrying capacity, and
these equilibrium densities varied widely between squares
in each species, as expected since habitats varied across the
landscape (Figure. 1, left-hand panel). The proportion of
variance in pgr explained by grid square was similar for all
four species (0.23 – 0.30, Table 1).

The slopes of the lines did not vary with square or year in
skylark, beetle and spider, as can be seen from the two-
way interaction terms involving density in Table 1. These
interaction terms explained ≤ 0.01 of the variance in all
species, except that the density*square interaction
accounted for 0.07 of the variance in the vole. There were
no significant three-way interactions, as can be seen from
the F values, which were all one. The implication is that
the pgr-density relationships of different square and years
are essentially parallel in skylark, beetle and spider. Aver-
age slopes of all four species are shown in Table 2 and all
were less than one (t-tests, p < 0.001).

Local carrying capacities of the grid squares are shown in
maps in Figure. 1.

Discussion
Population characteristics are emergent properties of col-
lections of individuals in ABMs as in the real world [24].
It follows that even if individuals are completely deter-
ministic, it is not necessarily true that population charac-
teristics are directly related to environmental
characteristics such as weather year or habitat quality in
simple one-to-one relationships. In particular, none of the

Spatial variation in the relationship between pgr, y-1, and population densityFigure 3
Spatial variation in the relationship between pgr, y-1, and population density. Plots of pgr vs. loge(N) as in Figure. 2 
for a randomly chosen weather year, 1995. Colours distinguish each of six randomly chosen grid squares. Mauve indicates the 
grid square analysed in Figure. 2.
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population characteristics revealed in the present analyses
were known in advance. Instead they emerged from char-
acteristics of landscapes, weather and individual behav-
iour reported in field studies and programmed into the
ABMs. Thus the revealed population characteristics
require explanations. Ideally these will be in terms of the
properties of individuals in simple mechanistic relation-
ships, but there is no guarantee such relationships exist.
Below, we suggest mechanisms in terms of known and
programmed behavioural ecology, and we back up our
suggestions where possible by simulation experiments
[32] and further analysis of simulation data. However
proof of the validity of our conjectures requires in some
cases additional experimentation beyond the scope of the
present paper.

There was considerable spatial variation in local carrying
capacity (Figure. 1) as expected because habitat quality
varied across landscapes, and variation between 500 ×
500-m squares accounted for 23% – 30% of the variance
in pgr in the general linear model (Table 1). It can be seen
that carrying capacities broadly reflect the main features of

the landscape shown in Figure. 1. Thus the primary habi-
tats of the skylarks and spiders were the arable fields
which occur in the triangular regions at lower right and
top left, but there the voles and beetles were scarce. These
distributions result from the known behavioural ecology
of each species. Skylarks nest in arable fields because they
prefer open and accessible low vegetation, and the mod-
elled spiders are an opportunistic species specializing in
disturbed habitats like arable fields. Voles prefer the per-
manent grass cover often found beside roadside verges
and other linear features. The beetles prefer pasture and
arable fields, but their numbers suffer in arable fields
because of disturbance during farming operation [33].

Although carrying capacities varied, there were no differ-
ences between squares in the other key parameter, the
return rate, except in the vole. This is shown by the paral-
lelism of the pgr-density relationships, return rate being by
definition the negative of the slope of this relationship.
Invariance of return rates has also been reported in red
kangaroos (Macropus rufus) in the pastoral zones in South
Australia [18]. Invariance of return rates suggests, but does
not prove, that the mechanisms of density dependence are
the same in all squares.

Average return rates are shown in Table 2, and are less
than one y-1 for all four species, indicating that a return to
carrying capacity after disturbance takes more than a year.
These estimates are likely overestimates because our
method of estimation of return rates has an intrinsic bias
towards one [34], so the true values may be lower than

Table 1: Summary ANOVA tables for each species for GLMs regressing pgr against population density (log scale), weather years and 
squares and their interactions.

Vole Skylark Beetle Spider

df F R2 df F R2 df F R2 df F R2

Density 1 602 0.04 1 630 0.05 1 12810 0.19 1 3036 0.15

Year 9 222 0.13 9 42 0.03 9 3283 0.43 9 276 0.12

Square 45 100 0.29 42 93 0.30 49 320 0.23 49 117 0.28

density*year 9 2 0.00 9 2 0.00 9 34 0.00 9 15 0.01

density*square 43 25 0.07 42 2 0.00 49 4 0.00 49 1 0.00

year*square 378 2 0.04 378 1 0.04 440 4 0.02 441 2 0.03

density*year*square 363 1 0.03 378 1 0.03 434 1 0.01 440 1 0.02

Residuals 6253 7118 7843 7774

Population density was entered as a covariate, weather years and squares as factors. Empty squares were not included in the analysis and this 
reduced df in some cases. R2 is the proportion of variance accounted for by predictors and interaction terms.

Table 2: Return rates, y-1, for each species obtained as minus the 
regression coefficient for density.

Vole Skylark Beetle Spider

0.60 (0.01) 0.70 (0.01) 0.65 (0.01) 0.87 (0.01)

Spatial and temporal heterogeneity is accounted for using a GLM 
performed as in Table 1 but without interaction terms except for 
year*square. Standard errors are in brackets.
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shown in Table 2. Return rates less than one indicate that
populations are stable and show no tendency to oscillate
about their equilibrium values [3,35].

