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Abstract

Background: A time series of 4 consecutive years of measurements of the partial pressure of CO,
(pCO,) in the Scheldt estuarine plume is used here to estimate net ecosystem production (NEP).

Results: NEP in the Scheldt estuarine plume is estimated from the temporal changes of dissolved
inorganic carbon (DIC). The strong seasonal variations of NEP are consistent with previous reports
on organic carbon dynamics in the area. These variations are related to successive phytoplankton
blooms that partly feed seasonally variable heterotrophy the rest of the year. On an annual time
scale the Scheldt estuarine plume behaves as a net heterotrophic system sustained with organic
carbon input from the Scheldt inner estuary and the Belgian coast. During one of the years of the
time-series the estuarine plume behaved annually as a net autotrophic system. This anomalous
ecosystem metabolic behaviour seemed to result from a combination of bottom-up factors
affecting the spring phytoplankton bloom (increased nutrient delivery and more favourable
incoming light conditions). This net autotrophy seemed to lead to a transient aa accumulation of
organic carbon, most probably in the sediments, that fed a stronger heterotrophy the following
year.

Conclusion: The present work highlights the potential of using pCO, data to derive detailed
seasonal estimates of NEP in highly dynamic coastal environments. These can be used to determine
potential inter-annual variability of NEP due to natural climatic oscillations or due to changes in
anthropogenic impacts.

Background ocean across continental slopes and the coastal ocean rep-
The flows of carbon and nutrients in the coastal ocean are  resents one of the most biogeochemically active areas of
disproportionately high in comparison with its surface  the biosphere [e.g., [1]]. The production, degradation,
area because of the massive inputs of organic matter and  export and burial of organic matter in coastal waters are in
nutrients from land. Large amounts of matter and energy =~ general much higher than in the open ocean [e.g., [2]].
are exchanged between the coastal ocean and the open
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The metabolic status of an ecosystem is quantified by the
net ecosystem production (NEP) that corresponds to the
difference between gross primary production (GPP) and
ecosystem respiration (autotrophic and heterotrophic res-
piration) in both the pelagic and benthic compartments.
This will determine if an ecosystem exports organic car-
bon to adjacent systems (net autotrophic; NEP > 0) or if
an ecosystem requires external organic carbon inputs to
sustain its ecosystem metabolism (net heterotrophic; NEP
< 0). However, the ecosystem metabolic status of the
coastal ocean as net autotrophic or net heterotrophic has
been the subject of a long lived debate [1-6]. One of the
reasons for this debate is the lack of data for resolving the
temporal variability of carbon cycling in the highly
dynamic coastal ecosystems, and for adequately describ-
ing the diversity and spatial heterogeneity of these ecosys-
tems [1,7-9]. A recent exhaustive literature review of
ecosystem metabolic estimates in European coastal waters
did not reach an unambiguous conclusion on their
trophic status, although these are among the most thor-
oughly studied sites in the world [7].

Reliable estimates of the ecosystem metabolic status are
hampered by the conceptual problems associated with
14C estimation of primary production [e.g., [10,11]], the
strong spatial heterogeneity within an ecosystem [e.g., for
estuaries [12,13]], and the high temporal variability [e.g.,
[14]] which cannot be easily measured with classical incu-
bation based approaches. Gazeau et al. [12] reviewed the
advantages and caveats of several methods to estimate
NEP, and recommended the use of integrative mass bal-
ance approaches. A commonly applied integrative mass
balance approach is the Land-Ocean Interaction in the
Coastal Zone (LOICZ) method based on the budget of
dissolved inorganic phosphorus (DIP) [15]. In turbid
environments such as inner and outer estuaries, the
LOICZ DIP budgets can provide highly unrealistic NEP
estimates [e.g., [12,13]] due to complex abiotic processes
of desorption/adsorption from/on suspended matter

[e.g., [16]].

