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Abstract
Background: The relationship between environmental variation and induction of heat shock proteins (Hsps) has been 
much documented under experimental conditions. However, very little is known about such induction in natural 
populations acclimatised to prevailing environmental conditions. Furthermore, while induction of stress proteins has 
been well documented in response to environmental contaminants and thermal stressors, little is known about 
whether factors, such as extreme salinity, are also potential inductors. The black-chinned tilapia Sarotherodon 
melanotheron is unusual for its ability to colonise estuarine environments in West Africa that are characterised by 
extremely high salinities. The relationships between mRNA levels of the 70 kDa heat shock protein (Hsp70) and Na+, K+-
ATPase1α (Naka) in the gills, environmental salinity, and a life-history trait (condition factor) were investigated in wild 
populations of this species sampled from three locations in the Saloum estuary, at salinities ranging from 40 to 100 psu.

Results: The highest Hsp70 and Naka mRNA levels, and the poorest condition factors were recorded in the most saline 
sampling site (100 psu). The Hsp70 and Naka mRNA were correlated amongst themselves and showed a direct positive 
correlation with environmental salinity, and a negative correlation with fish condition factor. Thus, the Hsp70 is 
constitutively overexpressed by S. melanotheron acclimatised to extreme hypersalinity.

Conclusions: These results indicate that, although S. melanotheron can colonise extremely saline environments, the 
overexpression of Hsp70 combined with the higher Naka mRNA expression reveals that this represents a chronic stress. 
The induction of Hsp70 was, therefore, a biomarker of chronic hyper-osmotic stress which presumably can be linked to 
the impaired growth performance and precocious reproduction that have been demonstrated in the populations at 
the extremely saline sites.

Background
The molecular family of heat shock proteins (Hsps) has
been intensively studied in model organisms such as
Xenopus and Drosophila submitted to stress in the labo-
ratory [1-3] and, consequently, the physiological role of
these proteins is becoming well understood at molecular
and cellular levels in these models. The Hsps, in particu-
lar the 70 kDa (Hsp70) family, are constitutively expressed

in cells under normal (non stressful) conditions and func-
tion as molecular chaperones, to keep other proteins
from forming inappropriate aggregations. Aside from this
function, Hsps are also implicated in the general protec-
tion of stressed cells and organisms [4,5]. Many studies
have reported that exposure of organisms to such diverse
stressors as temperature extremes, pollutants, anoxia,
parasitism, predation, or competition; all elicit reversible
increases in Hsp70 expression that serve to protect the
organism against cellular damage [6-9]. The involvement
of Hsp70 in the acclimation of fish to salinity changes has
also been well documented experimentally [10,11]. In the
silver sea bream, Sparus sarba [12], branchial expression
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of Hsp70 is increased in response to hypo- or hyper-
osmotic shock.

It has been shown that increases in basal Hsp70 levels
in stressful environments can be associated with reduced
individual fitness [2]. This association of Hsp induction
with fitness has been demonstrated for traits of develop-
ment, growth and reproduction [13-15]. In Drosophila
melanogaster, heat shock stress results in developmental
defects and increased copy numbers of the gene encoding
Hsp70 [16]. Higher muscle Hsp70 levels have been associ-
ated with lower growth rates in the Indo-Pacific sergean,
Abudefduf vaigiensis, adapted to 32°C by comparison to
those living at 28°C [17]. In the silver sea bream, S. sarba,
the activity and mRNA levels of Hsp70 are lower around
isoosmotic salinities, where the best growth performance
is observed [12]. The Hsp70 may, therefore, provide a bio-
marker to identify stressful effects of environmental fac-
tors and to demonstrate a link between such factors and
observed negative changes in life history traits of natural
populations.

