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Abstract

Background: In spite of very low nutrient concentrations in its vicinity — both column and pore
waters-, the Posidonia oceanica of the Revellata Bay displays high biomass and productivity. We
measured the nutrient fluxes from the sediment into the water enclosed among the leaf shoots
("canopy water") to determine if it is possible source of nutrients for P. oceanica leaves.

Results: During the summer, the canopy water appears to act as a nutrient reservoir for the plant.
During that period, the canopy water layer displays both a temperature 0.5°C cooler than the
upper water column, and a much higher nutrient content, as shown in this work using a very simple
original technique permitting to sample water with a minimal disturbance of the water column's
vertical structure.

Despite low nutrient concentrations in pore water, mean net fluxes were measured from the
sediment to the canopy water. These fluxes are sufficient to provide 20% of the mean daily nitrogen
and phosphorus requirement of the P. oceanica shoots.

Conclusion: An internal cycling of nutrients from P. oceanica senescent leaves was previously
noted as an efficient strategy to help face low nutrient availability. The present study points out a
second strategy which consists in holding back, in the canopy, the nutrients released at the water-
sediment interface. This process occurs when long leaves, during poor nutrient periods in the
water column, providing, to P. oceanica, the possibility to develop, high biomass, high chlorophyll
quantities in low nutrient environment (a Low Nutrients High Chlorophyll system).

Background been pointed out with a drastic reduction of phytoplank-

The Revellata Bay (Corsica, Northwestern Mediterranean)
is considered as a typical oligotrophic area characterised
by quasi permanent low level of nutrient related to unim-
portant agricultural and industrial activities, small local
population, low rainfall regime and low runoff from river.
Only occasionally, when winds are blowing for several
days from NE, a significant input of nutrient rich deep wa-
ter occurs [1,2]. Recently, a nitrogen and silica limitation
of the surface waters, occurring in the last decade, has

ton biomass in relation with an increase of the sea surface
water temperature. The nutrients and the chlorophyll a
concentrations in the water column were low, even during
the winter-spring phytoplankton bloom (i.e. 0.2-0.3
umol L-! for nitrate and <0.4 ug L1 chlorophyll a concen-
trations in February-March) [3]. Compared to other
meadows [4], the nutrient pore water concentrations are
very low in the Revellata Bay (table 1) while its canopy
displays a biomass as large as many other meadows in the
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Table I: Porewater nutrient concentrations Pore water nutrients in the sediment beneath meadows of different species (umol L-!)

('ammonium data, 2nitrate data).

Site Total Nitrogen Phosphorus Reference
Seagrass
Meadows world-wide 86!;3.42 12 [35]
Posidonia oceanica
Spain
Blanes 645!+2 + 776 6.0+ 8.4 [4]
Giverola 297!+2 + 376 108 £123
Corsica
Revellata Bay 61;0.32 15 [36]
6.91+2+29 1.3+£0.6 [37]

Mediterranean Sea [5,6]. The meadow is highly produc-
tive — leaf annual primary production estimated to 730 g
of dry weight m2|7] -, even more than in some regions
like Banyuls and Sardinia.

Recently, seagrasses have been shown to profit from
mechanisms which diminish their dependence on the nu-
trient availability. One of these mechanisms appears to be
related to the leaf longevity. An extended leaf longevity
lowers the frequency of leaf formation and extends the
time available to reclaim nutrients from mature leaves,
thus reducing nutrient demands [8]. In this regard, the
high P. oceanica leaf longevity (345 days) appears to be an
advantage compared to other seagrass species (mean leaf
longevity: 88 days; range: 4-345 days). [9] report a nitro-
gen and phosphorus resorption efficiency of 20.4% and
21.9% in seagrasses. In P. oceanica, these resorption effi-
ciencies have been estimated to 37% and 44% for nitro-
gen and phosphorus respectively by [10]. In the Revellata
Bay, the annual nitrogen requirements of P. oceanica are
encountered by the leaves uptake for 25 to 45%, by the
roots for 15 to 35% and by an internal recycling for 40%
[11,12]. This, while important, is however not sufficient
to explain the high primary production regarding the low
nutrient availability.