Here, we report seasonal and inter-annual variations of
NEP in the Scheldt estuarine plume (Fig. 1) estimated
from a dissolved inorganic carbon (DIC) mass balance
approach. This approach has previously provided robust
estimates compared to incubation techniques in several
coastal environments such as the Randers Fjord [12], the
Scheldt inner estuary [13] and the Bay of Palma [17].

Results and discussion

A wide range of techniques are used to estimate the meta-
bolic status of coastal ecosystems, and each relies on one
or several assumptions, and covers different spatial and
temporal scales as reviewed by Gazeau et al. [12]. Integra-
tive methods based on mass balance approaches of rele-
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vant biogeochemical variables (DIP, O,, DIC, organic
carbon) have been recommended for estimation of meta-
bolic performances in dynamic and complex coastal envi-
ronments [12]. NEP can be established from a box model
approach, by balancing the DIC inputs and outputs [e.g.,
[12,13,17-19]]. However, this method requires the
knowledge of water flows that are typically highly variable
in coastal environments, and tends to introduce a large
uncertainty that is difficult to quantify. A more simple
approach relies on the temporal variation of DIC,
whereby:

DIC,-DICy d- FCO9,9+FCO31q
At 2

NEP = —

where DIC, and DIC, are DIC values from 2 consecutive
cruises, FCO,, and FCO,, are the air-sea CO, fluxes
(FCO,) from 2 consecutive cruises, At is the time interval
between 2 consecutive cruises, and d is the depth of the
mixed layer depth.

Such an approach is suited for permanently well-mixed
systems such as the Belgian coastal zone (BCZ), as knowl-
edge of the mixed layer depth is not required. This
method relies on the assumption that the production and
degradation of organic matter, and air-sea CO, exchange
are the main drivers of CO, dynamics (and that other
processes such as CaCOj; production/dissolution are neg-
ligible). Such an assumption holds true in the BCZ based
on current understanding of CO, dynamics in this region
[9,20-24]. The major caveat of the method is the assump-
tion that the net advective input/output of CO, is constant
between two steps of the computation. This source of
uncertainty can be assumed minimal in the present case,
because for time steps of the computations lower than the
water residence time, the invariance of CO, advective
inputs/outputs can be assumed constant. The average
time step of the computations was 21 d for an average
water residence time of 60 d [25].

Figure 2 shows the time series of the partial pressure of
CO, (pCO,), DIC, FCO, and NEP obtained at a reference
station close to Zeebrugge harbor (Fig. 1) that is represent-
ative of seasonal pCO, dynamics of the Scheldt estuarine
plume [20,21]. Surface waters are under-saturated in CO,
with respect to atmospheric equilibrium during the spring
bloom; during the rest of the year, surface waters are over-
saturated in CO, with respect to atmospheric equilibrium,
more markedly in late summer than in fall and winter. A
very strong seasonal draw-down of DIC is observed with a
decrease of DIC from winter-time to spring-time of ~220
pmol kg!in 2001 and 2002, and maximal value of ~340
pmol kg!in 2003. From late spring to summer, DIC val-
ues increase due to the degradation of the organic carbon
produced during the spring bloom. A transient and
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Figure |
Position of the fixed station (Z, 3.18°E 51.37°N) near the Zeebrugge harbor and the climatological sea surface
salinity distribution based on 160 cruises carried from 1995 to 2004.
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Figure 2 (see previous page)

Time series of the partial pressure of CO, (pCO,), dissolved inorganic carbon (DIC), air-sea CO, flux (FCO,)
and net ecosystem production (NEP) in the Scheldt plume at a fixed station (3.18°E 51.37°N) near the Zee-
brugge harbor, and of remote sensed chlorophyll-a concentration from the Sea-viewing Wide Field-of-view
(SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensors in a box (2.6-3.6°E; 51.1-51.5°N) corresponding to the average location of the

Scheldt plume[e.g.,[20,21]].

