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Abstract 

Background: Clonal plants are important in maintaining wetland ecosystems. The main growth types of clonal 
plants are the guerrilla and phalanx types. However, little is known about the effects of these different clonal growth 
types on plant plasticity in response to heterogeneous resource distribution. We compared the growth performance 
of clonal wetland plants exhibiting the two growth forms (guerrilla growth form: Scirpus yagara, Typha orientalis, 
Phragmites australis and Sparganium stoloniferum; phalanx growth form: Acorus calamus, Schoenoplectus tabernaemon-
tani and Butomus umbellatus) grown in soil substrates that were either homogeneous or heterogeneous but had the 
same total amount of nutrients.

Results: We found that the morphological traits (plant height, ramet number, spacer diameter and length) and bio-
mass accumulation of the guerrilla clonal plants (T. orientalis) were significantly enhanced by heterogeneity, but those 
of the phalanx clonal plants (A. calamus, S. tabernaemontani and B. umbellatus) were not. The results showed that the 
benefits of environmental heterogeneity to clonal plants may be correlated with the type of clonal structure.

Conclusions: Guerrilla clonal plants, which have a dispersed, flexible linear structure, are better suited to habitats 
with heterogeneous resources. Phalanx clonal plants, which form compact structures, are better suited to habitats 
with homogeneous resources. Thus, wetland clonal species with the guerrilla clonal structure benefit more from soil 
nutrient heterogeneity.
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Background
Wetlands are unique areas that have characteristics 
of both land and water ecosystems and are among the 
world’s most productive environments [30]. Clonal 
growth forms dominate in many major biomes world-
wide and are successful in wetland plant communities; 
thus, clonal plants play important roles in maintain-
ing wetland ecosystems [25, 29, 31]. For example, 
clonal plants cover 66.69% of wetlands in China [31]. 

Emergent macrophytes have been shown to play an 
important role in wetland ecosystems [9, 37]. In aquatic 
habitats, vegetative propagation predominates among 
plant taxa; for instance, the majority of wetland species 
are rhizomatous clonal plants [32]. Clonal plants have 
special clonal life-history traits: I. trade-offs between 
clonal growth and reproduction [14]; II. clonal growth 
forms [34]; III. clonal plasticity [35]; and IV. clonal inte-
gration [2, 46]. For example, clonal plants can share 
resources (nutrients, water, etc.) among individual units 
through clonal integration, which increases plant sur-
vival and growth performance in habitats with differ-
ent patterns of resource availability. In addition, clonal 
plants can increase their viability through risk sharing 
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and resource storage [15, 44]. Thus, clonal plants have 
a strong ability to adapt to environmental pressure and 
resist disturbance.

Plants in natural habitats often experience hetero-
geneity in the spatial and temporal distribution of soil 
nutrients [21, 46]. Wetland plants, especially emergent 
macrophytes, are sensitive to the distribution of soil pol-
lutants and nutrients during their growth process [7, 45]. 
In addition, clonal plants often exhibit more sensitive 
reactions than non-clonal plants; for example, the ramets 
of clonal plants interconnected by spacers (rhizomes, sto-
lons, etc.) are often located in high-quality patches to effi-
ciently utilize heterogeneously distributed resources [1, 
12]. Spatial heterogeneity in soil nutrient availability can 
affect the growth performance of individual plants and 
the productivity and structure of plant communities [23, 
36, 45]. For example, changing the spatial scale of nutri-
ent heterogeneity can change the relative richness of spe-
cies grown in mixtures [33, 43]. Thus, the heterogeneous 
distribution of soil nutrients may affect the fragile eco-
logical stability of wetlands. Investigating the relationship 
between heterogeneous soil nutrient distribution and 
clonal wetland plants is highly important for shedding 
more light on the mechanisms of vegetation restoration.

Clonal plants with different clonal structure types may 
exhibit different strategies for adapting to their habi-
tats and have different capacities for horizontal spread-
ing [34, 42]. The main types of clonal plant growth are 
the guerrilla and phalanx types, but there are also many 
intermediate types [31, 34]. Clonal wetland plants that 
exhibit the phalanx structure, which consists of highly 
aggregated ramets connected by few and/or short spac-
ers [24, 39]. In contrast, clonal wetland plants that exhibit 
the guerrilla growth form have a flexible distribution of 
ramets connected by many and/or long spacers [24, 39]. 
Phalanx clonal plants thrive in stable and homogeneous 
habitats, while guerrilla clonal plants grow in disturbed 
and heterogeneous habitats [41, 28, 40]. For example, soil 
nutrient heterogeneity significantly increased the relative 
yield of the guerrilla clonal plant Bolboschoenus planicul-
mis and decreased that of the phalanx clonal plant Carex 
neurocarpa [39]. However, few studies have focused on 
how clonal growth forms affect the responses of wetland 
plants to resource heterogeneity.

