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Merging metagenomics and geochemistry reveals
environmental controls on biological diversity
and evolution
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Abstract

Background: The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated
by the physical and geochemical properties of the environment. This study sheds light onto the complex
relationship between biology and environmental geochemistry using forty-three metagenomes collected from
geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly
measured geochemical parameters affect community dynamics and this study leverages the development and
application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial
ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole
communities and a principal component analysis (PCA) of the geochemical gradients between environments allows
for the determination of correlations between microbial community dynamics and environmental geochemistry
and provides insight into which geochemical parameters most strongly influence microbial biodiversity.

Results: By progressively building from samples taken along well defined geochemical gradients to samples widely
dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional
diversification of resident communities and environmental geochemistry and reveals temperature and pH as the
primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive
geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element
availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an
overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most
complete predictions of microbial taxonomic and functional composition.

Conclusions: Clustering based on the frequency in which orthologous proteins occur among metagenomes
facilitated accurate prediction of the ordering of community functional composition along geochemical gradients,
despite a lack of geochemical input. The consistency in the results obtained from the application of Markov
clustering and multivariate methods to distinct natural systems underscore their utility in predicting the functional
potential of microbial communities within a natural system based on system geochemistry alone, allowing
geochemical measurements to be used to predict purely biological metrics such as microbial community
composition and metabolism.
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Background
The taxonomic and metabolic compositions of microbial
communities are both shaped and constrained by the
characteristics of their local environment. The character-
istics of an environment, in turn, are defined by dynamic
physical, geochemical and biological components whose
complex interactions are very seldom included in –
omics-enabled interrogations of natural communities.
This is despite the fact that several recent studies, typic-
ally focusing on only a few easily measured environmen-
tal parameters, show that natural communities are very
tightly tuned—both in overall metabolic function and in
community population structure—to nuances of their
environment [1-3]. The architecture of natural commu-
nities is dictated by competitive and facilitative interac-
tions that function to mold the metabolic strategies
responsible for deriving energy and nutrients and main-
taining homeostasis against dynamic extracellular envi-
ronments [4,5]. These metabolic strategies are encoded
within the genomes of individual community members,
accessible through advances in sequencing technologies
over the past two decades. Although studies comparing
community metabolic potential among metagenomes have
demonstrated changes in metabolic pathway usage based
on environmental geochemistry [6,7], the focus here is on
broad rather than individual metabolic pathway specific
deviations in whole community taxonomy and metabolic
potential across physical and geochemical gradients.
For a gene to be fixed within a subpopulation of organ-

isms in a complex community, the cognate proteins
encoded by the organisms’ genomes must function within
the geochemical constrains of the environment. The nar-
row tolerances (e.g. temperature and pH ranges) of some
proteins limit the availability of potential habitats for the
whole organism, impacting gene flow and, ultimately,
colonization ability of the species. For example, the habitat
range of photosynthesis along a hydrothermal outflow
channel, defined largely by constraints imposed by
temperature [8], is a functional limitation that results
in a substantial difference in community composition
and function, despite negligible differences in physico-
chemistry on either side of this upper temperature limit
on photosynthesis. Additionally, it is becoming clear
that the environmental factors that limit biological func-
tion are multidimensional. From the example above, the
upper temperature limit for photosynthesis has been dis-
covered to be both pH and sulfide dependent [9-12]. This
interdependence between biology and multiple interacting
geochemical parameters, as exemplified by the limited
distribution of photosynthesis, leads to the hypothesis
that there are many additional facets of a community’s
phenotype that are being shaped by the physical and chem-
ical characteristics of an environment. It stands to reason
that many geochemical limitations on a community’s
phenotype have yet to be discovered—they simply aren’t
so easy to follow as, for example, the appearance of photo-
synthetic pigments in a community—yet they may well
play central roles in defining community structure and
function. The overarching goal of this work is to expand
upon current methods of identifying and ultimately quan-
tifying the ecological interactions that most significantly
define the structure and function of complex ecosystems.
Here, we integrate sequence data obtained by shotgun

