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Abstract

Background: Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is decimating
amphibians worldwide. Unsurprisingly, the majority of studies have therefore concentrated on documenting
morbidity and mortality of susceptible species and projecting population consequences as a consequence of this
emerging infectious disease. Currently, there is a paucity of studies investigating the sub-lethal costs of Bd in
apparently asymptomatic species, particularly in controlled experimental conditions. Here we report the
consequences of a single dose of B. dendrobatidis zoospores on captive adult palmate newts (Lissotriton helveticus)
for morphological and behavioural traits that associate with reproductive success.

Results: A single exposure to ~2000 zoospores induced a subclinical Bd infection. One week after inoculation 84%
of newts tested positive for Bd, and of those, 98% had apparently lost the infection by the day 30. However,
exposed newts suffered significant mass loss compared with control newts, and those experimental newts
removing higher levels of Bd lost most mass. We found no evidence to suggest that three secondary sexual
characteristics (areas of dorsal crest and rear foot webbing, and length of tail filament) were reduced between
experimental versus control newts; in fact, rear foot webbing was 26% more expansive at the end of the
experiment in exposed newts. Finally, compared with unexposed controls, exposure to Bd was associated with a
50% earlier initiation of the non-reproductive terrestrial phase.

Conclusions: Our results suggest that Bd has measureable, but sub-lethal effects, on adult palmate newts, at least
under the laboratory conditions presented. We conclude that the effects reported are most likely to be mediated
through the initiation of costly immune responses and/or tissue repair mechanisms. Although we found no
evidence of hastened secondary sexual trait regression, through reducing individual body condition and potentially,
breeding season duration, we predict that Bd exposure might have negative impacts on populations of palmate
newts through reducing individual reproductive success and adult recruitment.
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Background

Batrachochytrium dendrobatidis (Bd), the causative agent
of chytridiomycosis, has been implicated in worldwide am-
phibian declines [1]. Although Bd is able to infect a wide
range of species and hence displays extreme host generality
[2-4], amphibian morbidity and mortality in response to in-
fection is highly variable and host-species specific [5,6]. For
example, while some studies report devastating conse-
quences of Bd infection [7-9], others have shown different
levels of resistance to Bd infection (capacity to prevent or
clear Bd infection) and have provided experimental evi-
dence showing some species are able to clear Bd infection
[7,10-13]. In several species, infiltration of neutrophils,
lymphocytes, macrophages and inflammation have been
reported on the skin of susceptible (ie., those which are
not able to clear Bd infection or to prevent colonization of
Bd) amphibians [11,14-16]. Histological examinations of
resistant hosts have revealed that Bd infections can cause
skin injuries similar to those observed in susceptible spe-
cies, albeit distributed more patchily on the skin [10-12].
These results suggest that those amphibians that are appar-
ently resistance to Bd infection might still experience sub-
lethal costs but whether any such costs are likely to impair
traits associated with reproductive success and survival is
unclear.

It is well known that pathogens exert significant cost
for the host [17,18]. Costs may be manifest through the
host’s energetic and cellular response to the infection
[19-21], through the pathogens acquisition of host re-
sources, or through inducing greater host susceptibility
to other pathogens [22-24]. As such, hosts might show
clinical symptoms and visible damage [24], but even
where such effects are lacking, significant negative con-
sequences can arise through reductions in investment in
traits associated with fitness (e.g., growth, survival and
reproduction, [18,19]). As a consequence, in species exhib-
iting apparent resistance to Bd, we might also expect there
to be sub-lethal costs of infection and for such costs to in-
fluence populations. In support, a number of studies in
frogs and toads have reported subclinical effects of Bd on
tadpole growth [25-28], as well as adult body size [29] and
body condition [30]. Nevertheless, in such cases, tests of
the consequences of Bd infection for traits important in
reproduction (morphology, behaviour) of resistant am-
phibians are generally lacking.