strongly autotrophic period occurs in spring that corre-
sponds to minimal pCO, and DIC values and that peaks
in slightly different months from year to year (early April
in 2001 and 2002, mid April in 2003 and 2004) with dif-
ferent amplitudes (maximal NEP values ranging from 269
mmol m2d-1in 2004 to 134 mmol m2d-!in 2003). The
timing of the strongest net autotrophy is well correlated
with the peak of remote sensed chlorophyll-a concentra-
tion (Fig. 2). This strongly autotrophic period can be
attributed to the Phaeocystis bloom which occurs systemat-
ically in the BCZ at this time of year [e.g., [22,25-28]]. A
significant diatom bloom preceding the Phaeocystis bloom
is apparent from our NEP estimates only in February
2003. The Phaeocystis bloom is followed by a hetero-
trophic period after which an increase in NEP is observed.
This increase in NEP leads to a net autotrophic event in
early summer 2001 and 2003, and to a balanced meta-
bolic status in 2002 and 2004. This increase in NEP can be
ascribed to the summer diatom bloom that is known to be
very variable in timing and amplitude in the BCZ [26-28].
Late summer is characterized by net heterotrophy that
decreases during fall. A nearly balanced metabolic status is
observed in winter.

A pCO, data-set of spatial surveys that covers the whole
BCZ and satisfactorily captures the seasonal and spatial
variability was obtained in 2002 [23]. This data-set con-

sists of 17 cruises that cover the whole BCZ (2.3-3.6°E;
51.1-51.9°N); data in the Scheldt estuarine plume were
extracted based on salinity (values < 34) [21], interpolated
and averaged. This allows calculation of mean values for
the whole Scheldt plume taking into account the spatial
variability, which is not included in a fixed station
approach. This allows verification that the NEP values
computed from the fixed reference station are representa-
tive of the whole Scheldt plume. NEP values computed
from the pCO, survey data-set obtained in 2002 (Fig. 3)
are consistent in timing and amplitude with those com-
puted from the fixed reference station data-set (Fig. 2). On
an annual scale, the NEP value computed from the pCO,
survey data-set obtained in 2002 is -3.1 + 0.2 mol m2yr!
in agreement with the value computed from the fixed ref-
erence station data-set for the same year (-3.8 + 0.2 mol m-
2yr1, Table 1).

On an annual scale the Scheldt river plume behaved as a
net heterotrophic system in 2001, 2002 and 2004, but
behaved as a net autotrophic system in 2003 (Table 1).
Using a simple organic matter input/output budget,
Borges and Frankignoulle [21] showed previously that the
annual emission of CO, to the atmosphere is only partly
due to the input of CO, from the Scheldt inner estuary and
that net heterotrophy of the Scheldt estuarine plume is
also important. The net heterotrophy of the Scheldt river

Table I: Average Scheldt river fresh water discharge (Q) from January and December of the previous year, flux of dissolved inorganic
nitrogen (FDIN) from the Scheldt river, flux of total inorganic phosphorous (FP,,) from the Scheldt river, winter-time DIN and PO 2
concentrations in the Belgian coastal zone and annual averages of the partial pressure of CO, (pCO,), air-sea gradient of pCO,
(ApCO,), air-sea CO, flux (FCO,) and net ecosystem production (NEP) at a fixed station in the Scheldt plume near the Zeebrugge

harbor.
FDIN FPtot DIN PO pCO, ApCO, FCO, NEP
(m3sh) (106 mol d-') (106 mol d-') (L)) (M) (natm) (pnatm) (mol m2yr-') (mol m2yr-')
2001 348 15 0.67 55.9 1.7 481 107 3.6 -42+0.2
2002 302 12 0.41 452 1.3 480 97 3.2 -38+02
2003 393 15 0.68 58.2 1.7 527 136 4.6 24 0.1
2004 210 9 0.56 39.6 2.1 533 153 6.6 -57+£02

