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Co-occurrence patterns and the large-scale 
spatial structure of benthic communities 
in seagrass meadows and bare sand
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Abstract 

Background: Species distribution models are commonly used tools to describe diversity patterns and support con-
servation measures. There is a wide range of approaches to developing SDMs, each highlighting different character-
istics of both the data and the ecology of the species or assemblages represented by the data. Yet, signals of species 
co-occurrences in community data are usually ignored, due to the assumption that such structuring roles of species 
co-occurrences are limited to small spatial scales and require experimental studies to be detected. Here, our aim is to 
explore associations among marine sandy-bottom sediment inhabitants and test for the structuring effect of seagrass 
on co-occurrences among these species across a New Zealand intertidal sandflat, using a joint species distribution 
model (JSDM).

Results: We ran a JSDM on a total of 27 macrobenthic species co-occurring in 300,000 m2 of sandflat. These spe-
cies represented all major taxonomic groups, i.e. polychaetes, bivalves and crustaceans, collected in 400 sampling 
locations. A number of significant co-occurrences due to shared habitat preferences were present in vegetated 
areas, where negative and positive correlations were approximately equally common. A few species, among them 
the gastropods Cominella glandiformis and Notoacmea scapha, co-occurred randomly with other seagrass benthic 
inhabitants. Residual correlations were less apparent and mostly positive. In bare sand flats shared habitat prefer-
ences resulted in many significant co-occurrences of benthic species. Moreover, many negative and positive residual 
patterns between benthic species remained after accounting for habitat preferences. Some species occurring in both 
habitats showed similarities in their correlations, such as the polychaete Aglaophamus macroura, which shared habitat 
preferences with many other benthic species in both habitats, yet no residual correlations remained in either habitat.

Conclusions: Firstly, analyses based on a latent variable approach to joint distributions stressed the structuring role 
of species co-occurrences beyond experimental scales. Secondly, results showed context dependent interactions, 
highlighted by species having more interconnected networks in New Zealand bare sediment sandflats than in sea-
grass meadows. These findings stress the critical importance of natural history to modelling, as well as incorporating 
ecological reality in SDMs.
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Background
Co-occurrence patterns of species across a landscape 
may arise due to shared habitat preferences, disper-
sal patterns, community interactions (e.g. facilitation, 
competition) or the interaction of these processes [1, 
2]. This interest in joint distributions of species relates 
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to (1) incorporating real-world complexity in species 
distribution models (SDM) by allowing species to inter-
act [3], and (2) solving technical challenges posed by 
having to extend generalized linear mixed models to 
multivariate models that allow us to separate correla-
tion patterns across multiple species from environmen-
tal responses [1].

Biotic interactions have been experimentally shown 
to be important drivers of local community structure 
in many different kinds of ecological systems (e.g. [4]). 
Their role in driving patterns at a larger scale, even 
determining species ranges, is less well established, 
although clear examples exist [3, 5]. At large scales, 
manipulative experiments are unfeasible, and detection 
of interactions relies on correlative evidence, recently 
in the form of joint analyses of species abundances or 
occurrences (joint species distribution models: JSDMs). 
With this method, environmental drivers of species dis-
tributions are accounted for, and remaining correlation 
in the model residuals indicate association between 
species, often interpreted as biotic interactions (e.g. [6, 
7]).

Competitive and facilitative interactions may arguably 
be stronger among near-sessile organisms, such as plants, 
parasites, or indeed benthic invertebrates [8]. Structure 
provided by the habitat may substantially affect the way 
such interactions play out, providing physical shelter 
or habitat for predators [9]. Here, our aim is employ-
ing macroecological techniques to explore associations 
among marine sandy-bottom sediment inhabitants and 
test for the structuring effect of seagrass on co-occur-
rences among these species. Specifically, we test the 
hypothesis that macrozoobenthic communities in sea-
grass patches (Zostera muelleri) maintain more intercon-
nected interaction networks across intertidal areas than 
the same species communities inhabiting intertidal sand-
flats (Fig.  1). This reflects the common assumption that 
seagrass meadows, due to their structural complexity, 
play a significant role in maintaining diversity and resil-
ience of coastal systems [10, 11].

