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Abstract

Background: Plant defense strategy is usually a result of trade-offs between growth and
differentiation (i.e. Optimal Defense Theory — ODT, Growth Differentiation Balance hypothesis —
GDB, Plant Apparency Theory — PAT). Interaction between the introduced green alga Caulerpa
taxifolia and the endemic seagrass Posidonia oceanica in the Mediterranean Sea offers the opportunity
to investigate the plausibility of these theories. We have accordingly investigated defense
metabolite content and growth year-round, on the basis of an interaction gradient.

Results: When in competition with P. oceanica, C. taxifolia exhibits increased frond length and
decreased Caulerpenyne — CYN content (major terpene compound). In contrast, the length of P.
oceanica leaves decreases when in competition with C. taxifolia. However, the turnover is faster,
resulting in a reduction of leaf longevity and an increase on the number of leaves produced per year.
The primary production is therefore enhanced by the presence of C. taxifolia. While the overall
concentration of phenolic compounds does not decline, there is an increase in some phenolic
compounds (including ferulic acid and a methyl |2-acetoxyricinoleate) and the density of tannin
cells.

Conclusion: Interference between these two species determines the reaction of both, confirming
that they compete for space and/or resources. C. taxifolia invests in growth rather than in chemical
defense, more or less matching the assumptions of the ODT and/or PAT theories. In contrast, P.
oceanica apparently invests in defense rather than growth, as predicted by the GDB hypothesis.
However, on the basis of closer scrutiny of our results, the possibility that P. oceanica is successful
in finding 2 compromise between more growth and more defense cannot be ruled out.

Background between different individuals of different species. Com-
Several theories have been advanced to explain the  mon theories proposed to explain defense strategies in
chemical pathways and tissue differentiation strategies  plants are: Optimal Defense Theory (ODT) [1]; the
that have evolved to reduce the effect of competition = Growth-Differentiation Balance Hypothesis (GDBH)
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[2]; the Resource Availability Theory (RAT) [3] and the
Plant Apparency Theory (PAT) [4]. ODT predicts that
plants should have the highest defense levels in parts
that have the highest value in terms of fitness. GDBH
predicts that defense allocation will be a result of trade-
offs between growth (increasing plant size) and defense
(or tissue differentiation); as long as all environmental
factors are favorable for growth, growth processes pre-
dominate over differentiation [2]. According to RAT
plants with abundant resources invest in growth rather
than defense. Finally PAT is based on the observation
that both types of strategy (growth and defense) occur in
plants but that they differ in cost.

ODT arises from cost assumptions identified by PAT, that
is that defenses are costly in terms of fitness. A further con-
sequence is that environmentally stressed plants should
be less well defended against herbivores, and therefore
more palatable, than unstressed plants, as they have fewer
resources available for defense [5]. Clearly, ODT-PAT
assumptions (when plants are stressed, they invest in
growth rather than defense) may seem incongruent with
GDB-RAT assumptions (when resources are scarce, plants
invest in defense rather than growth).

Patterns of plant defense and resource allocation as a
function of stress, disturbance and herbivore pressure
have given rise to a considerable body of literature, espe-
cially in the terrestrial realm (e.g. [2,6-9,5,10,11]). How-
ever, marine models have been relatively poorly
investigated [12-15].

Interaction between the green alga C. taxifolia (Vahl) C.
Agardh introduced into the Mediterranean Sea [16] and
the endemic seagrass P. oceanica (Linnaeus) Delile offers
the opportunity to investigate the reliability, incongru-
ence and/or complementarity of the theories comparing
defense, growth and competition. In addition, both spe-
cies produce defense compounds (terpenes and phenolic
acids, respectively; [17-19]) in such a way that interac-
tions can be isolated and investigated. Here, we investi-
gate defense strategies at the molecular level by
evaluating the production of defense compounds (phe-
nolic compounds in P. oceanica and Caulerpenyne
(CYN) in C. taxifolia) and the influence of this produc-
tion on growth over an annual growth cycle. To this end,
we identified an interaction gradient, i.e. isolated popu-
lations and co-occurring populations and examined the
effect of interaction on the two species. The purpose of
this paper is to determine whether the fitness of either
plant is compromised in the presence of the other; and if
fitness is indeed compromised, whether a pattern of
defense may be identified.

