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Abstract
Background: In Europe the mountain hare (Lepus timidus) exists in Great Britain, Norway,
Sweden, Finland, parts of the Alps and in Eastern Europe, but not in Denmark. Interspecific
hybridization has been demonstrated between native Swedish mountain hares and introduced
brown hares (Lepus europaeus). During the data collection in a study concerning Danish brown
hares we identified 16 hares with a single very divergent haplotype.

Results: Phylogenetic analysis shows that the divergent Danish haplotype is most closely related
to the Swedish mountain hare. The frequency of Lepus timidus mtDNA haplotype in the Eastern
Danish hare populations is estimated to 6%.

Conclusion: In contrast to what is known, the Danish hare populations are not pure L. europaeus
populations but include introgressed brown hares with Swedish L. timidus mtDNA. The most
probable explanation of this is natural migration or translocation of introgressed brown hares from
Sweden. The impurity of hare populations has implications for conservation and population
genetics.

Background
The brown hare (Lepus europaeus Pallas, 1778) is widely
distributed throughout Europe, up to 60°N, in Asia Minor
and probably south to Israel. It is a popular game animal
and its range has expanded to the east both by natural dis-
persion and by translocations to central and far-east Sibe-
ria [1]. Worldwide it has also been imported to many
other countries, outside its natural distribution range, e.g.
South and North America, Australia and New Zealand.

The brown hare is common all over Denmark and is the
only Lepus species that exists in the country. Since 1960
the hare population has declined drastically in Europe

and in Denmark. The primary cause of the decline is hab-
itat changes in relation to agricultural intensification,
whereas effects of climatic changes and predator abun-
dance have increased by loss of year-round access to high-
quality food and cover [2]. Additional factors like preda-
tors (especially foxes), birds of prey and traffic may have
influenced the population locally [3]. In Denmark this is
reflected by a large drop in annual number of hares shot
from more than 400,000 before 1960 to 67,600 in 2004/
2005 [4].

The general range of the mountain hare (Lepus timidus Lin-
naeus, 1758) covers much of the Palaearctic. In Europe it
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exists in Great Britain, Norway, Sweden, Finland, parts of
the Alps and in Eastern Europe but it does not exist in
Denmark [5]. During the late nineteenth century the
brown hare was introduced in southern Sweden as a game
animal [6]. In Scandinavia the mountain hare popula-
tions have been retreating northwards since the introduc-
tion of the brown hare, presumably as a result of a gradual
competitive exclusion by the latter [7]. Mountain hares
supposedly colonized Scandinavia through repeated
immigration waves over two different post-glacial coloni-
zation routes; one from the south and one from the north-
east [8].

Given the sympatric distribution of several hare species,
e.g. in Sweden, Italy, and Spain, a number of studies
focused on the possibility of interspecific hybridization.
The first evidence of interspecific hybridization in hares
concerns L. timidus and L. europaeus in Sweden [9-11]
where unidirectional introgression of the native L. timidus
mtDNA occurs in the introduced L. europaeus. However,
introgression of mitochondrial DNA into other hare spe-
cies has been demonstrated, e.g. the introgression of L.
timidus mtDNA into L. granatensis, L. europaeus and L. cas-
troviejoi in northern Iberia [12] and introgression of for-
eign mtDNA is likely to occur in several hare species from
Asia [13]. These findings have lead to the conclusion that
the genetic integrity of many European species largely
depends on differences in behaviour and ecology which,
at best, offer semi-permeable isolation [14]. In captivity,
mountain hare females mate with brown hare males and
produce viable offspring, whereas the reverse crosses do
not happen spontaneously but can be performed success-
fully with insemination [15]. The F1 hybrids are morpho-
logical intermediates between the two species [16].

During the data analysis in a study concerning Danish
brown hares we identified 16 hares with a very divergent
haplotype. Here we show that these 16 individuals from
the Danish wild brown hare populations carry mountain
hare mtDNA haplotypes.

Results
During alignment of 385 hare sequences, 16 sequences (6
males, 10 females) were clearly different from the rest and
collapsed into a single haplotype. The 16 individuals were
obtained from five of the eight populations sampled, and
these five populations are all located on islands in the
eastern part of Denmark (Figure 1). The frequency of sam-
pled individuals with L. timidus mtDNA in those five pop-
ulations averaged 6% (a crude estimate across all eight
populations is 4.16%, Figure 1).

A BLAST search against GenBank with the divergent hap-
lotype mtDNA returned L. timidus as the best hit (99%
similarity), but not a single L. europaeus sequence in the

first 50 hits. The subsequent phylogenetic analysis (Figure
2) revealed that the divergent Danish haplotype is
grouped with L. timidus samples from across Europe
(100% posterior probability in all three independent
runs) and most closely related to the Swedish L. timidus
haplotypes (100% posterior probability in all three inde-
pendent runs, green clade in figure 2). The other Danish
haplotypes included in the phylogenetic analysis, the 19
L. europaeus haplotypes, are grouped with the L. europaeus
clade as expected, and they are most closely related to Ger-
man haplotypes (100% posterior probability from three
independent runs, red clade in figure 2). Hence, the Dan-
ish haplotypes clearly originate from two different species.