Our main interest lies in the ecological inference pos-
sible from multi-species models. We acknowledge the 
technical challenges and great benefits of employing 
JSDMs and refer to ([1, 12] and references cited herein) 

Fig. 1 An illustration of the visual contrast between seagrass meadows (left hand side) and bare sediment sandflats (right hand side). Picture taken 
by Roman Zajac at Kaipara harbour, New Zealand. The white rectangle encompasses 0.5 × 0.5 m
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for mathematical comparisons between modelling 
choices. To address the lack of knowledge regarding 
the structuring role of species co-occurrences across 
landscapes, our work employed latent variable models 
(LVM) and demonstrated their advantages for study-
ing multi-species distributions. LVMs are emerging as 
efficient tools to dissect multivariate data [1, 13], since 
they explicitly link latent variables to each sample as 
unobserved predictors to capture unobserved environ-
mental predictors [1] or non-random co-occurrences. 
We showed that patterns in species co-occurrences 
were context dependent and structure communities 
across spatial scales of at least 1  km, as illustrated by 
comparing marine species communities in seagrass 
meadows to the same species occupying bare inter-
tidal sandflats. These results have implications for most 

current SDM research, which are mainly employing 
single-species models.

Results
We ran a joint species distribution analysis on a total of 
27 species co-occurring in 300,000  m2 of New Zealand 
intertidal sandflat, representing all major taxonomic 
groups, i.e. polychaetes, bivalves and crustaceans. Eleven 
species only occurred in seagrass meadows, 6 species 
were restricted to bare sand flats, whereas 10 species 
were common (> 25% of sampling locations) to both hab-
itats (Table 1).

A number of significant co-occurrences due to shared 
habitat preferences were present in vegetated areas 
(Fig.  2), where negative and positive correlations were 
approximately equally common. A few species, among 

Table 1 Species descriptions and information on their occurrences (n sampling locations) and abundances (mean count) 
in seagrass (coverage at least 33%) and bare-sand systems (0% coverage of seagrass)

Seagrass Bare sand

n-samples 63 279

Species Abbreviation Taxonomic group Occurrence (mean) Occurrence (mean)

Aglaophamus macroura aglmac Polychaetes 16 (0.46) 99 (0.52)

Aonides trifida aontri Polychaetes 36 (2.87) 161 (12.35)

Arthritica bifurcata artbif Bivalves 15 (0.60)

Austrovenus stutchburyi ausstu Bivalves 33 (3.97) 146 (1.71)

“Bumpy” cirrisyllid bumcir Polychaetes 15 (0.60) 97 (1.19)

Colurostylus lemurum collem Crustaceans 176 (1.63)

Cominella glandiformis comgla Gastropods 22 (0.62)

Halicarcinus varius halvar Crustaceans 15 (0.40)

Halicarcinus whitei halwhi Crustaceans 15 (0.43)

Hesionidea hesion Polychaetes 97 (0.68)

Heteromastus filiformis hetfil Polychaetes 36 (1.16) 145 (1.44)

Macomona liliana maclil Bivalves 61 (3.89) 261 (7.00)

Macroclymenella stewartensis stew-
ardensisstewartensis

macste Polychaetes 26 (0.97)

Magelona dakini magdak Polychaetes 152 (1.66)

Nemertean nemert Polychaetes 30 (1.02) 202 (2.19)

Notoacmea scapha notsca Gastropods 24 (0.71)

Nucula hartvigiana nucchar Bivalves 45 (2.03) 95 (1.65)

Orbinia papillosa orbpap Polychaetes 100 (0.95)

Owenia petersonae owepet Polychaetes 20 (1.16)

Paphies australis papaus Bivalves 19 (0.51) 133 (5.07)

Paracalliope novizealandiae parnou Crustaceans 30 (5.22) 103 (1.05)

Phoronis sp. phoron Other 91 (1.17)

Platynereis australis plaaus Polychaetes 25 (0.59)

