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Abstract

Background: Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology,
behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic
acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities.
Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO),
Rwembaita Swamp (annual average DO 1.35 mgO, L") and Inlet Stream West (annual average DO 5.58 mgO, L)
in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to

brain, and skeletal muscle.

acclimatization treatment.

maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under
these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK),
lactate dehydrogenase (LDH), citrate synthase (CS), and cytochrome ¢ oxidase (CCO) in four tissues, liver, heart,

Results: Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme
CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in
liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of

Conclusions: Our results suggest that the influence of site of origin and hypoxic acclimatization in determining
enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and
lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation.

Background

Because the concentration of dissolved oxygen (DO) in
water is influenced by many factors, including tempera-
ture, depth, salinity, and eutrophication, organisms living
in aquatic environments can be subjected to temporal
and spatial variation in DO. Among fishes, low levels of
DO, or hypoxia, is associated with impaired growth and
reproduction [1-3]. If severe, hypoxia can lead to high
rates of mortality in fish and other aquatic organisms
depending upon their degree of hypoxia tolerance [4-6].
Aquatic hypoxia is a major environmental stressor that
has become a global issue [7,8], and some predictions
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suggest that current global climate change will further
exacerbate the problem [9,10]. Thus, it has become
increasingly important to understand mechanisms that
fish use in order to persist and survive under hypoxia.
Intraspecific variability in physiological traits plays a
key role in the capacity of fish to adjust to low oxygen.
Such variability can be attributed to genetic differentia-
tion, phenotypic plasticity, or a combination of both.
The time course of phenotypic responses to low oxygen
varies from minutes or hours (e.g., acute responses) to
days or weeks (development, acclimation, and acclimati-
zation). Depending on the duration and intensity of
hypoxia exposure, fish may display adjustments at beha-
vioural, morphological, biochemical, and physiological
levels [2,5,11-13]. Generally, during brief or moderate
levels of hypoxia, fish attempt to maintain the same
level of metabolic function observed under normal
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oxygen levels (normoxia); however, during prolonged or
severe hypoxia, fish employ various mechanisms to
enhance hypoxia tolerance. One of the major challenges
to surviving hypoxia is balancing energy production and
expenditure. Accordingly, under severe hypoxic stress,
fish tend to reduce their metabolic demands, a response
that is frequently coupled with changes in metabolic
enzyme activities [14,18]. However, the degree and
direction of enzyme adjustments depend upon the
duration and severity of hypoxia [19-21], as well as the
pathway, tissue, and species studied [2,22,23]. Moreover,
evidence for adjustments in tissue metabolic potential
(enzyme activities) in fish is almost exclusively drawn
from laboratory acclimation studies.

In this study, we used a field experiment with the
African fish Barbus neumayeri Fischer to study the role
of acclimatization to low oxygen in determining growth
and metabolic enzyme activities. B. nemayeri is a mem-
ber of the cyprinid family, which is one of the most
abundant and widespread freshwater families in Africa
[24,25]. B. neumayeri is widely distributed in eastern
Africa and inhabits a diversity of environments that dis-
play a great range of variation in DO, from chronically
hypoxic swamps to well-oxygenated open rivers [1,25].
Previous studies have shown population specific variation
in traits related to behaviour, respiration, morphology,
and metabolism that may enhance hypoxia tolerance in
populations from low DO habitats [1,20,26-28]. Here, we
use reciprocal transplant acclimatization as our experi-
mental design, which is not often used in physiological
studies of fish. However, it is of great importance, since
individuals are exposed to many other natural factors
(predation, food availability, water flow among others)
that can affect the overall capacity of organisms to
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respond adequately to the main factor under study, in
this case hypoxia. We use this design to determine the
influence of site of origin versus oxygen acclimatization
treatment on growth and tissue enzyme activities. The
enzyme activities measured were chosen to reflect the tis-
sue capacities for anaerobic and aerobic carbohydrate
metabolism.