community genome sequencing approaches (metage-
nomics) [13,14] with tools that enable sequence clustering
based on a Markov clustering algorithm [15] with BLAST
homology [15-17] to categorize metagenomic reads based
on evolutionary distance [18-21]. This approach offers a
distinct advantage over clustering proteins based on func-
tion (i.e. Pfam or KEGG) as the latter approach potentially
filters out evolutionary distance information which
often extends beyond categories based on protein func-
tion [22,23]. Therefore, Markov clustering (and homology-
based clustering methods, in general) provide a more
direct measure of not only functional differentiation but
also overall evolutionary distance among organisms [16].
By applying Markov clustering methods to multiple meta-
genomic datasets sequence information can be used to
determine an overall evolutionary distance between whole
communities. The Markov cluster based measure of evo-
lutionary distance can be combined with geochemical ana-
lyses allowing statistical techniques including principal
components analysis (PCA) and hierarchical clustering
to be brought to bear in understanding the interactions
between environment and community diversity.
Whole community Markov clustering techniques were

first tested using metagenomic datasets gathered along
the best available physical, chemical and spatial gradients
presently in public databases, and subsequently expanded
to include samples gathered from a broader range of envi-
ronments. This study reveals that several measures of
community biodiversity have strong covariance with spe-
cific physico-chemical parameters, including temperature,
pH, sodium concentration and nitrate availability. A multi-
variate analysis (PCA) of all geochemical parameters rep-
resents clustering by bulk geochemistry and groups
metagenomic sites together based on geographic location.
Differences in bulk geochemistry covary strongly with
community biodiversity, indicating that the composition
of the microbial community inhabiting a natural system is
determined by a combination of all physical and geochem-
ical parameters of the environment.

Result and discussion
Validation of markov clustering methods in metagenomic
analysis
Markov clustering methods were initially focused on 22
metagenomic datasets from three studies encompassing
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very distinct ecosystems, chosen specifically because
they extend across steep physical and geochemical gra-
dients: a hydrothermal outflow channel [24], a hypersa-
line microbial mat [3] and a marine depth profile [2].
These data sets allow for Markov clustering methods to
be applied to natural systems with documented commu-
nity structures, allowing for validation of our methods.
The caveat to integrating such a broad range of environ-
mental studies is that, for most metagenomic samples,
only a few physico-chemical parameters are available
(usually temperature and pH). However, our compari-
sons are bolstered by an inclusion of recently published
biogeochemical studies of hydrothermal ecosystems, where
metagenome sequencing has been coupled to detailed
physical and geochemical analyses [24,25].
Bison Pool
The Markov clustering approach was first applied to
‘Bison Pool’, an alkaline hot spring within Yellowstone
National Park, USA, where ~500 megabases of Sanger
sequencing has been previously compiled from five
locations along the outflow channel [24]. Sites 1, 2 and
3 were sampled from the chemotrophic portion of the
outflow and sites 4 and 5 were sampled from within the
photosynthetic zone. These samples span a 36°C (56.1°C
to 92.1°C) temperature gradient, with concomitantly
strong changes in a range of geochemical measurements
such as dissolved O2, H2S, and inorganic nitrogen avail-
ability. A dendrogram (Figure 1A) based on Markov clus-
ter analysis of these five metagenomes shows clustering of
the photosynthetic sites (4 and 5) separate from the che-
motrophic sites (1, 2 and 3), as would be expected based
on taxonomic differences among the sites [24]. Addition-
ally, the higher temperature chemotrophic sites cluster
separately from site 3, sampled just above the highest
temperature where photosynthesis occurs [11] suggesting
that this “ecotone” community is transitional between high
Figure 1 Dendrograms based on Markov cluster dissimilarity in meta
outflow channel of ‘Bison Pool’ a vertical microbial mat profile from G
HOT- ALOHA (C). Dotted lines represent major shifts in microbial commun
phototrophic (bottom) metabolisms, (B) transition from an oxic environme
(bottom), and (C) transition from photic zone (top) to aphotic zone (bottom
temperature chemotrophic and lower temperature photo-
synthetic communities.

Guerrero Negro hypersaline microbial mats
We next applied Markov cluster to a dataset collected
from Guerrero Negro, Mexico, which contains approxi-
mately 84 megabases of Sanger sequencing of community
genomes sampled along millimeter depth scales through
ten successive layers of a hypersaline microbial mat [3]. A
cluster analysis based dendrogram representing this sam-
ple set (Figure 1B) shows clustering of the top 3 mm of
the mat separate from the 4 to 50 mm samples with add-
itional clustering of samples from similar depth ranges
throughout the mat. As temperatures and pH are not re-
ported as varying over the 49 mm depth profile we must
look elsewhere for the cause of the community shifts.
Commentary from this study indicates a large drop in oxy-
gen coupled with an increase in H2S with depth as the
driving force for microbial community changes [3]. This
transition from an oxic environment to a hypoxic sulfidic
environment co-occurs with a major shift in the microbial
population and community metabolic strategies, captured
in our cluster analysis (Figure 1B). In addition, the cluster-
ing of the top 3 mm of mat away from the bottom 46 mm
likely correlates with a transition from a mixed photo-
trophic/chemotrophic community to one supported by
chemotrophy and may be related to a shift from aerobic to
anaerobic metabolism.