We designed an experiment to address the growth per-
formance of clonal wetland plants in an environment of 
soil resource heterogeneity. The following questions were 
addressed: (1) Does soil nutrient heterogeneity have sig-
nificant effects on the growth performance of clonal 
wetland plants? and (2) how do the growth responses of 
plants with different clonal growth forms to heterogene-
ous soil nutrients differ?

Materials and methods
Study area
The present study was conducted in Arongqi County, 
Inner Mongolia, China (48°10.883′ N, 123° 22.699′ E; 
altitude: 206 m). The Alun River in Arongqi County is a 
perennial flowing water body. The average annual tem-
perature is 16.9  °C, the average annual precipitation is 
470–570  mm, the average annual evaporation is 1400–
1600  mm, and the average annual sunshine duration is 
2600–2700 h in region.

Plant materials
Scirpus yagara, Typha orientalis, Phragmites australis, 
Sparganium stoloniferum, Acorus calamus, Schoenoplec-
tus tabernaemontani and Butomus umbellatus are emer-
gent-rooted wetland plants. These seven species, which 
commonly co-occur in many freshwater ecosystems and 
are the dominant species in various wetland habitats, 
were selected for this study. These plants have obvious 
clonal growth structures and can therefore be used to 
effectively compare the response mechanisms of the two 
clonal structures to heterogeneity.

Guerrilla clonal plants
Scirpus yagara, Typha orientalis, Phragmites australis, 
Sparganium stoloniferum are perennial, rhizomatous, 
herbaceous clonal plants that show the guerrilla growth 
form (Fig.  1). These plants can produce isolated ramets 
via long spacers, resulting in widely spaced ramets called 
“spreading ramets” [6, 24, 41].

Phalanx clonal plants
Acorus calamus, Schoenoplectus tabernaemontani and 
Butomus umbellatus are perennial, rhizomatous, herba-
ceous clonal plants that show the phalanx growth form 
(Fig. 1). These plants grow few short spacers, resulting in 
closely packed ramets called “clumping ramets” [4, 6, 20].

Experimental design
On April 12, 2016, ramets from each of the seven spe-
cies were collected from the riparian zone of the 
Alun River. All of the collected ramets were preculti-
vated in plastic buckets (70  cm long × 50  cm wide x 
47  cm deep) with 20  cm of Alun River sediment (soil: 
mean ± SE, 0.29 ± 0.03  mg.g−1 N; 0.53 ± 0.02  mg.g−1 
P; 31.64 ± 1.12  mg.g−1 organic material content) and 
5  cm of Alun River water (water: 0.86 ± 0.14  mg.L−1N; 
0.16 ± 0.04  mg.L−1 P) for approximately 60  days in the 
greenhouse. After culturing, 26 morphologically identical 
rooted ramets from each species (height: approximately 
30  cm for S. tabernaemontani, T. orientalis, P. australis 
and A. calamus; approximately 20 cm for S. stoloniferum, 
B. yagara, and B. umbellatus) were selected. Ten ramets 
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of each species were randomly selected to measure their 
initial dry biomass.

This experiment was set up in buckets (70 cm diame-
ter x 70 cm height) with two substrate types: I. the het-
erogeneous soil treatment (HE), in which the buckets 
were divided into two areas (Fig.  2); one area was filled 
with river clay (soil: mean ± SE, 0.32 ± 0.02  mg.g−1 N; 
0.55 ± 0.02 mg.g−1 P; 32.57 ± 1.21 mg.g−1 organic mate-
rial content), and the other area was filled with pure 
sand; II. The homogeneous soil treatment (HO) was 
a mixture of the same total amount of river clay and 
sand per bucket. The total amount of soil nutrients was 
the same in all treatments. On July 2, 2016, 8 ramets of 

each species were planted at the intersection of the clay 
and sand areas of the heterogeneous buckets to ensure 
equal access to high-nutrient and low-nutrient patches. 
The remaining 8 ramets of each species were planted at 
the centre of the homogeneous soil buckets. One plant 
of each species was planted in each bucket. Each treat-
ment was replicated eight times, and 112 buckets were 
used in total. Each treatment was watered with purified 
water every 2–3d to minimize the limitation of their 
growth due to water availability. All plant materials were 
harvested on September 22, 2016, the total number of 
ramets per plant was recorded, and the plant height, 
spacer length and diameter were measured. Each plant 