At variance with the HNLC regions (High-Nitrate, Low-
Chlorophyll) encountered in the North and South Equa-
torial Pacific Ocean and in the Arctic [13] where standing
stocks of phytoplankton remain low in spite of high ni-
trate and phosphate concentrations, the P. oceanica mead-
ow of the Revellata Bay apparently behaves as a LNHC

system (Low-Nutrient, High-Chlorophyll). The question
then arises how P. oceanica meadows manage apparent
very low nutrient availability to produce high quantities
of living matter; for example the P. oceanica seagrass bed
of the Revellata Bay displays a net primary production of
about 230 gC m2 year1[5,7].

These high biomass and production in spite of very low
levels of nutrients (LNHC) in the vicinity of the seagrasses
observed in Revelatta Bay correspond to the characteristics
encountered in tropical zones [14,15]. Nutrient fluxes
have been estimated in a tropical zone meadow [16] and
represent 0.53-1.56 gN m2 year'! and 0.14-0.42 gP m=2
yearl.

In this work, we have examined the nutrient conditions in
the vicinity of the P. oceanica meadow of the Revellata Bay
(pore water, canopy water and column water) and we
have estimated the nutrient fluxes (nitrite+nitrate, ammo-
nium and phosphate) from the sediment into the canopy
using a benthic chamber. The results were used to evaluate
the potential contribution of this source to meadow pro-
duction.

Results

The P. oceanica leaves and water canopy

The mean length of the leaves was 64.1 £18.8 cm (n=43)
and 18.0+11.1 cm (n = 78) in June and October 1999 re-
spectively. In June, the sediment was not visible through
the canopy and the canopy water was 0.5°C cooler (n =
10) than in the upper water column. A typical visible wa-
ter transition layer of a high temperature gradient was vis-
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Figure |

Nitrite+nitrate profile in the canopy water in June 1999 Nitrite+nitrate concentrations (umol L-!) of the canopy water
at 10, 15, 30, 50 and 100 cm above the sediment in the P. oceanica meadow of the Revellata Bay in June 1999.

ually observable at this interface. In October, no
temperature difference was observed between the canopy
and column waters (n = 10) and the sediment was visible
among the shoots. At the neighbouring of the study site,
the shoot density was 415 £ 156 shoot m™2 (n = 20), meas-
ured in October 1999.

With the sample collection tube system, in June 1999, the
water sample obtained at 5, 15, 30 cm was the canopy wa-
ter. The mean nutrient concentration in this water layer
was 0.50 £ 0.46 uM; 0.19 + 0.09 uM and 0.08 + 0.08 uM
for NH,*, NO,+NOj3™ and PO,3- respectively. All the nu-
trients generally displayed higher concentrations in the
first 15 cm above the sediment (figures 1,2,3). However,
during this period, nutrients in the water column, 5 me-
tres above the seagrass bed, were generally under the de-

tection limit and in all cases, these concentrations were
lower than in the canopy, 15 cm above the sediment.

In October 1999 (figures 4,5), the PO43- concentrations
above and in the canopy were generally lower than the de-
tection limit (data not shown). The temporal variations of
N concentration gradients were significant. The first 12
hour (9:00, 11:00, 15:00, 22:00, 7:00 samples), data were
obtained during a storm (winds of 17 m/s: data from
Météo France - Calvi), during which water column nutri-
ent concentrations were homogeneous in and above the
canopy (mean 1). After 12 hours, when a calm sea was re-
established (10:00 and 15:00), the gradient reappeared
(mean 2). The nutrient concentrations of the water col-
umn above and in the canopy were similar, in opposition
to the data obtained in June.