Discussion
The results show the presence of mountain hare mtDNA
in Danish brown hare populations. From mtDNA alone
we cannot decide whether these 16 individuals are true
mountain hares or introgressed brown hares. This would
require further analysis using nuclear gene sequences (e.g.
transferrin) (there are no differential diagnostic microsat-
ellite loci for the two species [17]). However, given a) the
frequency of the L. timidus haplotype where it is present
(6% in the five populations), b) that L. timidus is not
reported to be a native breeding species in Denmark [5],
and c) that the two species are able to hybridize [9], these
individuals most likely represent introgressed brown
hares.

The most likely origins of introgression are; 1) natural
migration of mountain hares from Sweden followed by
introgression, or 2) natural migration or translocation of
introgressed brown hares from Sweden. However, since
the documented distribution of mountain hares in Swe-
den does not include southern Sweden [9,10], natural
migration of mountain hares is less probable than intro-
duction of introgressed brown hares (carrying mountain
hare mtDNA) from Sweden.

The fact that The Baltic Sea occasionally freezes over in
very severe winters facilitates natural migration of intro-
gressed brown hares from southern Sweden across the sea
barrier to the Eastern Danish islands (Figure 1). This is
also supported by the results from the genetic analyses
(Figure 2).

During the mid 1980'ies a network of hare breeding facil-
ities was established in Denmark, and it was initiated with
imported hares primarily from Italy, France, Hungary and
Sweden [18]. No combined record is kept of the amount
and origin of hares imported to Denmark. In 1993, when
farming hares were prohibited in Denmark, there were
100 hare-farms in Denmark, with an annual export of up
to 5,500 hares [19]. As approximately 15% of Swedish L.
europaeus specimens from sympatric areas carried trans-
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mitted L. timidus mtDNA [10], it is possible that pheno-
typic brown hare specimens imported from Sweden for
breeding purposes have carried the L. timidus mtDNA and
later escaped to the natural hare population.

The detection of only one haplotype in the 16 individuals
shows low mtDNA diversity in the total population of
hybrids in Denmark. The geographical distribution of the
16 intogressed brown hares (Figure 1) and the lack of hap-
lotype diversity support a common origin in southern
Sweden.

The implications of introgressed brown hares in the Dan-
ish hare populations are currently unclear. It has been sug-
gested that hares with an alien mtDNA have a lowered
fitness as a result of a functional incompatibility between
the cytoplasmatic mitochondrial genes and the cell
nucleus [10]. In opposition to this, due to its observed

high frequency in brown hares (93%) Melo-Ferreira et al.
[20] suggested, that the ancient L. timidus mtDNA
observed in the Iberian Peninsular might have some selec-
tive advantage depending on the nuclear background.

Thulin et al. [17] raised the question as to whether any
'pure' population of brown hares exists anywhere. Our
findings give further support to this statement. This has
important consequences for conservation and population
genetics, e.g. problematic definition of management
units, unclear fitness effects, genetically mixed popula-
tions and the inclusion of nuclear markers will be neces-
sary for future hare studies.

Conclusion
Contrary to what is known, the Danish hare populations
are not pure L. europaeus populations but include intro-
gressed brown hares with Swedish L. timidus mtDNA. The

Location and frequency of the Lepus timidus haplotype in DenmarkFigure 1
Location and frequency of the Lepus timidus haplotype in Denmark. Lepus timidus was found in five (large map) of the eight 
(small map) sampling locations.
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Bayesian phylogeny of 370 bp from the mitochondrial D-loop of 20 Lepus timidus and 28 Lepus europaeus haplotypes from Europe, including the 19 Danish Lepus europaeus haplotypes, and the divergent Danish haplotypeFigure 2
Bayesian phylogeny of 370 bp from the mitochondrial D-loop of 20 Lepus timidus and 28 Lepus europaeus haplotypes from 
Europe, including the 19 Danish Lepus europaeus haplotypes, and the divergent Danish haplotype. The numbers show nodal 
support, given as posterior probabilities (for selected nodes, posterior probabilities from three independent runs are shown).
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most probable explanation is natural migration or trans-
location of introgressed brown hares from Sweden. The
impurity of hare populations has implications for conser-
vation and population genetics.

Methods
Sample collection
During 2003–2006 The National Environmental Research
Institute of Denmark collected tissue samples from shot,
wild hares at eight locations in Denmark (Figure 1). The
hares were autopsied and several organs and muscle tissue
samples were taken out for later analyses.