http://www.biomedcentral.com/1472-6785/8/20

Results

Leaf and frond length

P. oceanica shoots exhibited seasonal variation in the
mean number (Fig. 1) and mean length of leaves (Fig. 2).
The length of both adult (752.3 + 43.1 mm for LO and
509.7 + 55.3 for L3) and intermediate leaves (Fig. 2)
decreased significantly when the level of interaction with
C. taxifolia increased (ANOVA; F = 40.1, df =2, P < 0.001;
F =54.8, df = 2, P < 0.001, respectively). As a result, the
biomass of P. oceanica shoots decreased from LO (no inter-
action) through L2 (high interaction); for instance in May
1999, biomass is respectively, 125.3 + 16.5, 84.6 + 10.4
and 67.5 + 9.4 mg dry weight, for L0, L1 and L2 (54.5,
47.8 and 38.1 g dry weight per m2). Similarly, the mean
frond length of C. taxifolia changed seasonally (Fig. 3) but
in the opposite direction from P. oceanica : the length sig-
nificantly increased with the level of interaction (ANOVA;
F=289.9,df=2,P<0.001).

Leaf renewal and primary production of Posidonia
oceanica

The number of P. oceanica leaves formed during a one-
year period increased with the level of interaction (Fig. 4)
while the mean life-span of leaves decreased significantly
(Fig. 5; ANOVA; F = 14.4, df = 2, P < 0.001). The increase
in the number of leaves produced during the study period
generated an increase in the net primary production ded-
icated to leaf blades and sheaths (Fig. 6), with an 82%
increase observed between LO (no interaction) and L2
(highest interaction) (see Additional file 1).

Tannin cells in Posidonia oceanica leaves

The density of tannin cells varied significantly along P.
oceanica adult leaf, with a peak in the central part of the
leave (Fig. 7; ANOVA; F = 3.5, df = 7, P < 0.05). A signifi-
cant increase in the density of tannin cells in blades was
apparent with increasing levels of interaction with C. taxi-
folia (ANOVA; F=29.3,df =2, P<0.001). For example, at
100 mm above the base of the leaf, the mean density was
16.7 + 10.6 cells cm2 (LO), 31.1 + 15.5 (L1) and 57.8 +
21.2 (L2).

Phenolic compounds of Posidonia oceanica leaves

Five major phenolic compounds were identified; 4-
hydroxybenzoic acid, 4-coumaric acid, trans-cinnamic
acid, caffeic acid and a mixture (hereafter P1) of at least
two compounds, one of which is ferulic acid. Among
minor phenolic compounds, the methyl 12-acetoxyrici-
noleate (hereafter P2) presented changes with the level of
interaction (see below).

No clear seasonal trend was evident over time in the total
phenolic content of P. oceanica leaves (data not pre-
sented). There is a weak but not significant (ANOVA; F =
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Leaf number. Mean number of intermediate and adult leaves of Posidonia oceanica according to the period and the level of

interaction with Caulerpa taxifolia. Bars: Confidence level 95%, n

= 30 shoots.

2.7,df =2, P =0.07) increase in mean total phenolic con-
tent between LO (297 + 65 ug g dry weight!') and L2 (357
+ 100). Conversely, P1 and P2 exhibited a significant
increase with the level of interaction with C. taxifolia (Fig.
8; ANOVA; respectively F = 8.6, df = 2, P= 0.0009; F = 5.4,
df =2, P= 0.0091).

Caulerpenyne (CYN) content in Caulerpa taxifolia fronds
CYN content of C. taxifolia fronds varied seasonally
(Kruskal-Wallis test; p < 0.01), with a maximum in sum-
mer and a minimum in spring (Fig. 9). Whatever the sea-
son, CYN content varied as a function of the level of
interaction with P. oceanica (Kruskal-Wallis test; p < 0.01);
in July, for instance, CYN values were 3.7 + 0.7 mg CYN g
wet weight! (L0), 2.0 + 0.8 (L1) and 1.4 + 0.6 (L2).

Discussion

Caulerpa taxifolia strategy

When in competition with P. oceanica, C. taxifolia exhib-
itsincreased frond length (growth) and decreased CYN
content (tissue differentiation). This may be influenced by

the low levels of irradiance observed beneath the P. ocean-
ica canopy (e.g., [20,21]). Increased growth is often linked
to light availability. A similar competition type (for
resources; see [22]) was also observed in another invasive
species, Sargassum muticum (Yendo) Fensholt [23].
Clearly, the response of C. taxifolia to competition is to
invest in growth rather than defense. However, it is worth
noting that increased frond length does not necessarily
imply an increase in primary production, because longer
fronds may be slender.