Page 3 of 12

(page number not for citation purposes)



BMC Ecology 2002, 2

http://www.biomedcentral.com/1472-6785/2/9

100 6:00 9:00 12:00 15:00
E mean
Q

0
100 18:00 21:00 00:00 03:00

0.0 1.5

5

0

0.0 1.50.0 1.50.0 1.50.0 1.5

pumol.L-!
Figure 2

Ammonium profile in the canopy water in June 1999 Ammonium concentrations (umol L-!) of the canopy water at 10,
15, 30, 50 and 100 cm above the sediment in the P. oceanica meadow of the Revellata Bay in June 1999.

Fluxes

Table 2 shows the mean fluxes of nitrite+nitrate, ammoni-
um and orthophosphate estimated with the benthic
chamber and with the benthic cylinder in February, June,
October 1997 and in June 1999 respectively. The nutrient
fluxes were maximum in February and were minimum for
the (NO,+NOj3") and PO,3- in June.

Discussion

The P. oceanica leaves and water canopy

The P. oceanica meadow of the Revellata Bay at 10 m depth
is to be considered a dense meadow accordingto [13]. The
mean length of the leaves of P. oceanica shoots is in good
agreement with data obtained since 1975 at same periods
of the year at 10 m depth [5,6]. The seasonal variation be-
tween June and October 1999 corresponds to the annual

leaf growth cycle: maximum lengths reached in June or Ju-
ly, decrease from August or September (related to a great
appearance of necrosis on the tips) to December or Janu-
ary during heavy storms with a high proportion of leaf
fall. From February on, the leaves length regularly increas-
es (i.e.[5,6]).

The sample collection tube system has permitted to point
out the effect of the P. oceanica canopy on the nutrient dis-
tribution from the sediment to the column water. During
the summer, when the leaves are long, the meadow forms
a barrier enclosing the water and its nutrients in the cano-
py. The canopy water is a specific layer with measurable
different chemical (nutrients) and physical (temperature)
properties than the column water. During the winter, the
leaves are shorter and the "barrier" effect of the canopy is
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Orthophosphate profile in the canopy water in June 1999 Orthophosphate concentrations (umol L-!) of the canopy
water at 10, |5, 30, 50 and 100 cm above the sediment in the P. oceanica meadow of the Revellata Bay in June 1999.

diminished, furthermore higher currents associated with
seasonal storms homogenised all the water column to the
sediment. It is known that the seagrass canopies have the
capacity to modify current velocity and waves [18,19]
causing a decrease in water movement on the sediment
water interface and affecting nutrient fluxes from sedi-
ment to column water.

Fluxes

Our results about the nutrient fluxes, obtained with the
benthic chamber, on the sandy small patches of the P. oce-
anica meadow in the Revellata Bay are consistent with pre-
vious data obtained on flux measurements in seagrass
meadow (i.e. 228 to -363 wmol N - ammonium - m2 d-
1in [20]), much lower than fluxes estimated till now in es-

tuaries and intertidal zones (i.e. -2191 to -19704 umol N
- ammonium - m2 d-1 in [21]).

The ranges of our data were large, such a high variability,
already mentioned by other authors, is due to both small
scale heterogeneous physical, chemical and biological
processes of the sedimentary environments and actual
temporal variability of nutrient fluxes [19]. For example,
[23] noted that the benthic fluxes showed a good relation-
ship with bioturbation.

Concerning the seasonal variation, our results are not sim-
ilar to some literature data which have pointed out a di-
rect relation between the magnitude of the fluxes and the
water temperature. Generally, minimum fluxes have been
obtained during low temperature periods [24,25]. In fact,
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Figure 4

Nitrite+nitrate profile in the canopy water in October 1999 Nitrite+nitrate concentrations (umol L-!) of the canopy
water at 10, |5, 30, 50 and 100 cm above the sediment in the P. oceanica meadow of the Revellata Bay in October 1999.

like in other Mediterranean meadows (see [26]), in the
Revellata Bay, registered water temperature were higher in
October than in June and than in February.