Results

Morphological variables of B. neumayeri used in this
field transplant experiment are shown in Table 1. Fish
were selected at the beginning of the experiment in a
narrow size range (Ls = 36 to 64 mm) to minimize size
variation. Nonetheless, starting M, and Lg were signifi-
cantly lower for fish collected from Inlet Stream West
(My: Fi77 = 4.652, P = 0.034; Lg: Fy 57 = 4.998 P =
0.028), although condition (K) did not differ between
collection sites. After the four week acclimatization per-
iod, M, Ls, and K did not differ for fish from different
collection sites or exposed to different acclimatization
treatments. Specific growth rate (Gg), however, was
significantly affected by acclimatization treatment, being
lower for fish acclimatized to the low oxygen habitat
(F170 = 5.346, P = 0.024, Table 1), as well as being
significantly affected by cage assignment (Fg 7o = 2.788,
P = 0.008). The latter effect was for fish in cages holding
fewer fish (lower density) to have higher Gg. Other than
Gg, cage assignment was not a significant factor in the
nested ANOVAs for any other response variable (mor-
phological or enzymatic).

Maximal enzyme activities representing tissue glycoly-
tic capacity (PFK and LDH) and aerobic capacity (CS
and CCO) are shown in Figure 1, Figure 2, Figure 3 and
Figure 4. Exploratory data analysis indicated that body

Table 1 Morphological traits of the African cyprinid Barbus neumayeri collected from and acclimatized to field sites differing

in dissolved oxygen content

Acclimatization Site

Inlet Stream West (normoxia)

Rwembaita Swamp (hypoxia)

Site of Origin
Parameters Inlet Stream West Rwembaita Swamp Inlet Stream West Rwembaita Swamp

Initial My (g)° 226 + 023 (21) 284+ 0.6 (21) 256 +0.25 (21) 268 +0.12 (27)
Initial Ls (mm)“ 49.1 + 1.7 (21) 534+ 10 (1) 51.8 + 1.89 (21) 530+ 09 (27)
Initial K 1.79 + 0.03 (21) 1.82 £ 0.03 (21) 171 + 002 (21) 1.77 + 003 (27)

Final Mt (g) 217 £ 021 (21) 2.56 + 0.17 (20) 245+ 0.25 (21) 250 + 0.11 (25)

Final Ls (mm) 484 £ 1.7 (21) 521+ 1.0 @21 50.2 + 1.99 (20) 514 + 1.0 (24)
Final K 1.79 £ 0.03 (21) 1.78 + 0.05 (20) 1.79 £ 0.05 (20) 1.84 + 004 (24)

Gs (% d7)°¢ -0.10 + 0.02 (20) -0.12 + 001 (19) -0.15 + 0.02 (20) -0.14 + 0.01 (24)

Barbus neumayeri were collected from Inlet Stream West (DO = 5.4 mg O, L") and Rwembaita Swamp (DO = 1.1 mg O, L") and held under a reciprocal
acclimatization treatment for four weeks. Total mass (M), standard length (Ls), condition factor (K) were measured before and after the acclimatization treatment
and specific growth rate (Gs) was determined for the four week experiment. Data are shown as mean + SEM with sample size in parentheses.

“ Means were significantly different for fish from different sites of origin (P < 0.05).

b Means were significantly different for fish held at different acclimatization sites (P < 0.05).
¢ Means were significantly different among cages within acclimatization site (P < 0.05).
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Figure 1 Effects of collection site and acclimatization
treatment on phosphofructokinase activities in tissues of the
African cyprinid Barbus neumayeri. Samples were collected from
Inlet Stream West or Rwembaita Swamp and acclimatized in the
normoxic stream site (open bars) or the hypoxic swamp site (filled
bars) for four weeks. P values are from two-way ANOVAs with site of
origin and acclimatization treatment as main effects (see Methods).
Error bars represent one SEM and sample sizes for each tissue are
given above the bars.
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Figure 2 Effects of collection site and acclimatization
treatment on lactate dehydrogenase activities in tissues of the
African cyprinid Barbus neumayeri. Samples were collected from
Inlet Stream West or Rwembaita Swamp and acclimatized in the
normoxic stream site (open bars) or the hypoxic swamp site (filled bars)
for four weeks. For brain, mass-corrected LDH activities are shown. P
values are from two-way ANOVAs with site of origin and acclimatization
treatment as main effects (see Methods). Error bars represent one SEM
and sample sizes for each tissue are given above the bars.
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Figure 3 Effects of collection site and acclimatization
treatment on citrate synthase activities in tissues of the