Another indicator of osmoregulatory challenges in fish
is the sodium-potassium ATPase (Na+, K+-ATPase), a
membrane protein which maintains ion gradients
required for cell homeostasis and whose activity in the
gills is related to either active ion secretion in hyper-
osmotic conditions or active uptake in hypo-osmotic
conditions [18-20]. Several in vitro studies have shown
substantial correlations between environmental salinity
and expression and/or activity of Na+, K+-ATPase
(Naka) in teleost fish [21-26]. In the tilapia Oreochromis
mossambicus, the activity of Naka has been used as a bio-
chemical indicator of osmoregulatory stress [27]. There-
fore, the induction of Naka can be used to assess the
osmoregulatory status of fish in natural environments
where salinity is the predominant abiotic stressor.

The black-chinned tilapia S. melanotheron has popula-
tions in the Saloum estuary in West Africa which experi-
ence salinities that range from brackish water to
extremely hypersaline water (up to 130 psu), and where
salinity can show considerable variations between wet
and dry seasons [28]. Previous studies have shown that
individuals inhabiting the highest salinities exhibit
reduced growth rates [29,30] and precocious reproduc-
tion [30]. Although these phenotypic differences have
been interpreted as indicative of hypersaline stress, this
remains to be demonstrated.

In a previous study [31], multiple copies (singletons) of
a gene encoding Hsp70 [ES882219] and Naka [ES881735]
were isolated in a hypersaline SSH library created from
gills of S. melanotheron acclimatised either to hypersaline
water or to freshwater. Accordingly, Tine et al. [31] pro-
posed that these genes must be indicators of the stressful
effects of salinity on this species. The aim of this study
was, therefore, to evaluate gill Hsp70 induction as a bio-

marker of constitutive organismal stress in natural popu-
lations of S. melanotheron sampled from environments
with salinities ranging from 40 to 100 psu. Gill Naka
expression levels were measured in parallel, as an indica-
tor of the osmoregulatory status of the populations. The
same sampling sites have previously been studied for the
effects of salinity on life history traits and induction of
osmoregulatory genes (growth hormone and prolactin) in
S. melanotheron [29,30]. The relative expression of Hsp70
and Naka mRNA was quantified by real time PCR. The
condition factor of the fish was also measured, as a proxy
of physiological status [29,30].

Results
Branchial abundance of Hsp70 and Naka mRNA
The rt-PCR analysis showed that the two primer pairs
amplified a simple specific product with an efficiency of
1.95 for Hsp70, 1.91 for Naka and 1.89 for β-actin. We
therefore calculated relative abundance to correct for the
differences in efficiency. A significant impact of salinity
on Hsp70 relative expression was observed within the
Saloum estuary, fish sampled at the upstream location
with highest salinity (Kaolack) had higher Hsp70 mRNA
levels than fish sampled in less saline stations (Foundi-
ougne and Missirah) (Figure 1). The amounts of Hsp70
mRNA were not different between Foundiougne and
Missirah. The Naka mRNA levels exhibited a pattern
similar to Hsp70 between locations, being highest at the
most saline station, Kaolack, but lowest at the least saline
location of Missirah (Figure 1). Where the salinity was
intermediate, at Foundiougne, there were intermediate
Naka mRNA levels.

Condition factor
The average condition factor (K) varied significantly
between sites and salinities (Figure 2). Fish caught in
Kaolack, the most saline location, had the lowest condi-
tion, significantly lower than at Missirah, the least saline
location, where the best condition was recorded. Salinity
at Foundiougne was intermediate, with no significant dif-
ference from the other two sites.

Correlations between Salinity, mRNA levels and condition 
factor
The results show significant relationships between envi-
ronmental salinity and the relative expression of Hsp70
and Naka or condition factor. There was a significant
positive correlation between salinity and relative expres-
sion of Hsp70 (R2 = 0.764; P < 0.001) or Naka (R2 = 0.855;
P < 0.001), and a negative correlation of condition factor
to salinity (R2 = 0.415; P < 0.001). There was a significant
positive correlation between Hsp70 and Naka relative
expression (R2 = 0.727; P < 0.001) (Figure 3), and a nega-
tive relationship between condition factor and relative
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expression of Hsp70 (R2 = 0.241; P < 0.001) or Naka (R2 =
0.352; P < 0.001) (Figure 4).