The palmate newt, Lissotriton helveticus (Cuadata:
Salamandridae; formerly Triturus helveticus), is a com-
mon, semi-aquatic amphibian of Western Europe. Palmate
newts inhabit aquatic habitats with still or very slow-
moving water during the breeding season, but otherwise
have a terrestrial life style [31], occupying moist habitats
and refugia [32]. Males develop large ornaments when
they enter water for breeding, manifested as a low, straight
edged crest which extends dorsally, a thread-like filament
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projecting from the end of the tail and conspicuous
webbing between the toes of the hind feet [33]. These
secondary sexual characteristics have been shown to be
associated with male reproductive success [31,34-36]. They
then gradually start to regress as the newts leave their
aquatic habitat, but may not necessarily have fully disap-
peared as individuals start their migration to their terrestrial
feeding [33].

Interestingly, palmate newts have been reported in
several Bd infected sites across Europe and have been
found to test positively for Bd (global Bd maps, see [37]
for details). Despite this, no morbidity or mass mortality
have been reported [37,38] and under laboratory condi-
tions, excessive weekly exposures to more than 10°Bd
zoospores per week for more than 4 weeks does not in-
duce symptomatic chytridiomycosis even up to 40 days
following a month-long exposure course (Cheatsazan,
unpublished results 2011, n = 35 newts). These observa-
tions suggest that this species exhibits some level of re-
sistance to Bd. However, the consequences of exposure
to Bd, which will most likely occur during the aquatic
phase as a result of increased probability of exposure to
waterborne Bd zoospores, have not been investigated for
this species. Here, we inoculated a group of wild-caught
palmate newts experimentally with a single dose of Bd
(18 controls and 50 exposed) and monitored Bd infection,
survival and clinical symptoms, as well as changes in mor-
phological and behavioural traits known to be associated
with reproductive success in this species. Our specific aim
was to use this experiment to test: (1) whether palmate
newts become infected by exposure to low doses of Bd,
whether they show external symptoms and whether they
are able to tolerate or clear the infection; (2) the conse-
quences of Bd exposure and infection load for secondary
sexual characters in males; (3) the consequences of Bd ex-
posure and infection load for mass change in both males
and females; and (4) whether exposure to Bd is associated
with changes in the probability of an early entry into the
terrestrial phase. Throughout, we consider sex differences,
where possible.

Methods

In mid May 2011, 68 newts (34 males and 34 females) in
aquatic phase were captured in narrow streams on the
borders of Bouconne forest, Haute Garonne, France (43°
39" N and 1° 14’ W, 190 m altitude). Our rationale for
using wild-caught rather than laboratory-derived newts
was that we wished to use individuals as close as pos-
sible to their natural state. The sites used are in a forest
reserve with natural and man-made streams, and are lo-
cated about 100 km outside the current extent of the
known Bd infection zone. In addition, our inspections
for Bd in this area since 2009 have failed to detect evi-
dence of Bd infection of any amphibian species in the
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area, and all animals brought back to the laboratory tested
negative for Bd. Male and female newts were randomly
paired and transferred into plastic tanks (205x 205 x
140 mm). Our reason for this is that wished to examine
the effects of Bd exposure on male secondary sexual char-
acteristics, which we considered to be likely influenced by
the presence of a female. Each tank contained 1.0 litre of
aged tap water and a hollow brick for shelter. We ran-
domly assigned tanks to one of 2 treatment groups: con-
trols (9 males, 9 females) and Bd-exposed (25 males and
25 females). All newts were maintained in the laboratory
for 7 days prior to experimentation and were provided
with live midge larvae (blood worms), daphnia and/or
tubifex every two days. Food was provided by ‘sucking’
a known quantity of liquid (tube length x diameter =
55 cmm x 0.5 cm) containing roughly 75 larvae. Although
the precise number of larvae was unknown, there is no
reason to suppose this varied systematically between ex-
perimentally exposed and control tanks. Room temperature
was maintained at 18.6 £ 1.9°C throughout the experiment.
Light exposure was adjusted weekly to equal the average
day length of the first and of the last days of the focal week
(approximately 14 h light: 10 h dark). Water was changed
3 days after inoculation and then weekly thereafter to pre-
vent bacterial blooms in the tank. This also means that
levels of Bd loads detected were unlikely to be explained by
zoospore survival in the water [39].