Prionospio aucklandica priauc Polychaetes 31 (2.37)

Pseudopolydora ‘FAT’ psefat Polychaetes 27 (1.06)

Soletellina siliqua solsil Bivalves 155 (3.56)

Trochodota dendyi troden Polychaetes 22 (0.46)
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them the gastropods Cominella glandiformis and Notoac-
mea scapha, co-occurred randomly with other seagrass 
benthic inhabitants, as indicated by an empty row of 
raw correlations (Fig.  2). Residual correlations were less 

apparent and mostly positive (Fig. 2). Austrovenus stutch-
buryi, a common suspension-feeding bivalve, was the 
only species to display negative residual correlations with 
more than a single species, i.e. the deposit-feeding bivalve 

Fig. 2 Correlation between species occurring in seagrass meadows (top) or bare sand flats (bottom) due to shared habitat preferences (left panel) 
or residual correlation (right panel) as modelled by LVM (see Table 1 for full species names). Results are based on the most parsimonious model. 
Only correlations which differ from 0 are shown, i.e. the larger the bubble size the more different from 0, where red indicates negative values and 
blue positive correlation
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Macomona liliana and two tube-building polychaetes 
Macroclymenella stewartensis and Pseudopolydora ‘FAT’.

In bare sand flats shared habitat preferences resulted 
in many significant co-occurrences of benthic species. 
Moreover, many negative and positive residual pat-
terns between benthic species remained after account-
ing for habitat preferences (Fig. 2). Most noteworthy, the 
deposit-feeding bivalve Nucula hartvigiana was nega-
tively correlated with deposit-feeding polychaetes Aon-
ides trifida and Magelona dakini, the suspension-feeding 
bivalves A. stutchburyi and Soletellina siliqua, and the 
deposit-feeding bivalve M. liliana.

Some species occurring in both habitats showed simi-
larities in their correlations, such as the polychaete 
Aglaophamus macroura, which shared habitat prefer-
ences with many other benthic species in both habitats, 
yet no residual correlations remained in either habitat. 
The amphipod Paracalliope novizealandiae not only co-
occurred with many other species in both habitats, but 
also displayed positive residual correlation with six or 
more species in each habitat (Fig. 2).

Discussion
Acknowledging the inherent complexity of species dis-
tributions requires methods that are capable of accom-
modating real-world species associations. Here we used 
LVM to discern the joint distribution of species (see, 
e.g., [1, 7], showing that across a large intertidal area 
(300,000  m2) both positive and negative shared habitat 
preferences are abundant. Also, we demonstrated that 
positive and to some extend negative co-occurrences of 
species are common, particularly in bare sand flats.

Contrary to our expectations, seagrass meadows 
mainly structured benthic communities due to species 
having a shared habitat preference, whereas in bare sand-
flats species commonly displayed positive and negative 
co-occurrences in addition to shared habitat preferences. 
This might indicate that in a more obvious physically 
structured habitat, such as provided by seagrass mead-
ows [11], provisioning of different niches leads to the 
observed community structure. Also, the physical struc-
ture of seagrass meadows might limit the mobility of 
some species like Austrovenus stutchburyi, as they can’t 
bulldoze their way through the rhizome mat. Most spe-
cies are also moving (especially in early benthic stages) 
associated with hydrodynamics and bedload transport 
and this effect will also be baffled by seagrass. In bare 
sand flats, which are often perceived as seemingly fea-
tureless habitats (but see [14]), community structure 
likely is more animal created, with greater dominance of 
interference competition and facilitation to mediate the 
impact of abiotic stress [15]. Such species interactions 
are critical in habitat modifications, influencing sediment 

compositions, hydrodynamics, and biogeochemistry, 
thereby impacting interaction networks, feedbacks and 
ecosystem functioning [16]. Lastly, how mobile animals 
perceive the mosaic of patterning might impact their dis-
persal through the seascape [17, 18].