Though terpenes should be considered as rather low cost
defense metabolites [4,24], they do appear to be too costly
for C. taxifolia, since the plant reaction is to lower CYN
concentration. In general, terpene production, mainly
CYN, defends C. taxifolia against herbivory [25,17-19,26]
but is also essential for the wound closure of the cells [27].
For example C. taxifolia is avoided by herbivorous sea-
urchins (Paracentrotus lividus) and fish (Sarpa salpa) [28-
30]. According to [31], C. taxifolia is less palatable to sea-
urchins than P. oceanica in summer, when the terpene
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Leaf length. Mean length of intermediate leaves of Posidonia oceanica according to the period and the level of interaction with

Caulerpa taxifolia. Bars: Confidence level 95%, n = 30 shoots.

content is maximum, whereas the reverse occurs in winter.
Being more palatable when co-existing with P. oceanica, C.
taxifolia couldactually be grazed more frequently. How-
ever, no conspicuous herbivore bites were observed at any
time during field work. Conversely when compared with
winter and spring values, the level of chemical defense in
C. taxifolia remains relatively high in summer (Fig. 9).

We confirmed observations by [32] and [19] with the
finding that the annual cycle of CYN content exhibits dra-
matic changes between high summer and autumn values
and relatively low winter and spring concentration (Fig.
9). This cycle is coupled with the growing season of C.
taxifolia [33]. Our finding that the actively growing sum-
mer fronds of C. taxifolia could be more strongly chemi-
cally defended than decaying winter fronds illustrates
ODT [1].

Posidonia oceanica strategy

In contrast with C. taxifolia, the length of P. oceanica leaves
decreases when in competition with C. taxifolia (Fig. 2).
However, the leaf turn-over is faster, resulting in a reduc-
tion of leaf longevity and an increase in the number of
leaves produced per year. The primary production of P.
oceanica is therefore enhanced by the presence of C. taxifo-
lia (Fig. 6). [34] also observed the reduction of leaf lon-
gevity; however leaf length was either increased (adult
leaves) or reduced (intermediate leaves).

As far as the production of defense metabolites is con-
cerned, the P. oceanica strategy also differs from that of C.
taxifolia. Firstly, the overall concentration of phenolic
compounds does not decline. Secondly, some phenolic
compounds (including ferulic acid and a methyl 12-ace-
toxyricinoleate) display an increase. Third, the density of
tannin cells, which are specialized in the synthesis of the
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anica. Bars: Confidence level 95%, n = 40 fronds.

phenolic compounds [35,36] increases (supporting ear-
lier findings by [34] and [37]). While terpenes are recog-
nized mostly in anti-herbivore interactions, phenolic
compounds are supposed to be involved in defense
against pathogens and allelopathy by reducing the growth
of competing plants [38-41]. Nevertheless, C. taxifolia
appears not affected by the increase of these phenolic
compounds.

Though superficial interpretation of our results could lead
to the conclusion than P. oceanica invests in defense rather
than growth (since biomass declines), it appears that it in
fact invests both in defense and growth (since primary
production actually increases).

Another explanation for this energy imbalance may relate
to the structure of the P. oceanica meadow and the produc-
tion of below ground rhizomes. These rhizomes consti-
tute a storage organ for nutrients and polysaccharids [42-
44], as well as a route for the transfer of photosynthate
between shoots [45,46]. However, the translocation
hypothesis would only work for site L1, with photosynt-
hates possibly provided by shoots located in the inner
meadow. As far as site L2 is concerned, the surface area of
the meadow colonized by C. taxifolia is much larger than
the maximum distance of translocation (a few tens of cen-
timetres), which could invalidate the hypothesis.
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Leaf production. Mean number of Posidonia oceanica leaves produced per shoot during the year of study according to the
level of interaction with Caulerpa taxifolia. Bars: Confidence level 95%, n = 30 shoots.

Conclusion

Like many invasive species, C. taxifolia is able to quickly
colonize open areas and synthesize defense metabolites,
namely terpene compounds, that are cheap to produce
but with high turnover rates [33]. Conversely, P. oceanica
grows very slowly [47], is a late successional species [48]
and synthesizes defense phenolic compounds, that are
costly to produce but more economical over time.

Interference between these two species determines the
reaction of both (Fig. 10), which demonstrates that they
compete for space and/or resources. C. taxifolia invests in
growth rather than in chemical defense, more or less
matching the assumptions of ODT and/or PAT. It is worth
noting that the terpenes this plant produces are efficient
against herbivores, but probably inefficient against com-
petition with other plants, due to low water-solubility and
rapid degradation in sea water [19,49]. Though investing
in growth, C. taxifolia fronds are unable to grow taller than
P. oceanica leaves (Fig. 2 and 3). This suggests that, at this
study site, C. taxifola cannot successfully compete with P.

oceanica for light. In contrast, P. oceanica apparently
invests in defense rather than growth, as predicted by the
GDB hypothesis [2]. However, we cannot rule out the pos-
sibility that P. oceanica may be successful in combining
growth and defense.