Sequencing
DNA was extracted from hare muscle tissue using a slight
modification of the Chelex protocol [21]. The tissue was
placed into 1.5 mL Eppendorf tubes containing 200 μl of
20% Chelex resin solution (BIO-Rad, Hercules, CA, USA).
Tubes were vortexed briefly, boiled at 100°C for 20 min
in a heating block, centrifuged 3 min at 13000 rpm and
stored at minus 20°C.

A 494 bp fragment of the mtDNA D-loop (control region)
was amplified via PCR, using the mammalian control
region primers L15997 5'-CACCATTAGCACCCAAAGCT-
3' located in the tRNA gene and H16498 5'-CCTGAAG-
TAGGAACCAGATG-3' [22]. PCR was performed in a total
volume of 10 μl and contained 1 μl buffer (1.5 mM
MgCl2), 1.6 μl dNTP (1.25 mM of A, C, G, T, respectively),
0.5 μl of each primer (10 pmol/μl), 0.1 μl Taq polymerase
(Amersham Pharmacia Biotech), topped up with distilled
water to 9 μl and 1 μl template DNA (40–60 ng/μl) was
added. Cycling conditions were 94°C for 3 min, and 35
cycles of 94°C for 30 s, 50°C for 40 s and 72°C for 60 s
and a final extension step of 72°C for 7 min. Sequencing
was conducted under BigDye™ terminator cycling condi-
tions, the reacted products purified using ethanol precipi-
tation and run using an Automatic Sequencer ABI 3730xl.
Both strands were sequenced in all samples.

Haplotype editing and collapsing
Sequences were edited using Bioedit version 7.0.0 [23].
Identical haplotypes among the 385 sequences were
found using DNAcollapser [24].

Phylogenetic analyses
Nine L. europaeus and 20 L. timidus sequences were down-
loaded from GenBank. Sequences with geographical
information were selected to represent haplotypes from
all over Europe and Russia. Together with the 19 Danish
L. europaeus and the divergent haplotype, these 49
sequences (table 1) were aligned using Muscle [25] and
cropped to the shortest sequence (370 bp). Phylogenies
and nodal support were estimated using MrBayes, version
3.0b4 [26] under a Bayesian framework [27,28] using a

general time reversible substitution model (GTR + γ) and
the coalescent branch length model. Bayesian analysis
was initiated with random starting trees, run for 5 × 106

generations, and the Markov chain was sampled every
1000 generations. Model parameters were estimated

Table 1: Sampling localities and accession numbers of D-loop 
sequences used in the phylogenetic analysis (figure 2).

Species Sampling locality Accession #

L. europaeus Bulgaria AY466812
L. europaeus Bulgaria AY466828
L. europaeus Macedonia AY466811
L. europaeus Macedonia AY466813
L. europaeus Greece AY466823
L. europaeus Greece AY466827
L. europaeus Germany AF149725
L. europaeus Germany AF149726
L. europaeus Germany AF149727
L. timidus Sweden, Grimso AY422312
L. timidus Sweden, Kalix AY422311
L. timidus Norway, Ringebu AY422310
L. timidus Sweden, Salsta AY422313
L. timidus Sweden, Vaxvik AY422309
L. timidus Finland Y15306
L. timidus France Y15310
L. timidus France Y15311
L. timidus Ireland Y15307
L. timidus Ireland Y15308
L. timidus Ireland Y15309
L. timidus Norway Y15303
L. timidus Russia Y15304
L. timidus Russia Y15305
L. timidus Scotland Y15312
L. timidus Scotland Y15313
L. timidus Scotland Y15314
L. timidus Sweden Y15300
L. timidus Sweden Y15301
L. timidus Sweden Y15302
L. europaeus Denmark DQ645432
L. europaeus Denmark DQ645433
L. europaeus Denmark DQ645434
L. europaeus Denmark DQ645435
L. europaeus Denmark DQ645436
L. europaeus Denmark DQ645437
L. europaeus Denmark DQ645438
L. europaeus Denmark DQ645439
L. europaeus Denmark DQ645440
L. europaeus Denmark DQ645441
L. europaeus Denmark DQ645442
L. europaeus Denmark DQ645443
L. europaeus Denmark DQ645444
L. europaeus Denmark DQ645445
L. europaeus Denmark DQ645446
L. europaeus Denmark DQ645447
L. europaeus Denmark DQ645448
L. europaeus Denmark DQ645449
L. europaeus Denmark DQ645450

L. europaeus, introgressed Denmark DQ645451
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directly from the data and three independent replicates
were conducted to avoid entrapment in local optima [29].
The initial 1,250 trees were discarded as "burn-in" and the
remaining 3,750 trees were used to estimate nodal sup-
port as posterior probabilities.
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