Bd cultures were prepared from a Bd extract of an
infected tadpole from an introduced population of
American bullfrog (Lithobates catesbeianus) in southern
France (for extraction protocol see [40]). This extract was
grown in 1.0% Trypton (SCHARLAU, cat. No 07-119)
and 0.32 g x I'' glucose (ROTH, cat. No X997) in ultrapure
water. Cultures were incubated at 18.5°C to optimize
growth of the fungus [5]. Approximately one hour prior to
inoculation, we counted approximately 160 active zoo-
spores x ml™" of the 5th passage of our culture using a
haemocytometer. We then added 12 ml of this culture
to each Bd exposed tank (~2000 zoospores x I x tank™).
The experiment was stopped 30 days post-inoculation,
when about approximately half of the newts had entered
or were entering the terrestrial phase of the season (t-
phase). When a newt consistently remained out of the
water for five consecutive days, we considered the day the
newt had left the water for the first time as the start of t-
phase. Animal capture was with permission of the prefec-
ture of Haute Garonne (Permission No. 2009-12). Animal
housing facility and experiments comply with the regula-
tions of the housing organization (CNRS: National centre
for scientific research) and the current rules of France.

Infection was detected by quantitative amplification of
Bd-DNA content of weekly swab samples (from: fore-
limbs, hind limbs, abdomen and cloaca) using fine tip
dry swabs (Tubed sterile dryswabTM tip, Medical wire
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& Equipment, cat. No MW100). Swab samples were
taken at upon arrival, day 7, 14, 21, and 30 after the first
inoculation from all individuals. Quantitative PCR’s were
conducted as described in [41], and after incorporating
the changes suggested by Kriger et al. and Hyatt et al.
[42-44] except that the we reduced the final volume of re-
actions to 10 pl due to higher sensitivity of our g-PCR ma-
chine (Mastercycler ep realplex4, Eppendorf). Throughout
this paper, results of all quantifications are presented in
Bd Genome Equivalent (BdGE) per swab bout. In addition
to standard duplicates and negative controls, we also in-
cluded 6-12 samples of control newts in each test plates
of exposed samples and utilized internal positive control
reagent in all samples (TagMan® Exogenous Internal Posi-
tive Control). To ensure the efficiency of inoculations, we
also analysed swab samples of 66 individuals of the same
population, after 2 weekly exposures to 10° zoospores of
the same Bd strain. The average Bd load of these newts,
one week after the second inoculation, was (mean + S.E.)
442.2 + 1874 BdGE, showing the Bd strain and inocula-
tion method was able to generate an infection in this
population.

On days 0 and 30 post-inoculation, we measured body
mass using a digital scale (+0.01 gram). Snout-to-vent
length (SVL) and male secondary sexual traits were mea-
sured by Image] software on digital photographs of all
individuals: area of tail crest, length of tail filament, and
average of webbed area of hind feet (left and right feet)
one day before inoculation and day 30 after inoculation,
according to [36]. Photographs were taken on a single
plastic board with a millimetre scaled area of 2 x 10 cm.
All morphological measurements were taken twice by the
same person (HC) and their average was used in statistical
analyses. In all cases a strong correlation (r>0.90, p <
0.001) was observed between replicates. Finally, we re-
corded survival, and the start of t-phase as well as symp-
toms of clinical chytridiomycosis [5].