Fig. 1 Plant Materials. Guerrilla clonal plants: a Typha orientalis; b Phragmites australis; c Sparganium stoloniferum; d Scirpus yagara. Phalanx clonal 
plants: e Acorus calamus; f Schoenoplectus tabernaemontani; g Butomus umbellatus 
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was then divided into its aboveground (leaves and stems 
above the soil surface) and belowground parts (roots and 
rhizomes), dried at 70 °C for 5d and weighed. The below-
ground/aboveground biomass ratio was calculated as 
follows: 

Statistical analysis
When necessary, the data were transformed and normal-
ized. Thus, all data on plant traits met the assumptions 
of normality and homogeneity of variance prior to analy-
sis. One-way ANOVA was applied to test the effects of 
the soil treatment on plant traits. Growth traits were 
analysed using a three-way nested ANOVA with soil 

(1)

Below ground

Above ground
ratio (g g−1) =

Root mass+ Rhizome mass

Leaf mass+ Stem mass
.

nutrient heterogeneity (homogeneous vs. heterogene-
ous), growth form (phalanx vs. guerrilla), and species 
nested within growth forms as factors. All data analy-
ses were performed using SPSS 22.0 (SPSS, Chicago, IL, 
United States).

Results
Soil nutrient heterogeneity had significant effects on the 
ramet number and belowground/aboveground biomass 
ratio, while clonal growth form did not significantly 
affect aboveground biomass or spacer length (Table  1). 
Soil nutrient heterogeneity x growth form had significant 
effects on the biomass and morphological characteristics, 
except spacer diameter, of the seven species (Table 1).

Guerrilla clonal plants
The heterogeneous soil treatment had a positive impact 
on the growth performance of guerrilla clonal plants. For 
example, the heterogeneous soil treatment significantly 
increased the biomass and morphological characteristics, 
except the belowground/aboveground biomass ratio, of 
T. orientalis (Figs. 3 and 4). Significantly higher biomass 
and spacer length were observed in P. australis in the het-
erogeneous soil treatment (Figs.  3 and 4). Additionally, 
the heterogeneous soil treatment significantly affected 
biomass accumulation and allocation, and increased 
some morphological traits (plant height, ramet number, 
spacer length) in guerrilla clonal plants. However, for S. 
yagara, a significantly higher ramet number and spacer 
diameter were observed in the heterogeneous soil treat-
ment (Fig. 4).

Phalanx clonal plants
The heterogeneous soil treatment had a negative impact 
on the growth performance of the phalanx clonal 

Fig. 2 Schematic representation of soil substrate types. The light grey 
area in He was filled with lake sediment, and the dotted area was 
filled with sand. The shaded area in Ho represents an even mixture of 
the same amount of lake sediment and sand

Table 1 Results of  the  three-way nested ANOVA examining the  effects of  soil nutrient heterogeneity (homogeneous 
vs. heterogeneous), growth form (phalanx vs. guerrilla), species (nested within  growth forms) and  their interaction 
on growth traits

*Soil nutrient heterogeneity (H), growth form (G) and species (S-G). * Values are F; significant P values (*P < 0.05, **P < 0.01, ***P < 0.001 and nsP ≥ 0.05)

Effect

H G S-G H x G H x (S-G)

Aboveground biomass (g) 0.333ns 0.049ns 64.658*** 29.223*** 4.541**

Belowground biomass (g) 2.790ns 25.248*** 81.580*** 29.653*** 3.079*

Total biomass (g) 0.403ns 15.078*** 91.644*** 38.097*** 3.199*

Plant height (cm) 1.182ns 4.780* 326.880*** 73.725*** 8.180***

Ramet number 13.341*** 11.985*** 101.228*** 63.315*** 3.297**

Belowground/aboveground ratio 
(g.g−1)

5.782* 55.707*** 37.146*** 4.460* 2.648*

Spacer diameter (mm) 0.001ns 222.237*** 67.196*** 3.648ns 1.181ns

Spacer length (cm) 1.689ns 0.007ns 20.190*** 38.891*** 3.037*
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plants. For example, significantly lower biomass of A. 
calamus was observed in the heterogeneous soil treat-
ment, but no effect was observed on its morphologi-
cal characteristics (Figs.  3 and 4). The heterogeneous 
soil treatment significantly increased the belowground 
biomass, total biomass, belowground/aboveground 
biomass ratio and plant height of S. tabernaemontani 
(Figs.  3 and 4). The heterogeneous soil treatment sig-
nificantly decreased the growth traits, except the spacer 
diameter, of B. umbellatus (Figs. 3 and 4).