Discussion
The Sahelian area of West African is characterized by an
extended dry season from November to June, and a short
dry season from July to October. In the Senegalese
Saloum estuary, salinity levels change between these two
seasons [28,32]. The salinity in the estuary decreases dur-
ing the rainy season due to the input of freshwater by pre-
cipitation. In the dry season, however, the salinity
increases because of intense evaporation [33]. The fish
analysed in this study were collected at the end of the dry
season (end of May) when the salinity in the estuary will
have been stable for some months. Furthermore, it has

been demonstrated that populations of S. melanotheron
do not undertake large scale movements in the estuaries
[34]. Therefore, it is reasonable to consider that fish were
acclimatized to the prevailing salinity conditions at the
time of collection.

It is, of course, not just salinity that can elicit the induc-
tion of stress proteins, but also thermal stressors, oxygen

Figure 1 Hsp70 and Naka mRNA levels of the black-chinned tila-
pia S. melanotheron from three locations of the Saloum estuary. 
Data are illustrated in box plots that contained the median (horizontal 
line) as well as the 25th and 75th percentiles (bottom and top edges of 
the boxes). The mRNA expression levels represent the relative expres-
sion normalized to β-actin and are expressed relative expression as 
log2-transformed data.
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Figure 2 Condition factor of the black-chinned tilapia S. melan-
otheron from three locations of the Saloum estuary. Data are illus-
trated in box plots (in log2) that contained the median (horizontal line) 
as well as the 25th and 75th percentiles (bottom and top edges of the 
boxes).

Figure 3 Relationship between mRNA expression levels of Hsp70 
and Naka (Y = 0.994X + 2.204; R2 = 0.727; P < 0.001). The mRNA ex-
pression levels represent the relative expression normalized to β-actin 
and are expressed relative expression as log2-transformed data.
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depletion and environmental contaminants [5,35-37].
Previous studies conducted in the Saloum estuary have
shown that the water temperature varies only slightly
between locations, and that dissolved oxygen is not a lim-
iting factor for the black-chinned tilapia in these areas
[29,33,38]. Water turbidity cannot explain overexpression
at the hypersaline Kaolack location because it is much
more turbid at the estuary mouth than in the upper part
of the estuary during the dry season [33]. A heavily pol-
luted location (Hann Bay, 38 psu) [39] did not have higher
Hsp70 expression levels than at an unpolluted site with
similar salinity (Missirah) (see Additional file 1), indicat-
ing that differences in pollutant load did not contribute to
differential expression. Variations in salinity are therefore
the most dominant environmental factor in the Saloum
estuary, and salinity is the predominant abiotic stressor.

The present study demonstrates significant correlations
between Hsp70 and Naka expression, environmental
salinity and condition factor in natural populations of S.
melanotheron. The overexpression of Hsp70 and Naka of
the fish living in hypersaline conditions correlates signifi-
cantly with their lower condition factor.

Osmoregulatory role of Hsp70
If the mRNA levels indicate differences in functionally
active proteins, the correlation between Hsp70 expression
and salinity might reflect a direct role of the stress protein
in salinity tolerance by black-chinned tilapia. This is in
agreement with the correlations between salinity and the
relative expression of Hsp70 and Naka, and with several
in vitro studies, where increased NaCl resulted in high
Hsp70 induction [11,40,41]. Studies recently conducted
in the silver sea bream, Sparus sarba [12] and the brown
trout, Salmo trutta [10] have shown concomitant
increases in Hsp70 and Naka mRNA levels in response to
hyperosmotic stress. The increase in Hsp70 was attrib-
uted to a role of this protein in avoiding protein disrup-
tion and damage [12]. This function of Hsp70 would
explain its overexpression in fish living at the extremely
hypersaline site (Kaolack, 100 psu). However, our results
did not show a significant difference between the fish liv-
ing in salinity approaching seawater (40 psu) versus rela-
tively hypersaline water (60 psu), suggesting the existence
of a threshold for salinity stress and therefore Hsp70 over-
expression. It has been shown in the black sea bream S.
sarba that three genes of the Hsp70 family (Hsp70, Hsc70
and Hsf1) were up-regulated in the gills at a salinity of 33
psu, and exhibited an even higher expression in hypersa-
line water at 55 psu [42]. This was interpreted as a thresh-
old for salt tolerance by the gill in this species which, once
exceeded, caused an activation of stress proteins to pre-
vent cell damage. In the black-chinned tilapia, the thresh-
old of salinity tolerance for a significant activation of
stress protein appears to be located beyond 60 psu.