Infection patterns and symptoms

Changes in the probability of being infected during the
experiment were analysed by fitting whether (1) or not
(0) a newt was infected on a given day as the response
term in generalized linear mixed-effects model (GLMM)
with a binomial error structure and logit link function.
The binomial denominator and dispersion parameters
were 1. Changes to infection loads during the course of the
experiment, were analysed using a GLMM with Poisson
error structure and log-link function in which load size
(numbers of BAGE) was fitted as the response term. In
both models, individual subjects’ codes (ID’s) nested within
box number were fitted as random terms to account for re-
peated sampling of each. The SVL and body mass of indi-
viduals on day zero were fitted as covariates, while sex,
days after the first inoculations (7, 14, 21, 30) and their
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interaction were fitted as fixed effects. Finally, throughout
the experiment we examined the animals for signs to Bd-
mediated symptoms.

Secondary sexual characteristics in males

Analysis of change in male secondary sexual characters
over the course of the experiment was conducting using
multivariate analysis of variance, in order to account for
multiple correlated terms of interest (crest area, tail fila-
ment length and rear foot webbing: Spearman’s rank
correlations between the traits, ry=0.4-0.86, p < 0.005-
0.0001). The changes in each trait were fitted as the re-
sponse terms, while proportional mass change was fitted
as a covariate to account for changes in body condition,
and treatment was fitted as a the fixed effect of interest.
Because in this case we only used a single measure from
a single individual from each box (i.e. the male), there
was no need to conduct a mixed model in this analysis.

Mass loss in males and females

The effect of Bd on mass was investigated in two ways.
First, an analysis of the effect of treatment on mass
change was conducted by fitting mass change between
day 0 and 30 as the response term in a general linear
model with normal errors. Body length and mass at ex-
perimental onset were fitted as covariates, while sex and
treatment were fitted as the primary fixed effects of
interest, along with their interaction. Second, an analysis
of the effect of Bd-load change during the course of the
experiment on mass change was conducted in the same
way, but wherein treatment was swapped for load change
among exposed individuals. Because both of these analyses
included a male and a female from the same box, it could
be argued that such pairings are not independent units.
However, initial residual maximum likelihood models
fitting box number as a random term showed that the
box from which individuals were obtained had a nega-
tive component of variance, indicating that the variation
within boxes was indistinguishable from that between
boxes. We therefore elected for the more parsimonious
GLM rather than REML approach, since the results were
almost identical and the former allows estimation of vari-
ance explained.

Terrestrial phase

The probability that individuals initiated t-phase within
the 30-day experimental period was investigated by fit-
ting whether (1) or not (0) individuals entered t-phase as
the response term using two GLMs with binomial error
structures with logit link functions. In the first case,
treatment was fitted as the primary factor of interest,
and in the second, treatment was replaced by Bd-load.
In each case, body length (SVL) and mass at experimen-
tal onset were fitted as covariates, and sex was fitted as
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an additional factor. In both analyses, we investigated
the effect of tank identity in GLMMs, but in both cases
it represented a negative component of variance.

All statistics were conducted in Genstat Release 14
(Rothamsted Experimental Station, Harpenden, UK). The
statistics are provided for all terms included in the models,
and effect sizes + standard errors are provided for terms of
interest. Terms were dropped from models when their ex-
clusion failed to generate a significant loss of model vari-
ance. All p values provided are two-tailed.

Results

Infection patterns and symptoms

At experimental onset, all newts tested negative for Bd,
but following exposure to Bd, 94% of individuals became
infected. Of these, most became infected in the first
week, although 4% became infected by the end of week
two and 2% were found to be infected at the end of week
three. Only 4% of newts remained infected 30 days after
the onset of the experiment. As a consequence, the prob-
ability that individuals were infected with Bd changed sub-
stantially during the course of the month-long experiment
(Figure 1a). Larger newts were less likely to be infected on
a given day (effect + S.E. = —0.20 + 0.097; X’ = 4.16, df =1,
p = 0.041), but there was no effect of initial body mass (ef-
fect+S.E. = -0.73 +1.46 X2 =049, df =1, p=0.49) and no
differences between the sexes (x*=0.15, df=1, p = 0.70;
Figure 1a) on patterns of infection.