HOT-ALOHA
A marine depth metagenomic profile was also included in
this study as the physical and chemical characteristics of
the marine water column are known to undergo changes
with increasing depth [2]. Samples from the Hawaii Ocean
Time-series (HOT) station ALOHA contain approxi-
mately 64 megabases of Sanger sequencing of community
genomes sampled from seven depths that range from 10
to 4,000 meters [2]. A dendrogram based on Markov
genomic datasets obtained for communities inhabiting (A) the
uerrero Negro, Mexico (B) and an oceanic depth profile from the
ity composition: (A) transition between chemotrophic (top) and
nt near the surface (top) to a hypoxic and sulfidic environment
).
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clustering (Figure 1C) demonstrates stratification by
depth, with nearest neighbors typically coming from
similar depths. Clustering occurs with the shallowest
samples within the photic zone (10 m and 70 m),
representing the separation of samples dominated by
photosynthetic metabolisms. Principal component ana-
lysis (PCA) of reported geochemical measurements
(Additional file 1: Table S1) demonstrates that the data
can be reduced to two principal components (PC1 and
PC2) with combined Eigenvalues explaining 96.8% of the
variation (PC1 alone accounts for 85.3% of the variation).
A biplot of the two principal components (PC1 verses
PC2) (Figure 2) shows separation of tightly clustered
photic zone depths (blue points) away from deep water
depths (red points). Microbial community changes are
reported along the depth gradient with surface waters
including Cyanobacteria, Verrucomicrobia, Bacteroidetes
and Proteobacteria while deeper waters include members
of the Deferribacteres, Planctomycetes, Acidobacteria,
Nitrospirae and Proteobacteria phyla (2), despite the depth
vector on the biplot being orthogonal to PC1. Along PC1
temperature and dissolved organic carbon (DOC) covary
and both exhibit anti-covariation with dissolved inorganic
carbon (DIC), nitrite + nitrate (N +N) and dissolved or-
ganic phosphorus (DOP). On the whole, PCA demon-
strates that depth, as a major component of PC2, is not a
good indicator of bulk geochemistry or of community
structure or function in marine samples, despite samples
clearly segregating into photic and deep water clusters.
Figure 2 Biplot of the two principal components (PC1 verses PC2) de
chemotrophic (red) and phototrophic (blue).
PCA also suggests other unmeasured variables (most obvi-
ously, photon availability) could be driving microbial com-
munity changes and underscores an important message:
missing or unmeasured physico-chemical variables dir-
ectly constrain the ability to make meaningful inferences
about the interaction between life and environment.

Expanded application of markov clustering to diverse
community metagenomes
Role of environmental variation in defining community
function
The twenty-two metagenomic samples described above
occur along diverse spatial and geochemical gradients
and, as whole, present key opportunities to connect geo-
chemistry to changes in biological diversity, community
structure, and function. Importantly, many additional
metagenomes are available that, although not purpose-
fully sampled along continuous gradients, are useful where
physico-chemical measurements were made in tandem
with biological sampling. Due to the increase in avail-
able metagenomic data sets it becomes both statistically
feasible and potentially very informative to correlate
physical and geochemical differences to changes in the
taxonomic and functional diversity of microbial com-
munities. Correlations between geochemistry and bio-
diversity help identify the key geochemical parameters
which shape and constrain taxonomic and functional
biodiversity. Figure 3 shows a dendrogram derived from
combining the Bison Pool [24], Guerrero Negro [3] and
rived from the HOT-ALOHA geochemical data. Sites are colored as