Taking into account mean values, the fluxes calculated in
June 1997 with the benthic chamber are higher as com-
pared to the fluxes calculated in June 1999 using the cyl-
inder (table 2). This probably is not an artefact due to the
different methods used (benthic chamber and cylinder) as
previously discussed in [24] and [27] but reflects the inter-
annual variation of environmental conditions like the
pore water nutrient content. In June 1997, the nutrient
gradients between the pore water and the column water
was higher than in June 1999 related to higher nutrients
concentrations in the pore water. The releasing of nutri-
ents from the sediment is obviously promoted by the

higher vertical gradient. In fact, for the NH,* and (ni-
trite+nitrate), in spite of the great variation of our data, a
direct correlation appeared between the mean concentra-
tion gradient between the pore water and the canopy wa-
ter and the mean fluxes (table 3). That means that our
calculated nitrogen fluxes from the nutrient concentration
evolution with time (benthic chamber) and from the con-
centration gradient in the column water (benthic cylin-
der) directly correspond with the measured gradient
concentration between pore water and canopy water.

Our results obtained both with the benthic chamber and
the cylinder show that N and P from sediment diffuse into
the water column. In spite of the low concentrations en-
countered in the Revellata Bay, both in pore and column
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Figure 5
Ammonium profile in the canopy water in October 1999 Ammonium concentrations (imol L-!) of the canopy water at

10, I5, 30, 50 and 100 cm above the sediment in the P. oceanica meadow of the Revellata Bay in October 1999.

Table 2: Nutrient fluxes Nitrite+nitrate, ammonium and orthophosphate fluxes (umol m-2 day!) calculated from results obtained in
February, June and October 1997 with a benthic chamber and in June 1999 with a benthic cylinder settled in the P. oceanica meadow of
the Revellata Bay at 10 m depth (mean * standard deviation; number of observation into brackets).

Method N°2'+N°3' NH4+ P°43'
February 1997 chamber -495 £ 573 (2) -5700 + 763 (2) -1395 £ 1018 (2)
June 1997 chamber 98 + 81 (8) -528 + 547 (8) -59 £243 (10)
October 1997 chamber -452 £ 423 (2) 133 £242 (8) -862 +995 (8)
June 1999 cylinder -77 £ 98 (8) -60 + 98 (8) -2+6(8)
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water, the fluxes of nutrients across sediment to the cano-
py water are a potential important source of nitrogen and
phosphate for the P. oceanica canopy.

It is now well known that seagrasses use ammonium, ni-
trate and phosphate found in both the column and sedi-
ment waters (see [8,28]). Nutrients levels available for
seagrass meadows are generally low and the biomass for-
mation is often limited by nutrient availability. Among
the seagrasses, P. oceanica have been shown to diminish its
dependence on nutrients by an important leaf longevity
which allows a better efficiency of nutrients recycling from
senescent leaves.

Conclusions

In the Revellata Bay, at 10 metres depth, the nitrogen re-
sorption of P. oceanica leaves has been shown to represent
40% of the annual nutrient budget of the plant [11,12].
The mean daily nitrogen requirement of the plant cover-
ing 1 m?2 has been estimated to 1500 pmol [11,12]. Con-
sidering a weight N/P Redfield ratio of 10 for P. oceanica,
the similar phosphorus requirement could be estimated
to 150 pmol P m=2 d-1. From the present work, the mean
annual nutrient fluxes (i.e. -31, -269 and -37 umol m2 d-
1 for NO,+NOj3-, NH,* and PO, respectively) across the
sediment could provide 20% of the nitrogen and phos-
phorus requirement of the plant.

However, it must be taken into account that primary pro-
ducers (epiphytes, phytoplankton...) occur in the canopy
and in its vicinity competes with P. oceanica leaves for
these nutrients released by sediments. In this regard, dur-
ing calm weather events, often occurring during the sum-
mer, the appearance of a nutrient rich layer in the canopy
is an additional factor which favour P. oceanica vs phyto-
plankton during a period when the nutrients in the col-

http://www.biomedcentral.com/1472-6785/2/9

umn water are often below the detection limits in the
Revellata Bay (as measured by [3]).