Over the course of the experiment, Bd loads ranged
from 0-14 BAGE per swab. Newts that were long (SVL)
had reduced loads on average (GLMM with Poisson er-
rors, effect + S.E; -0.075 +0.035; x°=4.70, df=1, p=
0.030), but there was no effect of body mass at the onset
of the experiment (0.42 + 0.44; x> =0.90, df = 1, p = 0.34)
and no difference between the sexes (X2:0.01, df=1,
p =0.93, Figure 1b). As with the incidence data above,
Bd loads varied dramatically throughout the month-long
experiment: in both sexes, Bd loads were at their max-
imum seven days after inoculation and declined to zero
after a month (Figure 1b).

The results above suggest that palmate newts are resis-
tant to Bd. In support, we found no evidence to suggest
that Bd induces mortality or visible clinical symptoms in
the captive palmate newts. During the course of our 30-
day study, only three newts died. Two infected newts died
(1 male and 1 female) 15 days post-inoculation, and one
control (a female) did so 24 days following the onset of
the experiment. Prior to their death, none of the exposed
newts showed symptoms of clinical chytridiomycosis, such
as skin lesions, haemorrhage, or absence of righting reflex
[45,46]. Bd contents of swab samples taken the day before
of death of the two treated newts were 0 and 14 BdGE in
female and male individual, respectively.
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Figure 1 Changes in probability and intensity of the infection
during the course of the experiment. (a) The probability of
infection gradually decreased after the first week and by 30 days
post-inoculation, most newts tested negative for Bd (GLMM: days
post-inoculation; XZ =30.12, df =3, p < 0.0001; interaction sex x days
post-inoculation x> = 2.68, df =3, p=0.44). (b) The average infection
burden was constant until 2 weeks after inoculation; during the
third week after inoculation the infection intensity started to decline
and generally reached zero at day 30 post-inoculation (GLMM: days
post-inoculation; x° = 9.20, df = 3, p < 0.001; interaction sex x days
post-inoculation X2 =001, df=3, p=0.99). Figures show predicted
means + SE generated from the mixed model analyses. In both
analyses, tank had no influence on patterns of Bd infection (tank
component = 0), but there was some consistency in the prevalence of
Bd infection within versus among individuals (component=0.01 £0.009
(SE)) and a significant difference between individuals in Bd loads

(component =0.12 £0.004 (S.E)).

Secondary sexual characteristics in males

Male palmate newts show three obvious morphological
characteristics during the aquatic breeding phase. At ex-
perimental onset, the mean (+SD) crest area, tail fila-
ment length and hind food webbing area were 110.4
(+12.2) mm?, 4.6 (+1.2) mm, 18.2 (+1.3) mm?, respec-
tively. The onset of the experiment was timed to coincide
with the peak breeding season and hence the maximum
extent of male secondary sexual characteristic sizes. Dur-
ing the course of the experiment, crest and hind food web
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area declined by 37% and 31%, respectively, while tail fila-
ment was reduced in length by 68% (Figure 2). A multi-
variate analysis of variance (MANOVA) revealed that after
controlling for the proportion of mass lost (F356=3.04,
p =0.047), there was an overall effect of treatment on the
reduction of the extent of secondary sexual characteristics
(F326 =543, p=0.005). However, univariate ANOVAs
showed that this overall effect was driven entirely by the
effect of Bd treatment on a reduction (not increase) of the
loss of hind food web area (crest area, F;,3=0.45, p=
0.51; filament length, F; 55 =0.01, p = 0.94; hind food web
area, Fy 53 =12.37, p = 0.002).