Ecological and evolutionary importance of Hsp70 in S. 
melanotheron
Studies in various model organisms have indicated
reduced fitness in stressful conditions, which could be
directly attributed to the metabolism of stress proteins
themselves. That is, the expenditure of more energy on
protection by stress protein synthesis would deviate
energy from development, growth and reproduction [2].
Consistent with this hypothesis, modified Drosophila
cells continuallyexpressing Hsp70 have reduced growth
compared to control cells, but subsequently resume nor-
mal growth if the Hsp70 is isolated from the cytoplasm
[4,5,43]. This may, at least in part, explain why the lowest
condition factor occurred in the fish from the most saline
location (Kaolack, 100 psu) where the expression levels of

Figure 4 Relationship between condition factor and mRNA ex-
pression levels of Hsp70 (Y = -10.665X + 12.447; R2 = 0.241; P < 
0.001) or Naka (Y = -11.053X + 10.623; R2 = 0.352; P < 0.001). The 
mRNA expression levels represent the relative expression normalized 
to β-actin and are expressed relative expression as log2-transformed 
data.
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Hsp70 were highest. Previous studies have shown that the
same species from the Kaolack location of the Saloum
estuary had reduced growth, poor condition factors, pre-
cocious reproduction and lower fecundities compared
with the less saline sampling locations [29,30]. The
decline in these life history traits in this area could reflect
a high energy requirement to meet the increased ener-
getic demands for osmoregulation, in particular the
increased expression and activity of ion pumps including
the Naka. Although it is not simple to establish direct
relationships between the Hsp70 induction and the fish
condition without performing common garden experi-
ments, these impaired growth and poor condition factors
could also reflect a high energy requirement for synthesis
of proteins needed for the survival at higher salinities
[44]. It has also been suggested that, at high concentra-
tions, stress proteins could be toxic and therefore alter or
interfere with the normal cellular functions, notably cell
growth and development [45]. Therefore, in addition to
the energy costs of Hsp synthesis, toxic effects of high
Hsp concentrations could also contribute to differences in
growth and condition factors observed between popula-
tions of S. melanotheron inhabiting the Saloum estuary.

There is, of course, the possibility that differences in
growth among populations reflect differences in
resources at the sites. In others words, food resources
could be more abundant in the environments with lowest
salinities. It is also possible that individuals are more
effective at foraging when they are not stressed by salin-
ity, and/or that they are more efficient at assimilating
nutrients from their prey. These individuals may be able
to invest more in growth and reproduction than their
counterparts living in hypersaline zones with less energy
available for normal biological functions. In this study we
do not have measures of food availability, but the oppor-
tunistic nature of this species, an omnivore that can
exploit many food sources, may indicate that food is not
limiting in hypersaline zones of the Saloum estuary.

If the variation of a trait has a genetic basis and affects
the fitness of individuals, the variation among popula-
tions in Hsp70 expression in this study may reflect an
action of natural selection. The large spatial and temporal
differences of salinity in the environments inhabited by S.
melanotheron, associated with the central role Hsp70 may
play in salinity tolerance, makes this gene a potential tar-
get for the local selection in this species. The salinity in
the Saloum estuary is not only significantly higher at
Kaolack location, but the seasonal variations are also
larger, with amplitudes that can exceed 70 psu [28]. Inter-
estingly, another member of Hsps family, the Hsc70 locus
has recently been demonstrated to be polymorphic in
natural populations of the European flounder, Platichthys
flesus, inhabiting environments with different salinities
[46]. Although this polymorphism has been suggested to