African cyprinid Barbus neumayeri. Samples were collected from
Inlet Stream West or Rwembaita Swamp and acclimatized in the
normoxic stream site (open bars) or the hypoxic swamp site (filled
bars) for four weeks. P values are from two-way ANOVAs with site of
origin and acclimatization treatment as main effects (see Methods).
Error bars represent one SEM and sample sizes for each tissue are
given above the bars.
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Figure 4 Effects of collection site and acclimatization
treatment on cytochrome c oxidase activities in tissues of the
African cyprinid Barbus neumayeri. Samples were collected from
Inlet Stream West or Rwembaita Swamp and acclimatized in the
normoxic stream site (open bars) or the hypoxic swamp site (filled
bars) for four weeks. P values are from two-way ANOVAs with site of
origin and acclimatization treatment as main effects (see Methods).
Error bars represent one SEM and sample sizes for each tissue are
given above the bars.
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mass was positively related to brain LDH activity
(P = 0.0048), and hence mass-corrected activities are
shown for this enzyme only (Figure 2). In general, acclima-
tization site proved to be more important than collection
site (origin) in determining the maximal activities of these
enzymes. Acclimatization to the low oxygen habitat
resulted in higher PFK activities in heart and skeletal mus-
cle (Fy76 = 4.514, P = 0.037 and F, 75 = 9.035, P = 0.004,
respectively, Figure 1). Conversely, fish acclimatized to the
hypoxic swamp had lower heart CCO activity (F; ;7 =
3.974, P = 0.049, Figure 4). Trends toward higher glycoly-
tic enzyme activities and lower aerobic enzyme activities
were observed in other tissues (e.g., muscle CS, Figure 3),
but these were not statistically significant largely due to
the high variation in enzyme activity determinations. Site
of origin was significantly related to liver LDH activity:
fish collected from the hypoxic swamp habitat had higher
activities than fish from the normoxic stream habitat (F; 76
= 5.534, P = 0.021, Figure 2). The interaction between site
of origin and acclimatization site was not significant for
any tissue enzyme activity.

Because acclimatization treatment significantly
affected Gg (Table 1) and certain tissue enzyme activities
(Figures 1 and Figure 4), correlation analysis was used to
assess the relationship between Gg and enzyme activity.
Of the three enzyme activities that were significantly
influenced by acclimatization treatment, only heart PFK
was correlated with Gg (r = -0.29, P = 0.009). This nega-
tive relationship, while statistically significant, explained
less than 10% of the variation in heart PFK. The other
two enzyme activities affected by acclimatization treat-
ment, muscle PFK and heart CCO, were not related to
Gs (P > 0.05).

Discussion
Oxygen availability in aquatic habitats is a major ecolo-
gical factor influencing the distribution of fishes. The
capacity of fish to survive, and even thrive, under condi-
tions of low oxygen varies markedly among and within
species, with more tolerant individuals being able to
exploit low oxygen habitats. Fishes of East Africa pro-
vide outstanding examples of inter- and intraspecific
variation in hypoxia tolerance. Previous research on B.
neumayeri has shown that populations inhabiting low
oxygen swamps differ in respiratory behaviour [26], gill
morphology [27-29], and tissue metabolic capacity [20],
all of which presumably enhance the hypoxia tolerance
of individuals from these swamp populations. Herein,
we evaluate the influence of source population and
acclimatization to low oxygen in determining growth
and metabolic potential of B. neumayeri from habitats
differing in oxygen availability.