Mass loss in males and females

At the time of capture, females were slightly longer than
males (mean +SD snout-vent length (hereafter body
length) =349+ 19 vs. 32.6+1.8 mm: t-test, tgs=>5.10,
p <0.001), but there was no difference in their respective
masses (1.19 £0.23 vs. 1.20 £0.20 g: tg3 = 0.49, p = 0.63).
Individuals that were heavy at experimental onset lost
significantly more mass over the 30-day experiment
than those that were light (GLM: F; 63 = 30.72, p < 0.001),
but there was no effect of body length (GLM: effect +
s.e. = —0.0064 + 0.0058; F; ¢, =1.22, p=0.27). After con-
trolling for significant effects of the former, we found that
exposed newts lost 33% more mass than control newts,
with treatment explaining 7.5% of the variation in mass
change during the experiment (Fjg3=10.55, p=0.002;
Figure 3a). Males and females lost similar amounts of
mass (Fy g =1.23, p=0.27) and the effect of experimental
treatment on mass loss did not differ between the sexes
(F161=0.28, p = 0.60; Figure 3a).

Secondary sexual characteristics

crest filament palm

-20 4

H

-40 -

-60 1

-80 4

Predicted proportional change (%)

Ocontrol

O exposed
-100 -
Figure 2 Effects of Bd exposure on male’s secondary sexual
traits. Exposed and non-exposed males showed similar reductions
in crest area and tail filament length, but the former showed
reduced reabsorption of their rear feet webbing. Figures show

predicted means + S.E. from MANOVA.
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Figure 3 Effects of Bd exposure and load on body mass during
the 30-day experiment. (a) Exposed newts of both sexes lost more
mass than unexposed controls; (b) among the infected newts, the
greater variation in the Bd load was correspondent with greater
mass loss. Figures show (a) predicted means + S.E. and (b) raw
values and predicted line.

The results above suggest that palmate newts suffer a
cost of clearing Bd from their system. However, a better
test of this hypothesis is to investigate the relationship
between the change in Bd load and the change in mass
over the course of the experiment. The mass lost by
experimental newts increased as a function of increasing
body mass at the onset of the experiment (GLM:
effect + S.E. = 0.27 +0.066; F;44=17.61, p<0.001), but
was uninfluenced by SVL (effect+S.E. = -0.0022
0.0062; F; 43 = 0.13, p = 0.73). After controlling for the ef-
fects of mass at experimental onset, we found a signifi-
cant negative relationship with Bd load change and mass
loss, with newts losing 5% of their body mass for every
four BAGE’s that they cleared (effect+S.E.=0.051+
0.012; F; 44 = 18.36, p < 0.001, R* = 20%; Figure 3b). This
effect was common to both males and females (GLM:
sex*Bd change interaction; F; 4, = 0.03, p = 0.86).

0.00 |

2 4
Mean Bd load (days 7,14,21)

Figure 4 Consequences of Bd-exposure and Bd-infection for
probability of termination of aquatic breeding season.

(a) Exposed individuals were more likely to enter the terrestrial
phase than unexposed controls; and (b) higher infection intensities
were associated with increased probability of transition to terrestrial
phase. Figures show GLM predicted (a) predicted percentages from
a GLM +£ SE and (b) shows the relationship between average Bd load
and occurrence of t-phase among the Bd exposed newts. The line
represents the linear predictor of the GLM (probability of t-phase)
and the shaded area shows + SE of the predictor.

Terrestrial phase

Overall, 46% of newts were judged to have entered t-phase
by the end of the 30-day experiment. There were non-
significant tendencies for males to enter t-phase after fe-
males (GLM, x*=1.31, p=0.25) and those in poor body
condition to enter t-phase before those in good condition
(body mass correcting for body length, x* = 2.56, p = 0.11).
After controlling for these effects, we found that exposed
newts were 50% more likely to enter into t-phase during
the 30-day experiment that control newts (x> =3.99, p =
0.046; Figure 4a).
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Within the exposed individuals, males and females had
a similar probability of entering into t-phase (GLM; Sex,
x> =1.02, p=0.31). There was no effect of body length
on the probability of entering t phase (SVL effect + S.E. =
0.027 +0.15; x> =0.03, p =0.86), but those individuals in
poor conditions were more likely to enter the t-phase than
those in better condition (initial mass effect + S.E.-3.46 +
1.69; x> =4.71, p=0.030). After controlling for these ef-
fects, we found that newts were more likely to enter t-
phase if they had high average Bd loads during the first
three weeks of the experiment, independently of sex (Bd
load effects + S.E. = 0.73 + 0.33; x> =5.92, p=0.015; sex x
Bd load x* = 0.01, p = 0.99; Figure 4b).