arise from the action of natural selection at this locus, the
authors were unable to say which of three environmental
factors (salinity, temperature or pollution) might be
responsible and whether the polymorphism was associ-
ated with variation in Hsc70 expression and/or activity. In
our study, salinity is clearly a potential selective agent
which could be responsible for differences in Hsp70
expression in S. melanotheron, but further analyses of
polymorphism in the regulatory regions are required to
establish whether there are adaptive polymorphisms at
this locus.

Conclusion
This study provides the first demonstration, in wild fish
populations, that Hsp70 is involved in long-term acclima-
tisation to a salinity range between 40 and 100 psu. The
data demonstrate that the most hypersaline conditions
were stressful for S. melanotheron. This chronic stress
may be responsible for the impaired growth, precocious
reproduction and low fecundity observed at these sites
[29,30]. These negative impacts on life history traits may
reflect a high energy requirement for osmoregulation and
synthesis of proteins needed for the survival at high salin-
ities rather than limited food resources or lower feeding
efficiency. The significant correlation of Hsp70 mRNA
levels with fish condition suggests that this gene may be a
potential biomarker of fish health in estuarine environ-
ments. Investigating the activity of Hsp70 and the mecha-
nisms which regulate its expression in wild population of
S. melanotheron are interesting topics for future research.

Methods
Sampling design
Samples of the black-chinned tilapia Sarotherodon mel-
anotheron were collected in May 2006, at the end of the
dry season (May) when salinity was relatively stable.

Figure 5 Sampling locations (black star) of the black-chinned tila-
pia Sarotherodon melanotheron in Saloum estuary (Senegal). Fish 
were collected in May 2006, at the end of the dry season when the 
most hypersaline conditions were observed in the Saloum estuary. Val-
ues in parentheses represent the salinity.
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Foundiougne
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(100)

Foundiougne
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Missirah (40)
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Three locations of the Saloum estuary were considered
(Figure 5). In this estuary, the locations were respectively
Kaolack (the most saline station; 100 psu), Foundiougne
(60 psu) and Missirah (40 psu). For each location, the
salinity and temperature (Table 1) were measured in situ
with a refractometer and a thermometer, respectively.
Fish sampling was carried out by a local fisherman using
castnets with small mesh sizes. To limit fish stress and
prevent variability due to manipulation, only five fish
were sampled from each castnet thrown. Fish were
quickly removed from castnets and anesthetised in 2-
phenoxyethanol (2.5 ml l-1) before measures of length
(fork length, FL, in mm) and mass (total mass, W, in g).
Fish were then killed by rapid decapitation and sex as well
as gonad maturity stage recorded according to Legendre
and Ecoutin [47]. Gills were extracted and stored in RNA
later (Ambion) at 4°C for 24 h and then at -20°C until
processing.

Condition factor is a morphometric index frequently
used to evaluate physiological status of fish based on the
principle that those individuals of a given length which
have a higher mass are in better "condition". Assuming
that this relationship holds for wild populations, the inter
population variation of this index was taken as an indica-
tor of the negative physiological impacts of salinity. The
condition factor could be influenced by differences in size
or sexual stage. For this reason we performed preliminary
analyses which allowed excluding the mature individuals
(stages 4 and 5) whose sexual stage seemed to have an
influence on the condition factor. Finally, only size classes
between 120 and 160 mm fork length with sexual stage 1
or 2, corresponding to immature individuals were analy-
sed (Table 1). Condition factor (K) was calculated using
the standard formula: K = 105W FL-3; where W is the total
body mass and LF is fork length.