As reviewed in detail by Dormann et al. [7] and in the 
introduction, we refrain from discussing our results in 
the context of biotic interactions. Given that assessing 
co-occurrences are based on residual correlations (e.g. 
[13, 19]), unmeasured environmental variables rather 
than biotic interactions might also explain observed 
patterns. We considered most commonly used habitat 
features to describe benthic community patterns (see, 
e.g., [20, 21]) and we acknowledge that this data-driven 
approach offered hints on potential community organi-
sation processes [19]. For example, random occurrences 
in seagrass meadows, as shown by the living attached to 
seagrass blades limpet Notoacmea scapha and the bull-
dozing predator/scavenging whelk Cominella glandi-
formis, might indicate a life-style utilizing other habitat 
features than the surrounding benthic fauna that mostly 
live buried in the sediment. In New Zealand intertidal 
systems, the suspension-feeding A. stutchburyi and the 
deposit-feeding Macomona liliana are key bioturbat-
ing bivalves regarding ecosystem architecture due to 
their sediment-dwelling life-style [16, 20, 22–24]. High 
densities of adult M. liliana negatively affect microphy-
tobenthos and juveniles of many other species including 
conspecifics due to their grazing behaviour [24], and its 
negative co-occurrence with tube-building and sediment 
stabilizing polychaetes Macroclymenella stewartensis 
and Pseudopolydora ‘fat’ in seagrass meadows suggests 
such opposing "interests". The bivalve Nucula hartvi-
giana negatively co-occurred with, e.g., the polychaetes 
Aonides trifida and Magelona dakini, in intertidal sand-
flats. This might indicate subtle differences in habitat 
preferences, since N. hartvigiana tends to be in slightly 
muddy and organic rich sediments, whereas both poly-
chaetes like more permeable low organic load sediments 
(e.g. [25, 26]). The amphipod Paracalliope novizealandiae 
flits around at the sediment water interface, co-occurring 
with many species in both habitats, perhaps profiting 
from their sediment reworking activities to gather food.

Conclusions
Positive or negative co-occurrence of species, after con-
sidering habitat preferences, are common and are pre-
sent beyond experimentally accessible spatial scales. 
This strengthens previous research aiming to resolve 
biodiversity-ecosystem functioning at seascape-scales, 
which noted the importance of scale considerations to 
understand structure and resilience of ecosystems [11, 
15, 21, 27]. In addition to underlining the spatial scale 
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of community structure, our work shows the context-
dependent nature of species co-occurrences, in which 
the higher relative importance of positive and negative 
co-occurrences in bare sand flats, harbouring to a greater 
extend the same species as neighbouring seagrass mead-
ows, lead to a highly interconnected benthic network. 
These findings stress the critical importance of natural 
history to modelling, as well as incorporating ecological 
reality in SDMs.

From the management point of view, this work has 
important implications; frequently, bare sand bot-
toms are undervalued compared to, for example, reefs, 
which are considered of larger importance for conser-
vation when taking decisions in coastal management 
(e.g. development of harbours, marinas, construction 
of pipelines). Nevertheless, our work shows that at least 
some bare sand bottoms harbour rich benthic communi-
ties with complex ecological interactions that are worth 
conserving.

Methods
Empirical data
To test whether the co-occurrence of species influ-
ences the structure of communities beyond experimen-
tal scales, we used data on macrobenthic fauna, mainly 
bivalves, polychaetes, and crustaceans, and environmen-
tal features from 400 sampling points arrayed across 
300,000  m2 of intertidal sandflat in Kaipara Harbour, 
New Zealand [20, 23]. Effectively these sampling points 
covered the complete intertidal sandflat exposed during 
low-tide. This enabled us to model spatial co-occurrences 
from 30  cm (smallest sampling distance) to 1  km (larg-
est sampling distance). Specifically, we compared species 
distributed across starkly contrasting mosaics of seagrass 
patches (seagrass coverage at least 33%; 63 sampling 
points; Additional file  1: Table  S1), and bare intertidal 
sandflats (0% coverage of seagrass; 279 sampling points; 
Additional file  2: Table  S2). In both habitats, separated 
by 30 cm up to 1 km, we only considered species present 
in > 25% of the sampling locations (Table  1 for species 
names and occurrence information), to warrant sufficient 
power to assess species-to-species co-occurrences and to 
deal only with species ecologically associated with bare 
sand or seagrass habitats.