Discussion

Our results suggest that the Bd dose administered is cap-
able of inducing a subclinical infection in the palmate newt
within one to two weeks after inoculation. We found no
evidence to suggest that Bd caused signs of chytridiomy-
cosis [46] or death, and indeed, virtually all exposed newts
appeared to have cleared any infection by one month post-
inoculation. These results complement circumstantial field
evidence documenting that in Bd areas, palmate newts
appear not to suffer mass mortality (e.g., [37,38]). Never-
theless, our evidence also suggest that such apparent re-
sistance to Bd comes at a cost of increased mass loss
during the aquatic phase and a more rapid transition to ter-
restrial t-phase compared to non-exposed controls. Within
exposed newts, both the amount of mass lost and probabil-
ity of entering t-phase increased as a function of increas-
ing pathogen load clearance. By contrast, the rate of loss
of secondary sexual characteristics were generally not in-
fluenced by Bd infection, with the exception of hind foot
webbing that remained longer in exposed newts than con-
trols. While the devastating impacts of Bd on amphibians
are well publicised [7-9,47], much less is known about the
extent, form and underlying causes of more subtle symp-
toms in apparently resistant amphibian species. Our results
suggest that caution should be exercised before concluding
that Bd has negligible consequences for apparently resistant
species.

Bd is known to invade the host epidermis; feeding on
various nutrients (e.g., keratin), causing pathological ab-
normalities and impairing critical cutaneous functions,
such as the maintenance of osmotic balance (reviewed in
[5]). Although Bd infection can have devastating conse-
quences (see Introduction), accumulating evidence suggests
that some amphibians only exhibit subclinical symptoms
and might be able to effectively clear the infection through
mechanisms such as antimicrobial peptides [13,48], Bd kill-
ing microbial flora on their skin [49-51], anti-Bd immuno-
globulin’s [52-54], increasing body temperature during the
infection [55] and improvements to dietary condition [56]
(reviewed in [57]). In such circumstances, individuals might
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still suffer costs: (i) because pathogens impair body func-
tioning; (ii) because mounting an immune response or
repairing damaged tissues requires energy; (iii) because
pathogens actually consume host energy resources; and/or
(iv) because immune-associated illness-induced anorexia
reduces energy intake [23,58-60]. For instance, in wild frog
populations, Bd infection has found to be associated with
smaller body size [29,61], although the mechanism(s) caus-
ing the reduction in body size in these frog studies was un-
clear. The evidence for our study suggests that increased
mass loss might be mediated by a cost of immunity [22],
but verification of this as a specific mechanism needs elu-
cidating through more targeted experimentation in our
and other studies. For example, we are not able to rule
out a role of adaptive anorexia, but we suggest that such an
effect is unlikely to explain our results fully, since newts
were not fed adlib and we noticed no obvious surplus of
food in experimental tanks. Indeed, that a recent study has
shown experimentally that mounting an innate immune re-
sponse (skin peptides) against Bd comes at cost to host
body condition [62], provides some tentative support for
our conclusions.