Methods

Study Site

Three adjacent sites (around 10 000 m? each), situated in
the subtidal region at Cap Martin (French Riviera) from 9
to 11 m, presenting similar environmental conditions
(substrate, exposure, depth), were sampled every two
months, from May 1999 to July 2000 using SCUBA div-
ing. Three levels of interaction between C. taxifolia and P.
oceanica were identified and replicate sampling was per-
formed in each interaction category (Additional file 1).
Formation of the P. oceanica meadow primarily resulted
from the growth of orthotropic (erect) shoots. No seed-
ling recruitment was observed during the course of the
study. Shoot density differences were not significant
between monospecific stands LO (435 + 64 shoots.m2)
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Leaf life-span. Mean life-span of Posidonia oceanica leaves, according to the level of interaction with Caulerpa taxifolia. Bars:

Confidence level 95%, n =5 (LO) n =7 (L1), n = 10 (L2).

and locations with co-occurring populations of P. oceanica
and C. taxifolia fronds (565 + 158). The density of C. taxi-
folia fronds was also similar. Within each site we collected
randomly 30 individual sterile adult shoots of P. oceanica
with intact rhizomes and 40 fronds of C. taxifolia con-
nected to different stolons.

Sample Processing of individual shoots and fronds

Leaf lengths were measured and the number of adult (old-
est external leaves with a sheath) and intermediate leaves
(younger internal leaves without sheath) was recorded
according to Giraud' method [50]. Dry weights for leaf
blades and leaf sheaths were computed separately. Lepi-
dochronological analysis was also carried out to establish
the average cycle of leaf renewal and estimate the annual
production of leaves and rhizomes [51]. In this method,
the mean leaf primary production corresponds to the
mean number of leaves produced per shoot and per year
multiplied by sheath and blade biomass. The length of C.
taxifolia fronds was measured to the nearest millimeter.

Tannin cells analysis

In September 1999, a sub-sample of three shoots of P. oce-
anica was preserved in ethanol (ethanol - 95%), to
observe tannin cells. Once rinsed with fresh water, trans-
verse sections (50 um thick) were performed along the
adult leaves at 2 cm intervals (sheath) and 5 cm intervals
(blade). Tannin cells were then counted using optical
transmission microscopy, enlargement x100 and density
expressed as a number of cells cm?2.

Preparation and chromatographic analysis of phenolic
compounds

P. oceanica shoots were kept at low temperatures (1-5°C)
during transport. In the laboratory, leaf epiphytes were
removed using a razor blade and leaves were freeze dried
for 72 hours (HETO®, Lab Equipment-FD4). Extraction of
phenolic compounds was then initiated [52,38]. 1to 3 g
dry weight of leaf tissues were infused for 3 h in 200 ml of
aqueous ethanol (1:1), in darkness (40°C). Extraction
was carried out with ethyl acetate after vacuum evapora-

Page 7 of 13

(page number not for citation purposes)



BMC Ecology 2008, 8:20

http://www.biomedcentral.com/1472-6785/8/20

1.80

1.60

1.40

1.20

1.00 -

Production (g)

0.80

0.60 -

M Blade
E Sheath
B Rhizome

0.40 1

020 —==mEss

L0 L1

L2

Interaction level

Figure 6

Posidonia primary productionr. Net primary production (in g dry weight shoot ! yr-!) of Posidonia oceanica dedicated to
rhizomes, sheaths and blades, according to the level of interaction with Caulerpa taxifolia. The method of estimation (see [21]
Pergent and Pergent-Martini, 1991) does not allow calculation of a confidence interval.

tion of the ethanol, at 45°C. The organic phase was thus
separated in the separatory funnel, dried using anhydrous
sodium sulphate, and then evaporated until a dry residue
was obtained. The liposoluble phenolic compounds
extracted were stabilized by conversion of the hydroxyl
groups into trimethylsilyl groups and the dry extract was
added to 50 pl of the mixture trimethylchlorosilane: hex-
amethyldisilazane: pyridine (1:3:9), 100 pl of bis(tri-
methylsilyl)trifluoroacetamide and 1.5 pul  of
trimethylchlorosilane and heated at 70°C for 30 minutes
in an inert atmosphere.