Among the various morphological and enzymatic
measurements reported, only liver LDH activity was
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significantly related to site of origin, with individuals
collected from hypoxic habitats displaying greater activ-
ities. This observation is consistent with our earlier
observation that B. neumayeri from Rwembaita Swamp
had higher liver LDH activity than fish from the nor-
moxic Njuguta River [20]. In the current study, the
effect of site of origin was observed after four weeks of
field acclimatization to different oxygen habitats,
whereas in the previous study, the effect of collection
site was measured immediately after collection as well
as after long term laboratory acclimation to normoxia.
Although LDH plays a critical role in anaerobic metabo-
lism, it is also involved in the process of gluconeogen-
esis by catalyzing the conversion of lactate into
pyruvate, which can then be used for glucose produc-
tion. Consequently, the role of higher LDH activity in
livers from fish collected in the hypoxic Rwembaita
Swamp may be in the clearance of blood lactate and the
provision of glucose for metabolism by extra-hepatic tis-
sues such as heart and brain, which are important in the
maintenance of an organism’s homeostasis [30-32].

The observation of differences between the Rwem-
baita Swamp and the inlet stream population popula-
tions of B. neumayeri in liver LDH activities after field
acclimatization (this study) and laboratory acclimation
[20], suggest a potential genetic component. This is
supported by recent results using nuclear markers (CK
and TPI-A) that show significant genetic divergence
between Rwembaita Swamp and Inlet Stream West
populations of B. neumayeri (Harniman unpublished
data). Although we found strong evidence for plastic
effects in some enzymatic traits, local adaptation to
divergent oxygen regimes may also contribute to the
observed trait variation as has been observed in other
studies of fishes experiencing divergent selective envir-
onments [33-35].

One theoretical expectation arising from local adapta-
tion is that organisms adapted to their native environment
should perform “better” than organisms transplanted from
their native environment and acclimatized to a novel habi-
tat. This expectation would be experimentally supported
in our study by a significant origin by acclimatization
interaction with respect to potential fitness correlates such
as growth. In this study, growth rates were negative in all
groups, regardless of site of origin or acclimatization treat-
ment, ranging from - 0.1% to - 0.15% body mass per day.
It can be argued that the negative growth observed in this
study was due to the artificial conditions of the experi-
mental enclosures (e.g., increasing stress, reducing food
availability); however, for B. neumayeri population within
this system, it is quite natural for fish to become trapped
in small pools and experience mass loss during the dry
season [1,27]. In a mark and recapture study of the fora-
ging ecology of B. neumayeri during the summer season,
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Schaack and Chapman [36] reported negative growth rates
similar to those reported here.

Interestingly, mass loss was greater, on average, for
fish acclimatized to the hypoxic Rwembaita Swamp
compared to those in the normoxic Inlet Stream West,
irrespective of site of origin. The restrictive effect of low
oxygen on growth is consistent with numerous labora-
tory and field studies demonstrating reduced growth in
fish under hypoxia [38]. Low growth under hypoxia in
other species has been attributed to reduced rates of
ingestion or assimilation efficiency or both [16,39,40].
Previous work on B. neumayeri demonstrated a trade-
off between respiratory and trophic morphology, such
that relatively larger gilled swamp fish spent more time
handling food items than smaller gilled stream fish [27].
In the current experiment, this trade-off did not result
in lower growth in fish originating from hypoxic
swamps when compared to fish from the normoxic
stream in either acclimatization treatment. This result
indicates that under these experimental conditions, this
putative trade-off was without adverse effects on growth.
It is possible that other, unmeasured fitness tradeoffs
contribute to the maintenance of differences between
these populations in LDH, haematocrit, and morpholo-
gical traits such as gill size [27].