We found little evidence to suggest that the regression
of secondary sexual characteristics were hastened by expo-
sure to Bd, but we found some support for the possibility
that breeding season duration might be curtailed. Both the
regression of sexually selected characteristics and transition
into t-phase are thought to be largely under hormonal con-
trol [63-65]. Although, we were not able to measure neuro-
endocrine changes of the exposed and infected newts, our
results fit well with the current knowledge of amphibians’
stress responses and its impacts on reproduction. In am-
phibians, exposure to pathogens can cause a rapid release
of anti-microbial peptides [66,67] through activation of
hypothalamic-pituitary-adrenal (HPA) axis (=stress axis in
mammals) [67-69]. Stimulation of this axis can result in in-
hibition of production and release of stress hormone (i.e.
corticosterone) [70,71] which, in urodeles, inhibits the
courtship behaviour, development/maintenance of male
secondary sexual traits and triggers the migration toward
the terrestrial habitat [63,64,72-74]. At the behavioural
level, a decrease of prolactin triggers the termination of
aquatic phase and migration toward terrestrial habitat while
at a morphological level the decrease of prolactin induces
the decline of tail crest [63,64,73,74]. However, the decline
of hind feet webbing is mediated by a different mechanism
which involves a synergetic effect of several hormones
[73,75]. Therefore, the slowed reduction of hind feet web-
bings, in comparison to tail crest and tail filament, might be
due to the difference of the hormonal bases which control
these traits. In order to elucidate the potential mechanisms
of slowed regression of foot webbing (in comparison with
other secondary sexual traits, or vice versa) as well as early
entry into t-phase, more studies are required. In addition,
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in order to understand the potential consequences, the
exact role and relative importance of each sexually se-
lected trait in female choice is required, as is the conse-
quences of the size of each trait for survival on transition
to the t-phase.

Although, for obvious ethical and conservation rea-
sons, we were unable to measure the consequences of
experimental infection for individual fitness in the wild,
we suggest the consequences of Bd that we observed are
likely to be significant [26,29,30,76]. In palmate newts,
mating success is likely to be influenced by the duration
of their aquatic phase, and is known to be condition-
dependent: female fecundity and male display rate are
both highly demanding energetically [77-79]. It is also
highly probable that the success of terrestrial migrations
are at least partly associated with having sufficient en-
ergy reserves as is the ability to survive winter hiberna-
tion, since the annual rate of survival of newts is fairly
low (i.e. < 50%, see [80,81]) and newts consume almost
all their resources during the winter [78]. Our ability to
project the population consequences of sub-lethal infec-
tions requires an understanding of whether or not indi-
viduals can acquire adaptive immunity to Bd or whether
individuals with primed immune system remain susceptible
to Bd. Where the former is the case, we would expect Bd
to have little impact on palmate newt’s populations once re-
sistance spreads in the populations (e.g. see [62,82]). On the
other hand, if the latter is true, the sub-lethal consequences
observed in this study are likely to have more significant
population consequences, with possible impairment of fe-
male fecundity, juvenile recruitment and adult survival
Currently, it is unclear whether amphibian species that suf-
fer subclinical effects of Bd are declining, as one might ex-
pect from our results. We urge that future studies are
careful to monitor population sizes of all amphibian species
in a given area, and attempt to determine whether Bd can
also have population consequences, even for apparently re-
sistant species. Further, in the advent of such declines being
apparent, it is important to determine whether such de-
clines are generated through biased effects on each sex or
age class.

Conclusion

The costs of pathogen infection are common and include
a range of sub-lethal symptoms including reduced growth,
increased mass loss, increased metabolic rate and/or a re-
adjustment of life history strategies [22,83,84]. Our results
suggest that subclinical costs of Bd infection can exert sig-
nificant costs on an apparently resistant host amphibian,
with potential threatening consequences on long term
population viability. Indeed, Bd infected palmate newts
suffered from a decrease in body condition relative to con-
trols and had delayed absorption of one temporary adap-
tations for aquatic life; both of which might impede the
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success of terrestrial migration. In addition, they showed
earlier initiation of t-phase, which might reduce the dur-
ation of a breeding season, and hence the number of off-
spring produced by a given population. Furthermore, in
addition to the general inhibitory effects of stress on am-
phibian reproduction, chronic exposure to Bd zoospores
in the aquatic habitat may trigger a chronic activation of
the stress (HPA) axis which might increase an individual’s
susceptibility to other pathogens as well as other environ-
mental stressors. Further studies are required in this spe-
cies and other apparently asymptomatic species, in order
to further appreciate the extent, form and mechanism of
sub-lethal costs of Bd infection in amphibian species.
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