Figure 3 Dendrogram generated from a matrix describing the dissimilarity in Markov clusters associated with forty-three
metagenomes.
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HOT-ALOHA [2] datasets with a hydrothermal sedi-
ment metagenome from Great Boiling Spring (GBS),
Nevada, USA [26] and twenty additional metagenomes
from Yellowstone National Park (YNP) [27-29,25].
Markov cluster analysis of this forty-three metagenome
dataset shows a clear separation of hydrothermal and
mesothermal sample sites, most notably the separation
of the mesothermal Guerrero Negro and HOT-ALOHA
sites from the hydrothermal YNP and GBS sites. Note
also the temperature segregation within the hydrothermal
samples: the lower temperature (phototrophic) YNP sites,
including White Creek, Chocolate Pots, and Bison Pool
sites 4 and 5 all cluster closest to the mesophilic sites,
although the high temperature (chemotrophic) YNP and
GBS sites cluster separately. A temperature dependent
pattern of clustering due to functional variation between
sites is intriguingly similar to the temperature dependent
photosynthetic fringe mentioned previously. The success-
ful clustering of whole microbial communities based on
temperature differences provides an additional line of evi-
dence supporting the utility of Markov clustering based
approaches in comparative genomics analysis.
Additionally, a broad level of community segregation

based on pH is evident across both GBS and YNP hydro-
thermal sites, with alkaline samples from Calcite Spring,
Washburn Spring, Great Boiling Spring and Bison Pool
clustering separately from acidic sites, including Alice
Spring, Monarch Geyser and Cistern Spring. A pattern of
clustering based on metabolic potential as a function of
pH is consistent with previous studies conducted across
spatial geochemical gradients in YNP which suggest that
pH is the dominant factor shaping the diversification of
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bacteria and/or archaea at a taxonomic level [30]. The
strong influence of pH on the taxonomic and functional
composition of hydrothermal communities may reflect
different adaptations to deal with acidity [30,31] or may
reflect pH-dependent shifts in the energetics associated
with inorganic redox couples thought to be fueling these
communities [32].
The clustering of communities based predominantly

on pH and temperature observed throughout Figure 3 is
particularly notable in that it dominates clustering based
on biological features, such as the taxonomic or meta-
bolic compositions of communities [6,7]. For instance,
the HOT-ALOHA, Guerrero Negro, and YNP datasets
all include metagenomes dominated by cyanobacteria
whose metabolism is driven by oxygenic photosynthesis,
yet clustering of these photosynthetic communities by
inorganic factors suggests they have evolved on trajec-
tories optimizing their genomes for conditions specific
to each of these environments.
Markov cluster-based evolutionary distances were plot-

ted against temperature (Figure 4A) and pH (Figure 4B)
for all pairwise comparisons among the forty-three
metagenomes included in this study. Mantel tests [33]
show temperature correlates with Markov distance with
a Mantel r value of 0.54 (p < 0.001) and pH correlates
with a Mantel r value of 0.41 (p < 0.001). Although both
results show high correlations when compared to other
ecological studies using Mantel r values [34-36], it is
important to note that the relationships shown in both
plots are clearly nonlinear. This nonlinear relationship
suggests “envelopes” of allowable space demonstrating
that large temperature and/or pH differences drive con-
comitantly large evolutionary divergences and that com-
munities inhabiting similar temperature and pH ranges
are not necessarily evolutionarily related. Certainly or-
ganisms and communities have adapted to physico-
chemical extremes many times throughout the history
Figure 4 Plots of Markov cluster distance for forty-three metagenome
of life, and finding unrelated communities occupying
similar temperature and pH ranges supports the notion
that those adaptations often occur through novel, inde-
pendent, evolutionary strategies and are not simply the
result of adaptation to a small set of environmental
variables.
Correlations between microbial community evolution-

ary divergence and temperature and pH invited deeper
exploration of the extensive physical and geochemical
data available for some of these metagenomes, in par-
ticular a subset of twenty-two metagenomes sequenced
as part of several studies of YNP hydrothermal ecosys-
tems (Additional file 2: Table S2) [24,27-29,25]. Physical
and geochemical metadata includes measurements of
temperature, pH, sodium, potassium, calcium, aluminum,
iron, magnesium, chloride, phosphorus, silicon, boron, ar-
senic, zinc, manganese, dissolved oxygen, sulfate, nitrate,
sulfide, dissolved organic carbon (DOC) and dissolved
inorganic carbon (DIC).
To test for correlation between evolutionary distances