Model description
Latent variable models are extensions of multivariate 
regression models with unobserved ("latent") predic-
tors that help to capture correlations or missing pre-
dictors (e.g. [28]). Since the among-species correlation 
matrix u has N×(N-1)/2 entries (N being the number 
of species), which all need to be estimated, a trick is to 
represent the entries of u as a linear function of two 

or more latent variables, thereby reducing the num-
ber of parameters to be estimated (for details see [1]). 
LVMs are then formulated as mixed-effect models, in 
their simplest form assuming a Gaussian distribution of 
abundances, as:

where mij is the abundance of species j (j = 1, …, m) at 
location i (i = 1, …, n), ßoj is an intercept, Xißj represents 
the regression coefficients (ßj) of environmental variables 
(Xi) and εi are the regression residuals. uij = zi λj and rep-
resents variation that can be captured by construction of 
new explanatory variables composed of latent variables 
(zi) and factor loadings (λj), which represent the strength 
of the relationship between latent variables and observed 
variables. These latent variables have resemblance to 
ordination axis [1, 12] and are treated as random factors 
to acknowledge they are unobserved.

Analysis
Following Dormann et  al. [29], we only considered 
environmental variables with an |r|< 0.7 to avoid collin-
earity, choosing the overall least correlated variables for 
further analysis. Then we used the Watanabe-Akaike 
information criterion (WAIC; [30]) to define the most 
parsimonious model, based on all possible subsets. For 
seagrass areas this resulted in the inclusion of organic 
content of sediments (%), sediment grain-size frac-
tion > 500  μm (%), sediment grain-size fraction 125–
250  μm (%), sediment median grain size (μm), and 
distance to shore (m) as a proxy for inundation time. 
For bare sand habitats this included: distance to shore, 
sediment median grain-size, sediment grain size frac-
tion < 63 μm (%), sediment grain-size fraction > 500 μm, 
organic content of sediments, and coverage of shell 
hash (i.e. broken shell fragments; %). For continuous 
variables, we included quadratic functions to account 
for patchy distributions across the study site. All envi-
ronmental variables were standardised to mean 0 and 
variance 1 [31].

We used Markov Chain Monte Carlo (MCMC) meth-
ods to run the LVMs, using JAGS [32] via the package 
BORAL [13] in R [33], assuming a negative binomial 
distribution based on a quantile plot of Dunn-Smyth 
residuals. Default uninformative priors were used for all 
parameters in all models. We ran models allowing for 
two latent variables for 125,000 iterations, using a burn-
in of 25,000 iterations. Using more than two latent vari-
ables would have been possible, but preliminary model 
runs suggested that such was not necessary to capture 
patterns of species co-occurrences. R code for fitting and 
analysis of LVM are available from [1, 12, 13].

(1)mij = βoj + Xiβj + uij + εi
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Supplementary information accompanies this paper at https ://doi.
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Additional file 1: Table S1 CSV-file containing the species-occurrence 
information for seagrass habitats, as well as associated values for environ-
mental variables.

Additional file 2: Table S2 CSV-file containing the species-occurrence 
information for sandy habitats, as well as associated values for environ-
mental variables.

Acknowledgements
We thank colleagues at the National Institute for Water and Atmospheric 
research for support during field and lab-work.

Authors’ contributions
CK, SFT and CFD conceived the study, designed the study, and drafted the 
manuscript. CK and SFT performed the field work and lab work. SFT and CFD 
contributed to data analysis, carried out by CK. All authors read and approved 
the final manuscript.

Funding
This research was supported by the Marsden Fund of the Royal Society of 
New Zealand (NIW-1102) to SFT and CK, and a Marie-Curie fellowship (Grant 
700796) to CK. The funding bodies were not involved in the design of the 
research question, field data collection, analysis and interpretation of data, or 
writing the manuscript.