Fortnightly fresh water discharge data were provided by the Ministerie van de Vlaamse Gemeenschap Afdeling Waterbouwkundig Laboratorium en
Hydrologisch Onderzoek. FDIN and FPtot were computed from average nutrient concentrations from January and December of the previous year
from the Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology database and average Q from January and December of the
previous year. Winter-time DIN and PO 2 concentrations were obtained from the Management Unit of the North Sea Mathematical Models
monitoring data-base for December of the previous year at salinity 31. The error on the NEP estimates was evaluated by propagating an error on

pCO, of + 3 patm on the DIC and air-sea CO, flux computations.
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plume must be sustained by external inputs of organic car-
bon that could originate from the Belgian coast and/or
from the Scheldt inner estuary. Based on the input of
organic matter from the Scheldt inner estuary reported by
Soetaert and Herman [29] and a Scheldt plume surface
area ranging between 2000 and 800 km?2 [20], we com-
puted a potential organic matter degradation ranging
between 0.3 and 0.6 mol m2yr!. Wollast [30] provides a
higher estimate of the input of organic matter from the
Scheldt inner estuary that can sustain a potential organic
matter degradation ranging between 0.8 and 2.0 mol m-2
yrl. Finally, Wollast [31] estimated the input of organic
carbon from the Belgian coast that can sustain a potential
organic matter degradation ranging between 0.7 and 1.8
mol m2yr!. The potential degradation of these inputs of
allochtonous organic matter from the Scheldt inner estu-
ary and the Belgian coast are of the same order of magni-
tude as the annual NEP values we computed (Table 1).

The much stronger springtime NEP observed in 2003
compared to the other years is consistent with the remote
sensed chlorophyll-a concentration from Medium Resolu-
tion Imaging Spectrometer (MERIS) and Moderate Reso-
lution Imaging Spectroradiometer (MODIS) sensors
showing that the peak springtime chlorophyll-a concen-
tration was higher in 2003 than in 2004 (Fig. 2). It is
known that the quality of satellite chlorophyll-a data may
be suspect in coastal regions because of masking of phyto-
plankton absorption by absorption from coloured dis-
solved organic matter and/or non algal particles. For the
region considered here such effects give a detection limit
of about 3-5 pg L't for chlorophyll-a concentration for the
Sea-viewing Wide Field-of-view (SeaWiFS) and MODIS
sensors, and possibly a lower limit for MERIS. This is seen
here as a background (artificial) concentration at the level
of this detection limit. However, the high phytoplankton
biomass in spring are detected every year quite coherently
by all three sensors, despite different atmospheric correc-
tion, overpass time and chlorophyll-a retrieval algo-
rithms, giving confidence in the satellite detection of these
blooms. SeaWiFS data suggest that peak springtime chlo-
rophyll-a concentration was also higher in 2003 com-
pared to 2002 (Fig. 2).

The much stronger springtime NEP observed in 2003 and
annual net autotrophy observed in 2003 compared to the
other years could be due to a combination of two proc-
esses. Wintertime freshwater discharge was stronger in
2003 than in the other years (Table 1). We used the aver-
age value of freshwater discharge in January and in
December of the previous year, since the freshwater resi-
dence time in the Scheldt inner estuary ranges between 30
and 90 d [32]. Hence, the freshwater discharges during
these months are those that can be assumed relevant for
the productive season (from February to April) in terms of