and geochemistry, Mantel tests [33] were performed be-
tween all geochemical parameters and Markov cluster-
based evolutionary distances (Additional file 3: Figure S1
and Additional file 4: Table S3). Several parameters
showed slight to moderate correlations [34-36] with evo-
lutionary distances, including chloride (Mantel r = 0.198,
p = 0.007), zinc (Mantel r = 0.199, p = 0.010), DIC (Mantel
r = 0.201, p = 0.018) and silicon (Mantel r = 0.118, p =
0.045). Notably, the parameters showing strongest correl-
ation were, once again, temperature (Mantel r = 0.376, p =
0.001) and pH (Mantel r = 0.484, p = 0.001). These results
reiterate the strong influences temperature and pH have
on microbial community evolutionary distance as com-
pared to other geochemical parameters. Importantly, the
lack of correlation of Markov cluster distance with some
geochemical analytes does not imply lack of a relationship;
because these analyses cluster entire metagenomes, the
s as a function of temperature (A) and pH (B).
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influence of physico-chemistry on individual enzymes and
pathways—many of which are known to be strongly
dependent on environmental conditions—is, in effect,
averaged out.
A covariance matrix based on the twenty included

geochemical parameters was used as the basis for a princi-
pal component analysis (PCA) of site geochemistry with
the Eigenvalues for the first three principal components
(PC1, PC2 and PC3) accounting for 61% of the geochem-
ical variation among the twenty-two YNP sites. An overall
geochemical distance between YNP sites was calculated by
determining the Euclidean distance between YNP sites in
(PC1, PC2, PC3) space. A Mantel test was then performed
between the overall geochemical distance and the Markov
cluster based evolutionary distance for all YNP sites find-
ing a Mantel r value of 0.3861 (p < 0.001). Although this
correlation is weaker than temperature or pH when an-
alyzed individually, a plot of overall geochemical dis-
tance verses Markov cluster distance does not display
the “envelope” seen in temperature and pH plots. Un-
like the “envelope” seen with temperature and pH the
overall geochemistry plot is void of points at high com-
munity evolutionary distance and low geochemical differ-
ence (upper left) indicating that substantially different
microbial communities do not inhabit environments with
overall similar geochemistry. PCA demonstrates that when
analyzed together many site geochemical parameters act
in concert to influence the microbial community populat-
ing a natural environment. Additionally, PCA hints that
the strong correlation with pH might not be due to the
concentration of H+, but to the effect pH has on the speci-
ation of other compounds and the energetic favorability of
using these compounds in microbial metabolisms [32].

Role of geochemical variation in defining community
biodiversity
Finally, we used multivariate techniques to investigate
which geochemical parameters most strongly amplify or
constrain microbial community diversity. Because bio-
diversity can be defined quite differently depending on
the context and scientific field [37,38], we chose three
distinct measures of biological diversity to measure and
correlate with environmental metadata. These diversity
measurements include: taxonomic diversity (derived from
genera counts within each metagenome), functional diver-
sity (derived from metabolic enzyme category (EC) counts
within each metagenome), and community complexity
(derived from Markov cluster counts within each meta-
genome). These three measures of diversity were corre-
lated with the twenty geochemical parameters described
above (Table 1). Covariance (r from 0.5 to 1) is shaded
black and anti-covariance (r from −1 to −0.5) is shaded
grey. This analysis shows temperature anti-correlating
with genera counts (r = −0.59) and EC counts (r = −0.57)
while pH correlates with genera counts (r = 0.71), EC
counts (r = 0.62) and Markov cluster counts (r = 0.63). The
covariance matrix suggests that low temperature alkaline
environments promote community biodiversity whereas
high temperature acidic environments constrain biodiver-
sity. Additionally, Markov cluster count is correlating with
sodium (r = 0.50) and nitrate (r = 0.50) concentrations
while genera count is anti-correlating with zinc concen-
tration (r = −0.54); the functional significance of these
relationships is not clear although the strong correlation
with sodium may corroborate previous studies suggest-
ing salinity (represented by sodium) as a predominant
driver of taxonomic biodiversity [39]. Importantly, the
three measurements of biodiversity correlate strongly
with one another (bottom-right corner of Table 1). As
genetic, functional, and taxonomic diversity are all ultim-
ately encoded at the genetic level and subject to Darwinian
evolution, this strong correlation is not surprising, but
serves as reassurance that our independently derived mea-
sures of biodiversity are in-fact related.
A biplot (Figure 5) generated from a PCA of the geo-