Availability of data and materials
The datasets supporting this article have been uploaded as part of the 
additional files.

Ethics approval and consent to participate
We obtained permission to access intertidal areas and conduct sampling from 
local Maori representatives, as well as a Ministry for Primary Industries (MPI) 
Special Permit to National Institute of Water & Atmospheric Research Ltd, also 
covering students, representatives and employees as part of their association 
with the permit holder.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Helmholtz Institute for Functional Marine Biodiversity At the University 
of Oldenburg, Ammerländer Heerstraße 231, 23129 Oldenburg, Germany. 
2 Department of Functional Ecology, Alfred Wegener Institute Helmholtz 
Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremer-
haven, Germany. 3 Institute of Marine Science, University of Auckland, Private 
Bag 92019, Auckland 1142, New Zealand. 4 Biometry and Environmental 
System Analysis, University of Freiburg, Tennenbacherstr. 4, 79106 Freiburg, 
Germany. 5 Present Address: Thünen Institute of Sea Fisheries, Herwigstraße 
31, 27572 Bremerhaven, Germany. 

Received: 5 November 2019   Accepted: 4 July 2020

References
 1. Warton DI, Blanchet FG, O’Hara RB, Ovaskainen O, Taskinen S, Walker SC, 

Hui FKC. So many variables: joint modeling in community ecology. Trends 
Ecol Evol. 2015;30:766–79. https ://doi.org/10.1016/j.tree.2015.09.007.

 2. Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, Vesk 
PA, McCarthy MA. Understanding co-occurrence by modelling species 

simultaneously with a joint species distribution model (JSDM). Methods 
Ecol Evol. 2014;5:397–406. https ://doi.org/10.1111/2041-210X.12180 .

 3. Wisz MS, et al. The role of biotic interactions in shaping distributions 
and realised assemblages of species: implications for species distribu-
tion modelling. Biol Rev. 2012;88:15–30. https ://doi.org/10.1111/j.1469-
185X.2012.00235 .x.

 4. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and 
species interactions in terrestrial ecosystems. Ecol Lett. 2008;11:1351–63. 
https ://doi.org/10.1111/j.1461-0248.2008.01250 .x.

 5. Kissling WD, et al. Towards novel approaches to modelling biotic interac-
tions in multispecies assemblages at large spatial extents. J Biogeogr. 
2012;39:2163–78. https ://doi.org/10.1111/j.1365-2699.2011.02663 .x.

 6. Pellissier L, Bråthen K, Pottier J, Randin CF, Vittoz P, Dubuis A, Yoccoz NG, 
Alm T, Zimmermann NE, Guisan A. Species distribution models reveal 
apparent competitive and facilitative effects of a dominant species on 
the distribution of tundra plants. Ecography. 2010;33:1004–14. https ://
doi.org/10.1111/j.1600-0587.2010.06386 .x.

 7. Dormann CF, et al. Biotic interactions in species distribution modelling: 
ten questions to guide interpretation and avoid false conclusions. Glob 
Ecol Biogeogr. 2018;27:1004–166. https ://doi.org/10.1111/geb.12759 .

 8. Rohde K. Nonequilibrium ecology. Cambridge: Cambridge University 
Press; 2005.

 9. Menge BA. Indirect effects in marine rocky intertidal interaction webs: 
patterns and importance. Ecol Monogr. 1995;65:21–74. https ://doi.
org/10.2307/29371 58.

 10. Boström C, Pittman SJ, Simenstad C, Kneib RT. Seascape ecology of 
coastal biogenic habitats: advances, gaps, and challenges. Mar Ecol Progr 
Ser. 2011;427:191–21818. https ://doi.org/10.3354/meps0 9051.

 11. van de Koppel J, van der Heide T, Altieri A, Eriksson Bouma Olff Silliman 
BKTHBR. Long-distance interactions regulate the structure and resilience 
of coastal ecosystems. Ann Rev Mar Sci. 2015;7:139–58. https ://doi.
org/10.1146/annur ev-marin e-01081 4-01580 5.