Discussion
A few experimental results have shown that resource het-
erogeneity can increase plant performance, as measured 
by the accumulation and allocation of biomass. This has 
been observed at the levels of individual plants, popula-
tions and whole communities [3, 16 and 22]. However, 
other experiments have demonstrated that the positive 
responses of clonal plants to resource heterogeneity may 
not always be adaptive or may be temporary [10, 17, 27 
and 45]. In this study, the performance of clonal wetland 
plants in heterogeneous environments was correlated 

a b

dc

Fig. 3 Effects of substrate heterogeneity on biomass accumulation and distribution in seven clonal plants. Values are a aboveground biomass, b 
belowground biomass, c total biomass, and d belowground/aboveground biomass ratio. Values are means ± SEs. The bars with different lowercase 
letters are significantly different
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with the type of clonal growth forms. For example, the 
heterogeneous distribution of nutrients in the soil sub-
strate significantly increased the growth performance of 
the guerrilla clonal plants (T. orientalis; Figs.  3 and 4), 
but the homogeneous distribution of nutrients in the 
soil substrate significantly increased the growth perfor-
mance of the phalanx clonal plants (A. calamus, S. tab-
ernaemontani and B. umbellatus; Figs.  3 and 4). This 
may be because guerrilla clonal plants can spread rapidly 
and produce offspring vegetatively by forming flexible, 
spreading offspring ramets, which have access to dis-
persed resources. Phalanx clonal plants usually spread 
slowly and form aggregated clones, which have access to 

centralized resources [8, 29, 31]. In addition, some spe-
cies exhibit a trade-off between the two growth forms 
in different habits and successional stages. For instance, 
Leymus secalinus can respond and adapt to small-scale 
heterogeneity in its resource supply by altering the plas-
ticity of its spacer morphology [41]. Therefore, guerrilla 
clonal plants may be better suited to a heterogeneous 
distribution of soil nutrients, and phalanx clonal plants 
show significantly enhanced growth performance in 
homogeneous soil nutrient conditions.

Owing to their strong horizontal expansion abil-
ity and morphological plasticity, guerrilla clonal plants 
respond to nutrient conditions by concentrating their 

a b

c d

Fig. 4 Effects of substrate heterogeneity on the morphological traits of seven clonal plants. Values are a plant height, b ramet number, c spacer 
diameter, and d spacer length. Values are means ± SEs. The bars with different lowercase letters are significantly different
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foraging organs (such as rhizomes, stolons, and corms) 
where nutrient levels are relatively high [12]. For exam-
ple, T. orientalis produced more ramets and larger spacer 
diameters and lengths in the heterogeneous soil treat-
ment (Fig.  4). In addition, guerrilla clonal plants can 
alter the branching angle and distribution of ramets as 
well as their biomass allocation ratio to obtain available 
resources [18, 38]. These specific clonal growth organs 
are characterized by different functional traits (such as 
dispersal, resource acquisition, storage, shoot cycling and 
protection) [32] and can adapt to diverse environments. 
Thus, clonal plants, especially guerrilla clonal plants, 
are widely used in the ecological remediation of various 
habitats.

Clonal plants often appear as pioneer species in the ini-
tial stages of community succession [26]. In the process 
of vegetation restoration, clonal plants play a dominant 
role in changing the vegetation community environment 
and maintaining community ecological function [11]. 
For example, Psammochloa villosa (a guerrilla clonal 
plant) can improve vegetation coverage and sand fixation 
in mobile dune patches [13]. Particle size is an impor-
tant feature of soil, and it can greatly affect the growth 
of clonal plants [19]. In  this  experiment, the heteroge-
neous distribution of soil nutrients and the particle size 
may have inhibited the foraging behaviour of the pha-
lanx clonal plants. This may have occurred because the 
mechanical resistance of the soil particles decelerated 
root growth and expansion [5].

Resources (light, water, nutrients, etc.) and environ-
mental conditions (disturbances, geography, herbivory, 
etc.) exhibit spatial and temporal heterogeneity, which 
is ubiquitous within natural habitats [21, 45]. In this 
study, T. orientalis showed high ecological adaptabil-
ity to heterogeneous resource habitats. In addition, the 
guerrilla clonal plants (T. orientalis, P. australis and S. 
stoloniferum) accumulated more belowground biomass 
in the heterogeneous soil, in which larger foraging organ 
masses may explore and occupy resource-rich patches 
(Fig.  1). These identical individuals can share resources 
and stress through the physical connections of their spac-
ers [2, 42]. This is why the guerrilla growth is very com-
mon in early successional stages and disturbed habitats.

Conclusions
In conclusion, the heterogeneity of soil nutrients pro-
motes the growth of guerrilla clonal plants, especially 
that of T. orientalis. The flexible clonal structure of 
guerrilla clonal plants can be used to effectively utilize 
resources. Future studies should focus on how various 
ecological factors, such as temperature and competition, 
affect growth responses to resource heterogeneity.
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