Acclimatization to differing oxygen levels also affected
tissue levels of metabolic enzymes. In particular, PFK
was greater in heart and skeletal muscle from indivi-
duals acclimatized to the low oxygen swamp site, while
CCO was lower in heart after hypoxic acclimatization.
Phosphofructokinase is an important regulatory enzyme
of glycolysis, and changes in PFK activity are likely to
impact the flux through the glycolytic pathway. Higher
PKF activities after hypoxic acclimatization, therefore,
could represent an increased capacity for glycolytic ATP
production. Cytochrome c oxidase, on the other hand,
catalyzes the final step in mitochondrial electron trans-
port to oxygen, and its rate is important in determining
rates of aerobic ATP production. The significant effect
of acclimatization on heart CCO was mirrored by a
non-significant trend toward lower muscle citrate
synthase (P = 0.08), a mitochondrial enzyme catalyzing
the first step of the Kreb’s cycle. The overall effect of
acclimatization to low oxygen, therefore, was an increase
in glycolytic capacity (heart and muscle PFK) and a
trend towards decreased aerobic capacity (heart CCO
and muscle CS). Results from laboratory acclimation of
fish to hypoxia have yielded similar, if sometimes mixed
results [reviewed by 2]. Nevertheless, the current data
are an important field validation of predictions based
upon energetic considerations and laboratory studies.

The present study employed a reciprocal transplant
experimental design that is not commonly used in phy-
siological studies. There are certainly challenges to this
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field experiment, for example the escape of fish from
one replicate cage and the sporadic loss of individuals
from other cages, likely due to predators that could
enter the cages through the open tops (e.g., birds,
snakes, and spiders). Another potential limitation of the
study is that it was carried out at specific locations of
known DO level, and to extrapolate our results more
broadly it would be necessary to replicate this study in
other systems having divergent oxygen concentrations.
In addition, it is possible that the cage restriction itself
altered the response of the fish to the acclimatization
treatment. However, free swimming B. neumayeri col-
lected at this and other Kibale field sites had negative
growth rates [36], condition factor [41], and tissue LDH
activities [20] similar to those measured in fish after the
4-week acclimatization treatment. Despite these con-
cerns, our results suggest that reciprocal transplant
experiments provide a powerful tool in uncovering phy-
siological responses to naturally occurring ecological
stresses.

Conclusions

In this study, the relative contribution of native habitat
and acclimatization to low oxygen were evaluated in the
African cyprinid fish, Barbus neumayeri in a reciprocal
transplant field experiment. The biological end-points
measured included variables related to fitness (growth
rate) and tissue metabolic potential (enzyme activities).
Pronounced gradients in environmental oxygen avail-
ability affect multiple features of the respiratory beha-
viour, morphology, and physiology of B. neumayeri. For
some traits, e.g, gill morphology [27] and liver LDH
activities [[20]; present study], intraspecific variation
persists after animals are removed from the field or
transplanted to field sites differing in oxygen, arguing
for a role of local adaption, whereas other traits, e.g.,
heart PFK and CCO activities, are more plastic and
influenced by recent exposure to differing oxygen
regimes. Thus, acclimatization of tissue metabolic
potential may be an important response to the spatial
mosaic of dissolved oxygen availability in this system.
Together, local adaptation and acclimatization appear to
be operating to enhance this species’ capacity to live in
divergent oxygen environments.

Methods

Study sites

Barbus neumayeri, a widely distributed cyprinid in
Africa [25], were collected from two sites with very dif-
ferent DO levels but relatively similar in other abiotic
parameters [28,36] in the Rwembaita Swamp system of
Kibale National Park in western Uganda (0°13’-0°41’'N
and 30°19’-30°32’E). Rwembaita Swamp is one of the lar-
gest swamps in Kibale National Park. It is 6.5 km in
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length and feeds into the Njuguta River, which is a
tributary of Mpanga River that drains into the Lake
George basin [28]. The hypoxic site, located in the central
area of the Rwembaita Swamp, displayed a monthly mean
DO concentration of 1.35 + 0.18 mg L" over a 2-year per-
iod [28]. The water current is extremely slow in the
swamp, when compared with the numerous streams that
drain into the swamp, and current is non-detectable in
some areas during the dry season. One of the several
streams that feed into the Rwembaita Swamp was selected
as the normoxic site, the Inlet Stream West. This stream
has low-flowing water current throughout much of the
year, with periods of higher flows during flooding season.
The monthly mean DO over 2 years was 5.58 + 0.16 mg
L™ for Inlet Stream West [28]. Despite the DO differences
in both sampling sites, almost no diel variation in tem-
perature and DO exist at each of the sites used here [29].