Such a "barrier" effect played by the leaves during the pe-
riod of high biomass which corresponds with low nutri-
ent concentrations in the column water in the Revellata
Bay is therefore to be added to the known meadow strate-
gies which permit a high development of biomass in oli-
gotrophic zone. To conclude, the apparent paradox of P.
oceanica meadows growing in very oligotrophic environ-
ments can be explained by the addition of two strategies:

- the high leaf longevity which allows a significant internal
cycling of nutrients from senescent leaves,

- the formation by the canopy of a nutrient rich water layer
which largely increases the nutrient availability for the
meadow during periods when nutrients are virtually ab-
sent of the column water.

Materials and Methods

The P. oceanica meadow of the Revellata Bay (Calvi, Cor-
sica) covers about 60% of the total surface of the bay [29]
between 5 m and 38 m depth. All samplings and experi-
ments were carried out at ten metres depth in front of the
Oceanographic station STARESO (figure 6).

Ten shoots were collected by Scuba diving in June and Oc-
tober 1999, at 10 metres depth to record biometrical data.
The shoots were weighed after lyophilisation. The juve-
nile, intermediate and adult leaves were separated and
measured according to [30]. The shoot density (number
of shoots per square metre) was estimated by counting the
number of shoots within a 30 cm diameter circle accord-
ing to [31].

Table 3: Relation between fluxes and nutrient concentrations Ammonium and nitrite+nitrate concentrations (umol L-1) in the column,
canopy and pore waters in the P. oceanica meadow of the Revellata Bay at 10 m depth (mean + standard deviation; number of sample
into brackets); correlation coefficient (r2) between the concentration gradient at the water-sediment interface (canopy and pore-wa-

ter) and the fluxes (from table 2) at this interface.

Column water Canopy water Pore water r2

NH4*

February 1997 0.10£0.10 (3) <0.05 (21) 3.5+£5.0(22) 0.62
June 1997 0.05 £ 0.03 (5) 0.07 £ 0.04 (16) 3.7+£35(51)

October 1997 0.14 £ 0.09 (7) 0.15%£0.12 (14) 2.8+ 2.1 (10)

June 1999 0.10£0.06 (15) 0.50 £ 0.50 (16) 1.3+2.6(10)

NO,+NO;

February 1997 0.07 £ 0.03 (3) 0.07 £ 0.04 (21) 0.8+2.1(22) 0.90
June 1997 0.15+0.04 (3) 0.18 £ 0.04 (16) 02+04(51)

October 1997 0.18 £0.09 (7) 0.09 £ 0.04 (14) 0.7£0.7 (10)

June 1999 0.05+0.03 (15) 0.19 £ 0.09 (16) 0.2+0.2(10)
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Figure 6

Experimental site Location of the Revellata Bay and Research Station STARESO near Calvi along the Corsican coast.

The canopy and column water temperatures were meas-
ured with a mercury thermometer (0,1°C) in June and in
October 1999.

The nutrient concentration gradients in the canopy water
were measured with an original sample collection tube
system. The fluxes across the sediment were estimated by
the use of a classical benthic chamber. The nutrient con-
centration gradients in the water column were measured
with a benthic cylinder. The three systems are hereafter de-
scribed.

The sample collection tube system (figure 7a)

The vertical profiles of the column water in the canopy
were obtained with a set of tubes fixed at known depths in
the water column such as they allow a vertical sampling of
undisturbed water. A diver carefully attached a syringe to

the lowest tube (5 cm height) and sucked water in, eject-
ing the first 65 ml of sample (volume of the tube) and
sampling the next 45 ml of water. The same procedure was
then repeated with 4 other syringes for the 15, 30, 50 and
100 cm heights. Additional water column samplings were
made above the seagrass bed at 5 m depth. The water sam-
ples were frozen.

Measurements have been performed every 3 hours a day,
in June and October, when the height of the canopy is
high and low respectively.