For each interaction level, three stabilized samples were
analysed by GC and by GC-MS. The GC analyses were car-
ried out using a Perkin-Elmer Autosystem GC apparatus
equipped with FID detectors and fused-silica capillary col-
umn (30 m x 0.25 mm i.d., film thickness 0.25 um), Rtx-
1 (dimethyl polysiloxane). Oven temperature was pro-
grammed to increase the temperature environment by
2°C/m increments between 60°C to 230°C and then
hold temperature at 230° C for 35 min. Injector and detec-
tor temperatures were maintained at 280°C. Samples
were injected in the split mode (1:80), using helium as a
carrier gas (1 ml/min).
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Tanin cells. Change in the mean density of tannin cells along the length of Posidonia oceanica adult leaves (sheaths and blades)
as a function of the level of interaction with Caulerpa taxifolia. Distance along the leaf was measured below and above the limit
between sheath and blade. For each adult leaf of each shoot several replicates were performed; the total number of replicates
was n =78 (LO) n =89 (LI1), n = 83 (L2). Bars: Confidence level 95%,.

The GC-MS analyses were performed on a Perkin-Elmer
quadrupole MS system (model Q-mass 910). MS condi-
tions occurred as follows: ionisation voltage of 70 eV, scan
rate 1 scan/s, mass range 35-350 Da, ion source tempera-
ture 200°C. The spectrometer was directly coupled to a
Perkin-Elmer Autosystem GC. A fused-silica capillary col-
umn (30 m x 0.25 mm i.d., film thickness 0.25 um), Rtx-
1 (dimethyl polysiloxane) was employed. The tempera-
ture conditions and the carrier gas were the same as above.

Compound identification was based on: (i) comparison
between retention times on an apolar column, and those
of standards injected beforehand, and (ii) computer
matching with commercial mass spectra libraries [53]. A

standard curve derived from pure products enabled the
concentrations of phenolic compounds in the samples to
be quantified.

Preparation and chromatographic analysis of
Caulerpenyne (CYN)

Five samples of C. taxifolia were taken from each experi-
mental site. Algal fronds were processed by rinsing in
fresh water, storing at -20°C in MeOH at a concentration
of 5 g wet weight of each frond in 50 ml of MeOH
(MeOH, 95-98%, Chromanorm; HPLC quality), in order
to avoid any degradation of the CYN. Extraction of CYN,
the major terpene compound produced by C. taxifolia
[19], was performed directly in the MeOH. To ensure the
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Phenolic compounds. Mean annual content in P (a mixture with ferulic acid) and P2 (methyl |2-acetoxyricinoleate) phe-
nolic compounds in adult leaves of Posidonia oceanica, as a function of the level of interaction with Caulerpa taxifolia. Bars: Con-

fidence level 95%, n = 17 (LO) n = 18 (LI), n = 18 (L2).

total diffusion of the CYN present within each frond, sam-
ples were sonicated for five minutes. CYN measurements
were performed using High Performance Liquid Chroma-
tography. Thus, 10 pul of each sample was injected into the
glass column of 5 um silica (100 x 3 mm, Chrompack)
and eluted with a MeOH - water solvent mixture (8:2) at
a speed of 0.5 ml min-!. As the retention time of CYN is of
the order of 2.8 min, the injection time for each sample
was set at 6 min. Measurements were performed at a UV
wavelength of 254 nm, sensitivity = 0.32. The HPLC
pump (Waters 600), equipped with an automatic injector
(Waters 717), was monitored using specially-designed
software (Millennium Waters software), that also control-
led the PAD data acquisition (Photodiode Array Detector

Waters 996). This system enables CYN peaks to be identi-
fied during elution both in real time and under the meas-
urement conditions. Three replicates were performed for
each sample to assess the analytical dispersion. The stand-
ard curve, established on the basis of purified CYN,
allowed determination of CYN levels in the samples. A
direct relationship between HPLC peaks and CYN levels
was obtained.

Statistics

After checking for normality (Shapiro-Wilks test) and
homogeneity of the variances (Bartlett's test), analysis of
variance (ANOVA) was carried out using Statgraphic v.3.0
software. The factors were represented by season, the sta-
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both season and level of interaction with Posidonia oceanica. Bars: Confidence level 95%, n = 5.

tion and tissue type (adult sheaths and blades and inter-
mediate leaves) and in the case of tannin cells, by the
position of the section on the leaf. These ANOVA were
then completed by a Tukey's multiple range test, in order
to locate the differences. It should be noted that because
of the small sample size for the study of the phenolic com-
pounds (n = 3), the normality of the data could not be
determined. However, ANOVA is a robust test under the
conditions of application [54]. For each test, the null
hypothesis was rejected with a probability of 95%.
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