 12. Wilkinson DP, Golding N, Guillera-Arroita G, Tingley R, McCarthy MA. 
A comparison of joint species distribution models for presence-
absence data. Methods Ecol Evol. 2019;10:198–21111. https ://doi.
org/10.1111/2041-210X.13106 .

 13. Hui FKC. Boral – Bayesian ordination and regression analysis of multivari-
ate abundance data in R. Methods Ecol Evol. 2016;7:744–50. https ://doi.
org/10.1111/2041-210X.12514 .

 14. Hewitt JE, Thrush SF, Halliday J, Duffy C. The importance of small-scale 
habitat structure for maintaining beta diversity. Ecology. 2005;86:1619–
26. https ://doi.org/10.1890/04-1099.

 15. Bruno JF, Stachowicz JJ, Bertness MD. Inclusion of facilitation into ecologi-
cal theory. Trends Ecol Evol. 2003;18:119–25. https ://doi.org/10.1016/
S0169 -5347(02)00045 -9.

 16. Thrush SF, et al. Experimenting with ecosystem interaction networks in 
search of threshold potentials in real world marine ecosystems. Ecology. 
2014;95:1451–7. https ://doi.org/10.1890/13-1879.1.

 17. Wiens JA, Stenseth NC, Van Horne B, Ims RA. Ecological mechanisms and 
landscape ecology. Oikos. 1993;66:369–80. https ://doi.org/10.2307/35449 
31.

 18. Wiens JA. Spatial scaling in ecology. Funct Ecol. 1989;3:385–97. https ://
doi.org/10.2307/23896 12.

 19. Ovaskainen O, Tikhonov G, Norberg A, Blanchet FG, Duan L, Dunson D, 
Roslin T, Abrego N. How to make more out of community data? A con-
ceptual framework and its implementation as models and software. Ecol 
Lett. 2017;20:561–76. https ://doi.org/10.1111/ele.12757 .

 20. Kraan C, Dormann CF, Greenfield BL, Thrush SF. Cross-scale variation in 
biodiversity-environment links illustrated by coastal sandflat com-
munities. PLoS ONE. 2015;10:e014241. https ://doi.org/10.1371/journ 
al.pone.01424 11.

 21. Thrush SF, Hewitt JE, Kraan C, Lohrer AM, Pilditch AM, Douglas EJ. 
Changes in the location of biodiversity-ecosystem function hot spots 
across the seafloor landscape with increasing sediment nutrient load-
ing. Proc Royal Soc London B Biol Sci. 2017;284:20162861. https ://doi.
org/10.1098/rspb.2016.2861.

 22. Jones HFE, Pilditch CA, Bryan KR, Hamilton DP. Effects of infaunal bivalve 
density and flow speed on clearance rates and near-bed hydrodynam-
ics. J Exp Mar Biol Ecol. 2011;401:20–8. https ://doi.org/10.1016/j.jembe 
.2011.03.006.

https://doi.org/10.1186/s12898-020-00308-4
https://doi.org/10.1186/s12898-020-00308-4
https://doi.org/10.1016/j.tree.2015.09.007
https://doi.org/10.1111/2041-210X.12180
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.1111/j.1469-185X.2012.00235.x
https://doi.org/10.1111/j.1461-0248.2008.01250.x
https://doi.org/10.1111/j.1365-2699.2011.02663.x
https://doi.org/10.1111/j.1600-0587.2010.06386.x
https://doi.org/10.1111/j.1600-0587.2010.06386.x
https://doi.org/10.1111/geb.12759
https://doi.org/10.2307/2937158
https://doi.org/10.2307/2937158
https://doi.org/10.3354/meps09051
https://doi.org/10.1146/annurev-marine-010814-015805
https://doi.org/10.1146/annurev-marine-010814-015805
https://doi.org/10.1111/2041-210X.13106
https://doi.org/10.1111/2041-210X.13106
https://doi.org/10.1111/2041-210X.12514
https://doi.org/10.1111/2041-210X.12514
https://doi.org/10.1890/04-1099
https://doi.org/10.1016/S0169-5347(02)00045-9
https://doi.org/10.1016/S0169-5347(02)00045-9
https://doi.org/10.1890/13-1879.1
https://doi.org/10.2307/3544931
https://doi.org/10.2307/3544931
https://doi.org/10.2307/2389612
https://doi.org/10.2307/2389612
https://doi.org/10.1111/ele.12757
https://doi.org/10.1371/journal.pone.0142411
https://doi.org/10.1371/journal.pone.0142411
https://doi.org/10.1098/rspb.2016.2861
https://doi.org/10.1098/rspb.2016.2861
https://doi.org/10.1016/j.jembe.2011.03.006
https://doi.org/10.1016/j.jembe.2011.03.006


