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Abstract
Background: For parasites with a predator-prey life cycle, the completion of the life cycle often
depends on consumption of parasitized prey by the predator. In the case of such parasite species
the predator and the parasite have common interests and therefore a mutualistic relationship is
possible. Some evidence of a predator-parasite mutualism was reported from spotted deer or chital
(Axix axis) as a prey species, dhole or Indian wild-dog (Cuon alpinus) as the predator and a protozoan
(Sarcocystis axicuonis) as the parasite. We examine here, with the help of a model, the ecological
conditions necessary for the evolution and stability of such a mutualistic relationship. A two – level
game theory model was designed in which the payoff of a parasite is decided not only by alternative
parasite strategies but also by alternative host strategies and vice versa. Conditions for ESS were
examined.

Results: A tolerant predator strategy and a low or moderately virulent parasite strategy which
together constitute mutualism are stable only at a high frequency of recycling of parasite and a
substantial prey – capture benefit to the predator. Unlike the preliminary expectation, parasite will
not evolve towards reduced virulence, but reach an optimum moderate level of virulence.

Conclusion: The available data on the behavioral ecology of dhole and chital suggest that they are
likely to meet the stability criteria and therefore a predator-parasite mutualism can be stable in this
system. The model also points out the gaps in the current data and could help directing further
empirical work.

Background
Preferential killing of sick and disabled prey individuals
by the predator has been the focus of many ecologists
working with different predator – prey systems. In a vari-
ety of prey predator systems, diseased or weaker animals
are shown to be consumed in greater proportion by pred-
ators [1-5]. Increased susceptibility of parasitized prey to
predation, or predator preference for parasitized prey is
possible under a set of conditions [6-8]. Where the prey

species is an intermediate host and the predator is the
definitive host for a parasite species, the capture of prey is
often an essential part of the life cycle. Therefore any
mechanism that makes the prey susceptible to predation
would enhance the parasite fitness. In such relationships
the susceptibility induced by the parasite can be very spe-
cific towards the predator host [9]. A mutualistic relation-
ship can be said to exist between a predator and a parasite
[10] if the cost of harboring the parasite is less than the
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benefit of greater success in catching the prey [1]. Some
evidence suggestive of predator-parasite mutualism comes
from dhole or Indian wild dog (Cuon alpinus) and a pro-
tozoan parasite (Sarcosystis axicuonis) with chital or spot-
ted deer (Axis axis) as the prey-host [1,11].

There can be a potential problem in such a mutualistic
relationship. Low virulence of the parasite towards the
predator host and parasite tolerance by the predator host
are essential factors for the maintenance of a mutualistic
relationship. However, it is possible that a virulent para-
site can grow faster and invade a mild parasite population.
On the other hand a parasite resistant predator can avoid
the cost of parasitism but share the benefit of prey capture
and therefore invade a tolerant population. Either of the
events can destabilize the mutualistic relationship. It is
essential therefore to examine the evolutionary stability of
the mutualism. In a completely randomized distribution,
a mild parasite population can be easily invaded by a vir-
ulent one and a tolerant predator can be invaded by a
resistant one. Population viscosity, group selection and
kin selection can alter the evolution of virulence [12]. The
dhole – Sarcocystis system makes group selection and vis-
cosity very likely factors in shaping the relationship [1].
The life cycle of the parasite is very short as compared to
dhole life span. Dhole groups are stable and retain their
territories over a long time. Dhole territories are large and
encompass home ranges of several chital packs [13,14].
Therefore the protozoan harboured by a dhole pack is
very likely to be recycled to the same pack. The benefit of
the parasite is more likely to be gained by the same pack.
The distribution of a parasite within a pack is shown to
follow a consistent pattern in which only a few individu-
als carry most of the parasite load. On the other hand, one
or two individuals in each pack are found to be parasite
free. This suggests that within a pack there can be distribu-
tion of labor. [1]. A distribution of labor, in which some
individuals do active hunting and some disseminate the
parasite, can reduce the effective cost of carrying the para-

site. Evolution can take a different route under such
conditions.