chemical and diversity correlation matrix shows where the
metagenomic sites lie within physico-chemical and bio-
diversity space. Archaeal-dominated sites (YNP 1, 2, 3, 4,
8, 14 and 19) populate the upper right quadrant of the
biplot, hinting that the geochemical parameters associated
with these sites exclude bacterial life that lack functional
adaptations to inhabit these springs [40]. The photosyn-
thetic mat samples collected from the Lower Geyser Basin
(BP 4, 5, YNP 6, 15 and 16) show clustering, but separate
from the photosynthetic mats found at Mammoth hot
springs (YNP 5 and 20). Aquificales-dominated sites (YNP
10, 11, 12 and 13) do not cluster with each other, but
instead cluster based on geographic proximity and geo-
chemical similarity. For instance, YNP 11 (Octopus
Spring) clusters with Bison Pool site 1; both springs are
alkaline and are proximal geographically. Likewise, YNP
14 (One Hundred Springs Plain) clusters with other
Norris Geyser Basin springs such as YNP 3 (Monarch
Geyser). Bison Pool (BP) sites illustrate the strengths of
PCA for correlating this multidimensional dataset: all
five BP sites are in the same region of the biplot due to
the overall similar geochemistry among sites and, further,
are aligned in a linear fashion parallel to the temperature
vector (due to the 32°C temperature gradient along the
outflow). The placement of similar sites on the PCA biplot
illustrates the predictive power of PCA as implemented
here; one could reasonably predict where a new site might
plot based on measurements of only a handful of well-
chosen biological and physico-chemical parameters.

Conclusions
Markov cluster based comparisons of metagenomes
coupled with multivariate analyses identified many key



Table 1 Covariance matrix for twenty geochemical variables plus three diversity metrics across twenty two metagenomic sample sites within Yellowstone
National Park

T pH Na K Ca Al Fe Mg Cl NH4 SO4 NO3 P Si B As Zn Mn S2- O2 Genera EC Clusters

T 1.00 −0.35 0.16 0.10 −0.26 0.17 0.02 −0.23 0.25 0.16 0.08 0.27 −0.32 0.36 0.22 0.14 0.24 0.12 −0.06 −0.41 −0.59 −0.57 −0.37

pH −0.35 1.00 0.36 −0.10 −0.02 −0.61 −0.60 −0.05 −0.26 −0.01 −0.26 0.35 0.01 −0.21 −0.02 −0.03 −0.62 −0.33 0.05 0.48 0.71 0.62 0.63

Na 0.16 0.36 1.00 −0.06 −0.45 −0.31 −0.42 −0.49 0.65 −0.35 −0.69 0.47 −0.48 0.65 0.12 0.19 −0.05 −0.43 −0.51 0.18 0.18 0.35 0.50

K 0.10 −0.10 −0.06 1.00 0.30 −0.14 −0.12 0.30 0.28 0.06 0.16 −0.34 0.00 −0.19 0.75 0.55 0.04 −0.14 0.42 −0.26 −0.41 −0.29 −0.36

Ca −0.26 −0.02 −0.45 0.30 1.00 −0.12 −0.10 0.99 −0.19 −0.09 0.40 −0.29 0.55 −0.64 −0.10 0.00 −0.14 −0.14 0.63 −0.25 0.07 −0.12 −0.16

Al 0.17 −0.61 −0.31 −0.14 −0.12 1.00 0.93 −0.06 −0.21 −0.09 0.26 −0.17 −0.15 0.22 −0.13 −0.16 0.38 0.19 −0.21 −0.15 −0.38 −0.27 −0.37

Fe 0.02 −0.60 −0.42 −0.12 −0.10 0.93 1.00 −0.05 −0.32 −0.08 0.25 −0.27 0.05 0.10 −0.13 −0.16 0.33 0.31 −0.20 −0.17 −0.31 −0.21 −0.33

Mg −0.23 −0.05 −0.49 0.30 0.99 −0.06 −0.05 1.00 −0.23 −0.02 0.49 −0.27 0.52 −0.65 −0.11 −0.03 −0.13 −0.15 0.68 −0.28 0.05 −0.14 −0.18

Cl 0.25 −0.26 0.65 0.28 −0.19 −0.21 −0.32 −0.23 1.00 −0.29 −0.45 0.01 −0.40 0.65 0.25 0.30 0.40 −0.35 −0.27 −0.08 −0.33 −0.14 −0.03

NH4 0.16 −0.01 −0.35 0.06 −0.09 −0.09 −0.08 −0.02 −0.29 1.00 0.77 0.30 0.07 −0.19 0.30 0.20 −0.13 −0.08 0.57 −0.19 −0.01 −0.03 −0.01

SO4 0.08 −0.26 −0.69 0.16 0.40 0.26 0.25 0.49 −0.45 0.77 1.00 0.02 0.27 −0.44 0.09 −0.01 −0.01 −0.07 0.79 −0.36 −0.12 −0.21 −0.27