http://www.biomedcentral.com/1472-6785/8/15

nutrient inputs from the Scheldt inner estuary. We
hypothesize that in 2003 there was a stronger input of
nutrients compared to the other years, while the input of
organic matter was similar to other years. In the Scheldt
inner estuary, the input of nutrients from diffuse sources
are dependent on freshwater discharge, while organic
matter comes mainly from point sources independently
of freshwater discharge. This would lead to a stronger GPP
in 2003 from the additional nutrient inputs, while alloch-
tonous organic carbon inputs would sustain a similar
level of heterotrophy as in the other years. We roughly
evaluated the flux of dissolved inorganic nitrogen (FDIN)
and of total phosphorous (FP,,) from the Scheldt river to
the Scheldt estuarine plume (Table 1). In the BCZ, Phaeo-
cystis is overwhelming more important than diatoms in
terms of phytoplanktonic biomass and GPP [e.g., [22,25-
28]], hence the computation of nutrient fluxes was not
extended to silicate. FDIN values in 2003 were higher than
in 2001 and 2004, while FP,, values in 2003 were higher
than in 2002 and 2004 but similar to those of 2001. In the
Scheldt estuarine plume, primary production during the
spring phytoplankton bloom is strongly limited by P,
rather than by DIN [27,33]. Hence the higher FP,, values
in 2003 could explain the higher NEP values during
spring 2003 compared to 2002 and 2004. This is con-
firmed by the winter-time nutrient concentrations at
salinity 31 in the BCZ: winter-time DIN concentrations
were higher in 2003 than in 2001, 2002 and 2004; winter-
time PO,2- concentrations were higher in 2003 than in
2002 (Table 1). Also, incoming photosynthetically active
radiation (PAR) was more favourable in 2003 during the
productive months (February, March and April, Fig. 4),
and could also explain the marked autotrophy associated
to the phytoplankton bloom in 2003. Despite the fact that
the Scheldt river plume was net autotrophic in 2003, it
still acted as a net source of CO, to the atmosphere (Table
1). This confirms that a fraction of this CO, emission is
sustained by the inputs of CO, from the Scheldt inner
estuary [21,23]. This fraction is expected to increase with
increasing freshwater discharge.

The stronger annual heterotrophy in 2004 than in 2001
and 2002 could be due to a transient accumulation of part
of the excess organic matter produced in 2003, since FPtot
and winter-time PO,2- concentrations were actually higher
in 2004 than in 2002. The water residence time in the BCZ
is highly variable but can be as long as 216 d [27] and is
assumed to be on average 60 d [25]. Hence, we hypothe-
size that part of the non-steady accumulation of organic
matter from 2003 to 2004 occurred in the sediments. Sed-
imentation of organic matter is important in the BCZ, rep-
resenting about 20% of annual GPP [25], and gives
bottom sediments that are exceptionally rich in organic
carbon compared to the rest of the North Sea [30,34].
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Monthly incoming photosynthetic active radiation (PAR) at Ostende from 2001 to 2004.

Conclusion

The present work highlights the potential of using pCO,
data to derive detailed seasonal estimates of NEP in highly
dynamic coastal environments, and to determine poten-
tial inter-annual variability of NEP due to natural climatic
oscillations or due to changes in anthropogenic impacts.
On a longer term, such an approach should also allow
estimation of decadal changes in NEP that could be used
as an indication of the effectiveness of nutrient control
policies for reducing eutrophication of coastal waters.

Methods

Automated measurements of pCO, have been obtained
since September 2000 on all the cruises carried out by the
research vessel Belgica. A non-dispersive infrared gas ana-
lyzer (IRGA, Li-Cor®, Li-6262) and an equilibrator were
used to measure the pCO, (for details on design and per-
formance tests refer to [35]). The IRGA was calibrated
weekly using pure nitrogen (Air Liquide Belgium) and two
gas mixtures with a CO, molar fraction of 366 and 810
ppm (Air Liquide Belgium) that were calibrated against
National Oceanic and Atmospheric Administration stand-
ards of a CO, molar fraction of 361 and 774 ppm. The

temperature at the outlet of the equilibrator was moni-
tored with a platinum resistance thermometer (PT100,
Metrohm®). The pCO, values were corrected for the tem-
perature difference between in-situ seawater and water in
the equilibrator using the algorithm given by Copin-
Montégut [36,37]. The overall accuracy of pCO, measure-
ments is estimated to be better than + 3 patm. Salinity and
temperature were measured using a SeaBird® SBE21 ther-
mosalinograph. Salinity, temperature and pCO, were
sampled from the seawater supply of the ship (pump inlet
at a depth of 2.5 m) and logged at a 1 min frequency.