We examine here the effect of parasite recycling on the
evolution of a predator-parasite mutualism, using a theo-
retical model.

The model
We consider two alternative strategies, namely mild and
virulent, for the parasite (Table 1). The virulent parasite
multiplies rapidly in the predator host and therefore
enjoys greater success (v) and exerts a higher cost (x) on
the predator host. The mild parasite exerts relatively low
cost (y) on the predator host and gains a limited success
(m). The predator has two alternative strategies, namely
tolerant and resistant. A tolerant predator always harbors
the parasite population whereas the resistant one attempts
to resist or eliminate the parasite. However, since the par-
asite virulence mechanisms also evolve, there is a proba-
bility (p) that the parasite can infect a resistant predator.
The predator gets an additional net benefit (z) from cap-
turing a prey infected with the parasite as compared to
capturing an uninfected prey. The prey can have only one
viable strategy, that of becoming resistant to the parasite.
The prey will not get any benefit by tolerating the parasite
since it would make it more susceptible for predation.
Therefore, we do not consider alternative prey strategies in
the model.

If the parasite population consists of the mild type, they
enjoy a fitness of 'm' from the tolerant host and 'p*m'
from a resistant one. Since they exert a cost y on the host,
there is erosion of the host resource. The host resource
available to them is therefore (1-y). Similarly for a popu-
lation of virulent parasites the mean fitness gain is v and
the host resource available (1-x). A virulent host invading
a mild population will gain a fitness of 'v' such that v > m.
In the absence of recycling the host resource available to it

Table 1: Pay – off matrix for predator and parasite strategies.

parasite predator

Mild Virulent Tolerant Resistant

parasite Mild 1-y fr(1-y)+(1-fr)(1-x) m p* m
Virulent fr(1-x)+(1-fr)(1-y) (1-x) v p* v

predator Tolerant -y -x z (1-fr) p *z + fr *z
Resistant - p * y - p* x (1-fr)*z + fr (p* z) p* z

The table differs from pay-off matrix tables for classical game theory models. The table accounts for two alternative strategies each for two 
different types of players namely parasite and predator. The pay-off of the parasite is not only decided by other parasites but also by the predator 
strategy and vice-versa. Therefore the complete pay-off of a mild parasite invading a virulent population in a tolerant host population is m * [fr(1-
y)+(1-fr)(1-x)]. Others to be calculated similarly.
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would be (1-y). However with a frequency of recycling 'fr',
the host resource would be,

fr (1-x) + (1-fr)(1-y)

Similarly, that for a mild parasite invading a virulent pop-
ulation would be,

fr (1-y) + (1-fr)(1-x)

If the predator population is tolerant the parasite will be
harbored in large numbers and disseminated to the prey
population. Since the parasitized prey is more susceptible
to predation the predator gets a benefit 'z' of easy catching.
A resistant population, on the other hand has a small
probability 'p' of harboring the parasite. Therefore the
benefit the predator gets would be 'p*z'. If a resistant
predator invades a tolerant population, with the recycling
factor 'fr', the benefit of prey capture would be,

fr * p *z + z(1-fr).

The benefit for a tolerant one invading a resistant popula-
tion would be,

fr * z + (1-fr)* p*z.

We assume that 'v', the benefit for a virulent parasite by
infecting single host is directly proportional to 'x' i.e the
loss to the host from infection by virulent parasite.

V = α *x similarly, m = α *y

Results and discussion
A mild parasite will be able to invade a virulent popula-
tion if the pay-off to the mild invader is greater than that
for the virulent population. When the predator popula-
tion is tolerant, this condition is satisfied when,

y * [fr (1-y)+(1-fr) (1-x)] > x (1-x)

The condition under which a virulent invader is unable to
invade a mild population is

(1-y)* y > [fr *(1-x) + (1-fr)*(1-y)]*x

Since x > y, for satisfying both these conditions, fr should
be large, y should be moderate and x should be large. Thus
selection would favour a moderate virulence in the para-
site towards the predator host. Unlike our expectation,
low virulence is unlikely to be stable. However, a mutual-
istic relation can remain if the prey capture benefit is suf-
ficiently large. It can be easily seen that the above
conditions remain unaffected even if the predator popula-
tion is resistant.