NO3 0.27 0.35 0.47 −0.34 −0.29 −0.17 −0.27 −0.27 0.01 0.30 0.02 1.00 −0.21 0.29 −0.10 −0.12 −0.36 −0.33 0.00 −0.01 0.36 0.44 0.50

P −0.32 0.01 −0.48 0.00 0.55 −0.15 0.05 0.52 −0.40 0.07 0.27 −0.21 1.00 −0.60 −0.18 −0.11 −0.20 0.12 0.41 −0.24 0.23 0.06 0.04

Si 0.36 −0.21 0.65 −0.19 −0.64 0.22 0.10 −0.65 0.65 −0.19 −0.44 0.29 −0.60 1.00 0.12 0.16 0.33 −0.23 −0.59 0.15 −0.20 0.04 0.13

B 0.22 −0.02 0.12 0.75 −0.10 −0.13 −0.13 −0.11 0.25 0.30 0.09 −0.10 −0.18 0.12 1.00 0.89 −0.06 −0.05 0.15 −0.22 −0.39 −0.21 −0.21

As 0.14 −0.03 0.19 0.55 0.00 −0.16 −0.16 −0.03 0.30 0.20 −0.01 −0.12 −0.11 0.16 0.89 1.00 −0.11 −0.06 −0.02 −0.14 −0.28 −0.15 −0.07

Zn 0.24 −0.62 −0.05 0.04 −0.14 0.38 0.33 −0.13 0.40 −0.13 −0.01 −0.36 −0.20 0.33 −0.06 −0.11 1.00 0.07 −0.16 −0.20 −0.54 −0.38 −0.36

Mn 0.12 −0.33 −0.43 −0.14 −0.14 0.19 0.31 −0.15 −0.35 −0.08 −0.07 −0.33 0.12 −0.23 −0.05 −0.06 0.07 1.00 −0.23 −0.16 −0.27 −0.36 −0.34

S2 −0.06 0.05 −0.51 0.42 0.63 −0.21 −0.20 0.68 −0.27 0.57 0.79 0.00 0.41 −0.59 0.15 −0.02 −0.16 −0.23 1.00 −0.35 0.09 −0.04 −0.10

O2 −0.41 0.48 0.18 −0.26 −0.25 −0.15 −0.17 −0.28 −0.08 −0.19 −0.36 −0.01 −0.24 0.15 −0.22 −0.14 −0.20 −0.16 −0.35 1.00 0.46 0.48 0.42

Genera −0.59 0.71 0.18 −0.41 0.07 −0.38 −0.31 0.05 −0.33 −0.01 −0.12 0.36 0.23 −0.20 −0.39 −0.28 −0.54 −0.27 0.09 0.46 1.00 0.91 0.87

EC −0.57 0.62 0.35 −0.29 −0.12 −0.27 −0.21 −0.14 −0.14 −0.03 −0.21 0.44 0.06 0.04 −0.21 −0.15 −0.38 −0.36 −0.04 0.48 0.91 1.00 0.92

Clusters −0.37 0.63 0.50 −0.36 −0.16 −0.37 −0.33 −0.18 −0.03 −0.01 −0.27 0.50 0.04 0.13 −0.21 −0.07 −0.36 −0.34 −0.10 0.42 0.87 0.92 1.00

Covariance between 0.5 and 1 are shaded black and anti-covariance between −1 and −0.5 are shaded grey.
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Figure 5 Biplot generated from a principal component analysis (PCA) of the twenty-two YNP sites with individual sample sites and
diversity metrics depicted. Sites are colored as chemotrophic (red) and phototrophic (blue).
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physical and geochemical parameters which are respon-
sible for shaping microbial community composition, func-
tion, and complexity. Most metagenomic datasets include
very limited (or no) environmental metadata; here we fo-
cused on a subset of metagenomes with detailed measure-
ments of pH and temperature, and a subset of these (from
hydrothermal systems) with 18 additional geochemical
measures that could be compared. Our analysis supports
the strong role that pH and temperature play in influen-
cing microbial community composition and function, ac-
counting for the highest average Mantel correlations (0.48
for pH and 0.38 for temperature) to evolutionary distance
between metagenomes. Importantly, upon the inclusion of
additional geochemical parameters it was found that the
availability of carbon compounds as well as micronutrients
such as iron and zinc all correlate (or anticorrelate)
with diversity measures. Multivariate analyses suggest
that these biology-environment interactions are multi-
dimensional: techniques integrating many physical and
chemical measurements performed as well as or better
than nearly all of the individual parameters at predict-
ing differences in biodiversity. This demonstrates that
the parameters typically measured as part of metagenome
studies (temperature, pH, depth) can be substantially im-
proved upon in attempts to explain or predict biological
variability as a function of environmental dynamics.
Finally, this analysis lays the groundwork for predicting