The FCO, was computed from the air-sea pCO, gradient
(ApCO, = pCO,sea - pCO,air), the solubility coefficient of
CO, (o), and the gas transfer velocity (k) according to:

FCO, = a k ApCO,

The k values were computed using hourly wind speed val-
ues from the Vlakte van de Raan meteorological station
(3.24°E 51.52°N) provided by the Royal Netherlands
Meteorological Institute, and the k-wind parameterization
given by Nightingale et al. [38], established in the South-
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ern Bight of the North Sea, close to our study area.
Monthly values of atmospheric pCO, data obtained at sta-
tion Kollumerwaard in the Netherlands (6.17°E
53.20°N) were provided by the Dutch National Air Qual-
ity Monitoring Network. Atmospheric pCO, data were
converted into pCO, in wet air according to Dickson and
Goyet [39].

Total alkalinity (TA) was computed according to:
TA =3929 - 46.156*SSS (12=0.872, p <0.0001)

where SSS is sea surface salinity, and TA is in pmol kg1,
established from 742 measurements in surface waters
(salinity range 19.5-35.4) from 26 cruises carried out in
the BCZ from 1996 to 2001 [[20,21], Borges unpublished,
Schiettecatte unpublished]. TA was measured using the
Gran electrotitration method, with an estimated accuracy
of + 3 pmol kg!. DIC was computed from pCO, measure-
ments and TA estimates from SSS, using the carbonic acid
constants of Mehrbach et al. [40] refitted by Dickson and
Millero [41].

Global solar radiation (GR) was recorded at the Ostende
meteorological station (51.15°N 02.54 °E) by the Institut
Royal de Météorologie de Belgique, and were converted
into daily-averaged PAR using the following empirical
relationship [42]:

PAR = 12.14*GR

where GRis in ] cm2d-! and PAR is in pmolE m—2s-!

Level-3 SeaWiFS chlorophyll-a concentration data were
extracted from the Ocean Color Time-Series Online Visu-
alization and  Analysis web  site  http://rea
son.gsfc.nasa.gov/Giovanni/. Level-2 MODIS chloro-
phyll-a concentration data were derived from the L1A
MODIS data, distributed by NASA Goddard Space Flight
Center Ocean Color group http://ocean
color.gsfc.nasa.gov/. The L1A radiance data measured by
the sensor at the top of atmosphere are processed using
the SeaWiFS Data Analysis System software with the
atmospheric correction of Ruddick et al. [43] to obtain
atmospherically corrected radiances. These are then con-
verted to chlorophyll-a concentrations using the OC3
algorithm [44]. Two chlorophyll-a parameters are
included in MERIS level-2 products http://envisat.esa.int/
dataproducts/meris/. The "algal pigment index 1" is com-
puted using a ratio of water reflectances at blue and green
bands [45,46] and represents chlorophyll-a concentration
for oceanic case 1 waters. The "algal pigment index 2" is
designed to represent chlorophyll-a concentration for
coastal case 2 waters and computed using a neural-net-

http://www.biomedcentral.com/1472-6785/8/15

work multiband inversion technique [47]. The MERIS
chlorophyll-a concentration used in this study was taken
either from the algal pigment index 2 if the MERIS case 2
water flag was set or algal pigment index 1 otherwise.
These chlorophyll-a data were removed if the product
confidence flag was raised, thus excluding unreliable data.
It is expected that the MERIS chlorophyll-a data will be
more reliable in this region than those from SeaWiFS and
MODIS because the case 2 algorithm is better suited to
waters with high yellow substance absorption.
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