Considering predator strategies, a tolerant predator will
be able to invade a resistant population in the presence of
a mild predator if,

p *z - p*y < (1-fr) p *z + fr*z - y

i. e. p*fr * z - p* y < fr *z - y

This condition will be satisfied if fr *z > y since p < 1. A
resistant predator will be unable to invade a tolerant pop-
ulation since the necessary condition is

z-y < (1-fr)*z + fr*(p*z) - (p * y)

fr*z - y < p*fr*z - p*y

This invasion is impossible if fr*z > y. If the parasite is vir-
ulent, the necessary condition would be fr*z > x. Since x is
assumed to be large, a resistant predator would be stable
if the prevalent parasite strategy is virulent.

Thus when fr and z are large and y is small mutualism
would be stable. When this condition is not satisfied the
predator will evolve resistance to the parasite and the par-
asite will evolve greater virulence.

Conclusion
A large recycling frequency (fr) appears to be the only crit-
ical factor in the evolution of parasite virulence. However,
the parasite is unlikely to evolve towards low virulence.
There will be a moderate virulence optimum. For a net
benefit to the host the cost associated with this level of vir-
ulence should be less than the benefit in terms of ease of
prey capture.

For the evolution and stability of the tolerant strategy in
the predator a large fr as well as large z and small y are nec-
essary. A predator-parasite mutualism therefore critically
depends upon these factors, whereas it is independent of
p and α.

In the case of Dhole-chital – Sarcocystis system, these con-
dition are very likely to be satisfied. Field data show that
the frequency of sarcocystosis of the heart in dhole kills
was approximately double that of chital dyeing of other
causes [1]. This suggests a substantially large z. Dhole
have large, stable and defended territories upto 80 Km2

[13]. There is only marginal overlap between neighboring
packs unlike the overlap in tigers [15]. The territory of a
dhole pack encompasses the home ranges of several chital
groups. The home ranges of chital groups are small and
stable [13,16]. This can ensure a large 'fr'. Unlike wolves,
which tend to defecate more on the boundaries of the ter-
ritory [17], the frequently used defecation sites of dhole
tend to be towards the center of their home range and
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close to the major hunting areas [18], further ensuring a
large 'fr'. The intensity of intestinal infection is reflected in
the density of sporocyst in Dhole scat. Dhole shading
large numbers of sporocysts of S. axicuonis show no appar-
ent symptoms of disease or abnormality [19,20]. This
indicates that the virulence of S. axicuonis towards dhole is
low. Further, the division of labor can substantially reduce
the effective cost of carrying the parasite. Currently we are
unable to quantify these parameters empirically and have
no estimate of the actual cost of harboring the parasite.
Therefore we are unable to state quantitatively that all the
necessary conditions for mutualism are met by the system.
The importance of the model is that it helps us identify the
gaps in the data and thus orient future empirical work.

Although we are far from having an empirical estimate of
y, fr and z, the known ecology of chital and dhole suggest
that fr and z could be sufficiently large. This makes the sys-
tem a likely candidate for the evolution of predator para-
site mutualism. Any other predator-prey system that
satisfies these conditions is also likely to co-evolve with
some parasite species towards a predator-parasite mutual-
ism. Parasites of diverse taxa have evolved predator-prey
life cycles and any of them could be possible candidates
for a mutualism. Predator-prey-parasite systems that sat-
isfy the following three criteria are the most likely candi-
dates for a stable mutualistic relationship:

i) parasitized prey individuals are killed with substantially
greater frequency by the predator

ii) pathogenicity of the parasite towards the predator host
is low or moderate

iii) there is a high rate of parasite recycling to the predator
host.

We need to look at a number of systems that could satisfy
these criteria. The chital-dhole-Sarcocystis system may not
be unique and many possible examples of predator-para-
site mutualism may be present in nature.
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