The reasons why average return rates are less than one dif-
fer between species. The simplest cases are the beetles and
the spiders, where we conjecture that the local popula-
tions are not able to recover from disturbance within a
single season because the season is short and the larvae
suffer high mortality even at low density, due to their
locally patchy distributions. Both beetles and spiders have
high fecundity but spiders recover from low density faster
and have higher return rates than beetles (Table 2)
because their juvenile stages escape density-dependent
mortality by aerial dispersal (ballooning) [11,36]. By con-
trast beetle larvae do not disperse far [26] and so density
remains patchy at small scales even in low-density years.
The result is that beetle populations are slow to recover
from low density and so have a lower return rate than spi-
ders. Our interpretation here is supported by experimen-
tal manipulation of the dispersal characteristics of the
beetle to resemble those of the spider, which resulted in
the expected increase in return rate, to 0.85 +/- 0.01, y-1.
The experiment only entailed increasing the maximum
distance that beetle individuals could move in a day from
14 to 50 m, all other behavioural characteristics of the
beetle were left unchanged. Return rates in voles are
related to the size of within-square population fluctua-
tions (Figure. 4). Return rates decline as the size of fluctu-
ations increases (r3214 = -0.36, p < 0.001) from a value
around one when fluctuations are small. The intermediary
variable here is the size of the patch of habitat in which
the voles live. In large patches adults compete for territo-
ries in contest competition and this results in a return rate
of one, and little variation in numbers from year to year,
because non-territorial animals remain within the patch
moving in the interstices between territories. In small
patches by contrast non-territorial animals are not able to
hide and due to the large edge to area ratio must disperse
outside the patch, where they usually die. This renders
sub-populations in small patches vulnerable to extinction
if the residents also die, after which population recovery is
slow. Thus population fluctuations are higher and return
rates are on average lower in smaller patches. Variation in
return rates occurs in voles (Microtus arvalis) in Fennos-
candia and eastern Europe [5,15], and it would be inter-
esting to know if this is associated as here with the size of
local population fluctuations.

The importance of our results lies in our quantification of
the effects of spatial and temporal heterogeneity on the
population dynamics of the four study species. The mag-
nitude of these effects has implications for how we under-
stand and predict population dynamics in reality. The
effects of spatial and temporal heterogeneity must be

accounted for if we are to have accurate predictive models
for use in management and conservation. The size of the
temporal effects shown here also has implications for how
we evaluate long term temporal change (e.g. through cli-
mate change), since where there are large temporal varia-
tions, longterm changes will not be discernible quickly.

The effects of spatial heterogeneity were here shown by a
significant square-density interaction, seen here in the
vole (Table 1). Such interaction terms should be included
in autoregression analyses of spatially separated popula-
tions, where return rate is given by the first autoregressive
coefficient [5,6], but this has not been attempted to our
knowledge except in [18]'s study of kangaroos. It is not
possible to include all the interaction terms included here
in analyses of real spatially separated populations,
because there would not be enough degrees of freedom. In
our simulations we overcame this by replicating the
weather years. Nevertheless the interactions that were
most important here could be included, these would be
density*year and density*square. Together with the main
effects of year and square this would allow analysis of
whether both carrying capacities and return rates vary in
space and time. This provides a method of answering the
question as to whether there is spatial and temporal het-
erogeneity in the population's dynamics.

How general are our conclusions? There are several limi-
tations to our study. The study species were selected
because they represent different functional groups, and
each has qualities that make them representative of other
species, but more would certainly be better. Similarly
other landscapes should be investigated. For example the

Return rate in voles in relation to the size of within-square population fluctuationsFigure 4
Return rate in voles in relation to the size of within-
square population fluctuations. The size of population 
fluctuations within each square was assessed as maximum 
fold variation in population density [log10(Nmax/Nmin)]. Bars 
indicate standard errors.
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landscapes experienced by northern Scandinavian voles
are more homogeneous than those modelled here, so spa-
tial heterogeneity should there affect population dynam-
ics less. The effects of weather year are likely qualitatively
robust, though quantitatively effects depend on the actual
weather experienced. Lastly, we have not investigated the
effects of population sizes in earlier years, i.e., Nt-1, Nt-2,
but these would allow the identification of population
cycles found in, e.g., some vole species [37,38].

It may be questioned as to whether we are here studying
reality, or just very complex models. It is important to
stress that our ABMs are the best available representations
of life in the study site, which is why we chose to work
with them. So, the emergent population properties of the
ABMs should provide the most accurate characterisation
of the real populations that is currently possible. Accuracy
is not however guaranteed and checking – and correction
– will probably be needed over the foreseeable future. The
detailed nature of ABM predictions allows many checks,
and such testing is ongoing. Related to this, it may seem
surprising that not all emergent population properties of
the ABMs are fully understood. Obtaining these mecha-
nistic explanations is part of our research programme,
however this can be laborious in ABMs as in reality, and
success is not certain, as explained at the start of this Dis-
cussion.

Conclusion
Here we have used previously published detailed ABMs to
gain new conceptual insights into how populations
behave in landscapes that vary geographically in realistic
fashion. The results of much field work are encapsulated
within each ABM but their population properties were not
known in advance. The present study obtains population
insights from known behavioural observations. The
importance of our results lies in our demonstration that
the effects of spatial and temporal heterogeneity must be
accounted for if we are to have accurate predictive models
for use in management and conservation. This is an area
which until now has lacked an adequate theoretical
framework and methodology [19,23,39].
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