Experimental design

For this study, individuals were captured at the two
study sites using minnow traps, and a reciprocal trans-
plant experiment was designed to determine the roles of
collection habitat and acclimatization to alternative dis-
solved oxygen environments. Six cages were placed in
Inlet Stream West, and six cages were placed in Rwem-
baita Swamp. Cylindrical cages (100 cm height x 80 cm
diameter) were made from black plastic meshing (2 mm
mesh size), except for the top, which was left open. The
meshing allowed for free flow of water and food. Each
cage was placed in water approximately 30 to 50 ¢cm in
depth and held in place with four poles implanted into
the sediment or tied to adjacent trees.

Fish were haphazardly allocated into two densities, low
and high, to explore the influence of density on growth
rate and enzyme activity. Three low density cages and
three high density cages were placed in each of the two
sites. In each of the low density cages three swamp fish
and three stream fish were placed; while in the high
density cages, six swamp fish and six stream fish were
placed. Before placing the fish into the cages, each indi-
vidual was measured for standard length (Lg + 1 mm)
and total body mass (M7 £ 0.1 g), and tattooed under
the skin with ink from a fine-gauge needle for individual
identification [36]. The reciprocal acclimatization treat-
ment lasted four weeks.

Tissue sampling

Fish were netted and euthanized with an overdose of
buffered MS-222 (1 g MS-222 and 4 g NaHCO; L),
and measured again for My and Lg, after which fish
were individually wrapped in tin foil and frozen in a dry
shipper. Fish were maintained in the dry shipper during
transport to the University of Florida and then shipped
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to Laurentian University on dry ice, and finally stored at
- 80°C until analyzed.

Tissues were dissected on ice in the following order:
liver, heart, brain, and white skeletal muscle. Tissues
were weighed and homogenized in 50 mM imidazole
buffer (pH 7.5), 30 mM NaF, 2 mM ethylenediamine
tetraacetic acid, 5 mM [-mercaptoethanol, 0.2 mM phe-
nylmethyl-sulphonylflouride, 50 pg ml™' soybean trypsin
inhibitor buffer, and 0.2% Triton 100X [20]. The liver,
brain, and muscle tissue samples were homogenized in
nine volumes of buffer; while heart tissue samples were
homogenized in 49 volumes of buffer. Homogenates
were made using a Polytron homogenizer (Polytron
1200C, Kinematica, Switzerland) for three 20 s periods.
The samples were maintained on ice during and
between the periods of homogenization. All homoge-
nates were centrifuged at 2400 g for 15 min at 4°C, and
supernatant solutions were kept on ice until enzyme
activities were assayed.

Enzyme assays

Immediately prior to enzyme assays, liver, brain, and
muscle supernatants were diluted in homogenization
buffer to get an overall 100-fold dilution in relation to
the starting tissue mass. For each enzyme in each tissue,
the concentrations of substrates, cofactors, and linking
enzymes were optimized to give maximal activities.
Reaction conditions for the determination of PFK and
LDH enzyme activities were modified from [42]. The
reactions for the aerobic enzymes, CS and CCO, were
modified from [43]. The optimized reaction conditions
were as follows:

Phosphofructokinase (PFK; E.C. 2.7.1.11.): 50 mM imi-
dazole (pH 7.5), 20 mM KCI, 10 mM MgCl,, 0.17 mM
NADH, 1 mM ATP (liver, heart and brain) or 2 mM
ATP (muscle), 2 mM AMP (liver, heart and brain) or
4 mM AMP (muscle), 10 i.u. ml™* glycerol-3-phosphate
dehydrogenase, 29 i.u. ml-' triosephosphate isomerase
and 1 i.u. ml™! aldolase (liver, heart and muscle) or
2 i.u. ml™! aldolase (brain). Reactions were initiated
with the addition of 5 mM fructose 6-phosphate.