The classical benthic chamber (figure 7b)

An opaque cylindrical shape plexiglas chamber was used
(diameter 12 cm, height 6 cm). Twenty four hours before
starting the experiment, the base of the benthic chamber
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Diagrams of apparatus Diagrams of the apparatus used to
assess the concentration gradient in the canopy: sample col-
lection tube system (7a) and to assess the nutrient fluxes:
benthic chamber (7b) and benthic cylinder (7c).

was carefully pushed in the sand of a small patch (20 cm?2)
in the sediment of the meadow.

At the beginning of the experiment, the top of the cham-
ber was screwed on, the pump, tubing and flexible plastic
bag were settled by a diver. The pump (discharge of 0.5 L
min-1) prevents water inside the chamber from stratifying,
so that samples obtained are representative of the whole
volume of the chamber.

During incubation, sampling was performed periodically
(To, T4, Tg, T16, Tog and T3, minutes) to determine the nu-
trient concentrations. The samples were collected follow-
ing a simple procedure: seven syringes were filled with
column water (syringe 1 to 7). At T,: the pump was
switched on, floodgate n°1 closed, floodgate n°2 and n°3
opened; syringe 1 and syringe T, were plugged in. After 3
minutes (time required for a complete homogenisation of
the water inside the system), the floodgate 1 was opened,
the 2 and 3 were closed, 40 ml of water was collected with
syringe T, after what the 40 ml of the syringe 1 were inject-

http://www.biomedcentral.com/1472-6785/2/9

ed into the system. The floodgates 2 and 3 were opened
again while the floodgate 1 was closed. The samples were
frozen directly after collection.

The measurements have been performed in February, June
and October in 1997.

The opened benthic cylinder (figure 7c)

The benthic cylinder is a plexiglas chamber (50 cm height,
diameter: 12 cm), with a small opening on the top (diam-
eter: 1.5 cm). Once the cylinder carefully settled on the
sandy patch sediment of the meadow by a diver, the col-
umn water was collected inside owing to a fixed tube sys-
tem at 5, 10, 20 and 40 cm above the sediment with 4
syringes. This procedure was regularly repeated every 3
hours during a day.

Pore water sampling

Pore water was sampled by Scuba diving with PVC syring-
es connected a 10 cm long needle entirely pushed in the
sediment at 10 cm depth; the water collected was directly
filtered through a Whatman GF/C (1.2 um).

Nutrient analysis

Nitrogen (NH,4* and nitrite+nitrate) and orthophosphate
concentrations in the water (pore, canopy and column)
were analysed with an autoanalyser (SKALAR) by the clas-
sical method [32] for an automated system [33] adapted
for oligothophic seawater (detection limits: 0.1, 0.02 and
0.05 uM for ammonium, nitrite+nitrate and orthophos-
phate respectively).

According to the first law of Fick, the flux of matter across
a surface (Jp, wmol cm? d-1) can be estimated as follow:

ID = DS (aC/aZ)
where
Dy: the diffusion coefficient (cm? s1),

(0C/0z): the concentration gradient across the sediment
water-interface.

Positive values indicate a nutrient movement from the
water column into the sediment.

A diffusion coefficient Dg of 16 10-¢ cm? s'! was used for
NH,* and (NO,+NOj3") and of 7 106 cm? s-! for ortho-
phosphate according to [34] for marine sediment.

Flux calculations

In the benthic chamber, the volume of water remained
constant during the incubation and the fluxes were calcu-
lated from the slope of the concentration values versus
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time multiplied by the ratio of chamber volume to the
covered surface area. Internal concentrations were previ-
ously corrected to take into account the dilution due to
subsequent sampling.

The fluxes obtained by benthic chambers incorporate dif-
fusion and bioturbation effects on porewater solute ex-
change.

In the cylinder, the fluxes were calculated considering that
the water movement during the sampling was negligible.

Data are presented as mean + standard deviation, mini-
mum and maximum.
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