Page 8 of 8Kraan et al. BMC Ecol           (2020) 20:37 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 23. Greenfield BL, Kraan C, Pilditch CA, Thrush SF. Spatial variation of func-
tional group diversity in estuarine benthic communities. Mar Ecol Progr 
Ser. 2016;548:1–10. https ://doi.org/10.3354/meps1 1692.

 24. Thrush SF, et al. Matching the outcome of small-scale density manipula-
tion experiments with larger scale patterns: an example of bivalve adult/
juvenile interactions. J Exp Mar Biol Ecol. 1997;216:153–69. https ://doi.
org/10.1016/S0022 -0981(97)00094 -4.

 25. Thrush SF, Hewitt JE, Hickey CW, Kelly S. Multiple stressor effects identi-
fied from species abundance distributions: Interactions between urban 
contaminants and species habitat relationships. J Exp Mar Biol Ecol. 
2008;366:160–8. https ://doi.org/10.1016/j.jembe .2008.07.020.

 26. Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI. Habitat 
change in estuaries: predicting broad-scale responses of intertidal mac-
rofauna to sediment mud content. Mar Ecol Progr Ser. 2003;263:101–12. 
https ://doi.org/10.3354/meps2 63101 .

 27. Lohrer AM, Thrush SF, Hewitt JE, Kraan C. The up-scaling of ecosystem 
functions in a heterogeneous world. Sci Rep. 2015;5:10349. https ://doi.
org/10.1038/srep1 0349.

 28. Ovaskainen O, Roy DB, Fox R, Anderson BJ. Uncovering hidden spatial 
structure in species communities with spatially explicit joint species 

distribution models. Methods Ecol Evol. 2016;7:428–36. https ://doi.
org/10.1111/2041-210X.12502 .

 29. Dormann CF, et al. Collinearity: a review of methods to deal with it and a 
simulation study evaluating their performance. Ecography. 2012;35:1–20. 
https ://doi.org/10.1111/j.1600-0587.2012.07348 .x.

 30. Gelman A, Hwang J, Vehtari A. Understanding predictive information 
criteria for Bayesian models. Stat Comput. 2014;24:997–1016. https ://doi.
org/10.1007/s1122 2-013-9416-2.

 31. Gelman A, Hill J. Data analysis using regression and multilevel/hierarchi-
cal models. Cambridge, UK: Cambridge University Press; 2007.

 32. Plummer M. 2003 JAGS: A program for analysis of Bayesian graphical 
models using Gibbs sampling. In: Proceedings of the 3rd International 
Workshop on Distributed Statistical Computing. Vol. 124, pp. 20–22.

 33. R Development Core Team. R: a language and environment for statistical 
computing. Vienna: R Foundation for Statistical Computing; 2015.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3354/meps11692
https://doi.org/10.1016/S0022-0981(97)00094-4
https://doi.org/10.1016/S0022-0981(97)00094-4
https://doi.org/10.1016/j.jembe.2008.07.020
https://doi.org/10.3354/meps263101
https://doi.org/10.1038/srep10349
https://doi.org/10.1038/srep10349
https://doi.org/10.1111/2041-210X.12502
https://doi.org/10.1111/2041-210X.12502
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1007/s11222-013-9416-2

	Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Discussion
	Conclusions
	Methods
	Empirical data
	Model description
	Analysis

	Acknowledgements
	References