Lactate dehydrogenase (LDH; E.C. 1.1.1.27.): 50 mM
imidazole (pH 7.0), 0.17 mM NADH. Reactions were
initiated by the addition of 1 mM pyruvate.

Citrate synthase (CS; E.C. 4.1.3.7.): 50 mM Tris (pH
8.0), 0.1 mM DTNB, 0.2 mM acetyl coenzyme A. Reac-
tions were initiated by the addition of 0.3 mM
oxaloacetate.

Cytochrome ¢ oxidase (CCO; E.C. 1.9.3.1): 61.5 mM
KH,PO, (pH 7.0), 38.5 mM K,HPO,, 0.07 mM cyto-
chrome c¢ reduced. Reactions were run against a
70 umol+L" control of cytochrome c oxidized with
0.33% K-ferricyanide.
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Maximal enzyme activities were measured in duplicate
in a Varian spectrophotometer (Cary 100 Bio Varian
Scientific Inc. Palo Alto CA, USA) with a circulating
refrigerated water bath. Activities were measured at 25 +
1°C. All enzyme levels were measured within 5 hours of
the tissue homogenization to minimize decay of enzyme
activity. LDH and PFK activities were measured at 340
nm to follow the disappearance of NADH. CCO activity
was measured at 550 nm to follow the oxidation of
reduced cytochrome ¢, and CS activity was measured at
412 nm to detect the transfer of coenzyme A to 5,
5’-dithiobis-2-nitrobenzoic acid (DTNB). The extinction
coefficients for NADH, cytochrome C, and DNTB were
respectively, 6.22, 19.1 and 13.6 cm™ pmol™'. Enzyme
activities were expressed in international units (pmol
substrate transformed to product min™) g tissue mass.
Biochemicals and chemicals were purchased from Sigma-
Aldrich (St. Louis, U.S.A.), Boehringer Mannheim Co.
(Montreal, Canada) and Fisher Scientific Co. (Montreal,
Canada).

Calculations and statistical analyses
Fulton’s condition factor (K) was calculated as:

K=(Mp*Lg™)*10°

where My is in g and L is in mm.
Specific growth rate (Gs) in % mass change per day
was calculated as:

Gg=100* (e -1)

where G = (In final My - In initial My )(t), and ¢ is
the total number of days of the acclimatization period
[40,44].

All response variables (morphology, growth, and
enzyme activities) were compared against the normal
distribution using one-sample Kolmogorov-Smirnov
tests, and variables that were not normally distributed
were log transformed. Two-way analyses of variance
(ANOVA) were used to evaluate the effects of collection
site (stream vs. swamp) and acclimatization treatment
(site of cage; normoxic stream vs. hypoxic swamp), as
well as their interaction, on response variables. Collec-
tion site and acclimatization treatment are fixed factors
in this analysis because they do not represent a random
sample of all possible field sites, but rather sites of
known differences in dissolved oxygen level [45].
Although the density of fish was varied as part of the
experimental design, all of the fish from one low density
cage escaped and fish from other cages were occasion-
ally lost due to predation, thereby altering the fish den-
sity. Therefore, density was not included as a fixed
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factor. Instead, cage assignment was nested within accli-
matization treatment to account for differences in fish
density and random factors associated with cage place-
ment (e.g., microhabitat, food availability, competitors,
and predators). Body mass was significantly correlated
with brain LDH activity, and M, was included in the
final model as a covariate for this enzyme only. Log
transformation failed to normalize CS activities from
heart, brain, and muscle, and consequently non-
parametric Kruskall-Wallis tests were used to detect dif-
ferences between collection site and acclimatization
treatment. All statistical analyses were performed with
Systat 10.2 and P < 0.05 indicated statistical significance.
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