Total RNA extraction and reverse transcription
Total RNA was extracted from gill tissues stored in RNA
later (Ambion) using Trizol reagents (Gibco BRL) follow-
ing the manufacturer's instructions. The RNA concentra-
tions were determined with a spectrophotometer and the
RNA integrity was verified by 1% agarose gel electropho-
resis. The first strand cDNA was synthesised by reverse

transcribing 2 μg total RNA in 20 μL of reaction volume,
using MMLV Reverse Transcriptase kit, according to the
manufacturer's instructions (Invitrogen).

Real-time PCR analysis of gene expression
Real-time PCR analysis was used to determine whether
changes in selected RNA abundance could be detected
from gills sampled from four populations of S. melan-
otheron. Specific primers for the heat shock protein
(Hsp70) (Hsp70F: 5'-ATTGGGTTGCACACCTTCTC-3';
Hsp70R: 5'-TGGACAAGTGCAATGAGGTC-3'), Na+,
K+-ATPase (Naka) (NakaF: 5'-ATGAGAAAGCT-
GAGAGCGAC-3'; NakaR: 5'-GGCCTGCATCATACCA-
ATCT-3') and β-actin (β-actinF: 5'-
ACAGGTCCTTACGGATGTCG-3'; β-actinR: 5'-CTCT-
TCCAGCCTTCCTTCCT-3') were designed using
Primer 3 software. To determine rt-PCR efficiency of
each primer pair used, standard curves were generated
using five serial dilutions (1, 1/10, 1/50, 1/100, 1/500) of a
unique cDNA sample constituted of a pool of 3 cDNA
from each population to be analysed. The rt-PCR quanti-
fication was performed on a LightCycler (Roche molecu-
lar Biomedicals). Each rt-PCR reaction was conducted in
duplicate with an initial denaturation step of 900 s at 95°C
followed by an amplification of the target cDNA (40
cycles of denaturation at 95°C for 15 s, annealing between
54°C and 55°C for 15 s, and extension time at 72°C for 15
s). The intra assay variability of rt-PCR was evaluated by
calculating the coefficients of variation between dupli-
cates that were all inferior to 10%. Real-time PCR effi-
ciencies (E) were calculated from the given slope of the
standard curve according the equation E = 10(-1/slope). The
results are presented here as changes in relative expres-
sion normalised to the reference gene, β-actin (a gene for
which the mRNA abundance in the gills does not change
depending on the salinity conditions), using the 2-(ΔΔCt)

method described by Pfaffl [48]. β-actin is generally used
as a housekeeping gene as well as the 18S RNA, elonga-
tion factor 1α (EF 1α) and the GAPDH. We have tested
both β-actin and EF 1α and finally chose β-actin as a ref-
erence gene because its mRNA levels did not change
between our samples.

Table 1: Sample characteristics of the black-chinned tilapia Sarotherodon melanotheron from three wild populations 
acclimatized to different environmental salinities.

Station Salinity (psu) WT (°C) Sample size FL range (mm) W range (g) Sexe-sexual stage

Missirah 40 28 10 123-160 40.6-84.8 �-1 (1); �-2 (4); �-2 (5)

Foundiougne 60 28 10 122-144 39.0-52.2 �-1 (6); �-1 (1); �-2 (3)

Kaolack 100 26 10 123-138 32.7-50.6 �-1 (2); �-2 (3); �-2 (5)

WT: water temperature; FL: fork length; W: weight. The symbols, (�, �) represent males and females, respectively and the numbers at the 
side represent the sexual stage. The values in brackets indicate the numbers of individuals analysed for each sex/sexual stage.
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Statistical analysis
Condition factor and, Hsp70 and Naka expression data at
each site were expressed as box plots that contained the
median as well as the 25th and 75th percentiles. For each
of these variables, a Kruskal-Wallis non-parametric test
was performed to reveal differences in means between
populations. The Mann-Whitney U-test was performed
as a post-hoc test. Taking all the individual data from the
sites, the strength of the correlations between mRNA lev-
els, environmental salinity and condition factor were
assessed by Spearman's rank test. These tests were per-
formed with R or STATISTICA software's. For all tests, a
probability of less than 5% (P < 0.05) and a confidence of
95% are considered as fiducial level of significance.
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