community metabolism and various metrics of diversity
based on site geochemistry. For example, PCA analysis of
YNP community metagenomes and bulk geochemistry
can predict biological properties of an unknown site based
on geochemistry, and vice versa. Future metagenomic
studies can continue to improve the resolving power of
these predictions simply by including a small number of
relatively straightforward measurements of physical and
geochemical conditions along with biological sampling.
This study represents an important advance toward
predictive understanding of biology-environment inter-
actions, and a compelling justification for coordinating
environmental/geochemical measurements in –omics-
enabled studies of natural environments.

Methods
All metagenomic datasets were downloaded as inferred
amino acid sequences from the Joint Genome Institute In-
tegrated Microbial Genomes with Microbiome Samples
(JGI IMG/M) [26] web server. All metagenomic datasets
were combined into a single FASTA file and compared
using a complete all-verses-all NCBI BLAST [41]. BLAST
results were then parsed to hits with e-values better than
10−40. Parsed BLAST results were fed into the mcl [16]
Markov clustering algorithm using an inflation value of
1.2. The mcl algorithm generates a network where
nodes represent individual genes or proteins and the
edges between them are weighted based on some measure
of homology (here, BLAST e value, though in principle
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any homology score can be used). The heuristic then per-
forms Markov walks across this network—quasi-random
walks between nodes whose probability of traversal de-
pends upon the strength of the edge connecting them
(dependent on the homology score). Network edges are
strengthened or weakened based on the number of tra-
versals during each iteration, with the inflation parameter
influencing how rapidly edges are strengthened and
whether or not an edge is ‘severed’. This procedure of ran-
dom walks followed by edge strengthening and/or culling
is iterated until convergence, typically when no edges are
strengthened or lost from the network. At convergence,
nodes which remain connected are output as Markov
clusters. BLAST e-value cut-off and MCL inflation values
were chosen such as to maximize the inclusion of hom-
ologous proteins into resultant Markov clusters [16,24].
Perl scripts were written to determine the Jaccard (binary)
dissimilarity between metagenomes by summing the total
clusters shared by a pair of metagenomes and dividing by
the total number of Markov clusters in each metagenome
pair, resulting in a dissimilarity value of 0 (all Markov clus-
ters occur in both metagenomes) and a dissimilarity value
of 1 (no Markov clusters occur in both metagenomes).
Perl scripts were then used to convert Jaccard dissimilar-
ities among all metagenomes into distance matrices. Dis-
tance matrices were converted into dendrograms using
the NEIGHBOR program within the PHYLIP software
package [42]. Markov cluster distances were calculated as
the total branch length distance between dendrogram ter-
minal nodes (leaves) using the TreeIO module within the
BioPerl [43] software package.
Perl scripts were used to generate dissimilarity matrices

using all geochemical gradients (differences) between sam-
pled locations. Additional, Perl scripts were used to gener-
ate dissimilarity matrices from the calculated Markov
cluster distances among metagenomes. Mantel tests were
performed in R [44] using the Vegan package [45] function
“mantel”. Mantel tests were completed with the Pearson
method using 1,000 permutations. Mantel test results
were plotted as geochemical difference verses Markov
cluster distance for all metagenome pairs with separate
plots for each geochemical parameters.
Correlation matrices and PCA analyses were completed

using the base package R (version 2.11.1) [44] with the
raw geochemical measurements as input. Correlation
matrices were calculated using the “cor” function in R
using the Pearson correlation method. PCA was com-
pleted using the Vegan package [45] functions “rda“ with
scaling enabled. PCA results were graphed using the
“biplot” function with scaling of species and sites.
All metagenome sequences were compared to the NCBI

non-redundant (nr) database and the KEGG [46] database
using NCBI BLAST [41]. EC count was determined by
tallying all unique EC numbers with a minimum of two
hits from the BLAST versus the KEGG database. Genus
counts were completed by tallying unique genus level hits
from the best BLAST hit to the nr database, if one existed
with a e-value better than 10−40. Tally was parsed to
include only genera within 80th percentile of total hits,
allowing genera with very low counts to be excluded
from the analysis. Markov cluster counts were a tally of
the number of Markov clusters within a metagenome.
Perl scripts developed for use in this study are freely

available from the study’s coauthors.
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