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Agent-mediated spatial storage effect in
heterogeneous habitat stabilizes competitive
mouse lemur coexistence in Menabe Central,
Western Madagascar
Livia Schäffler1,2*, Joachim Saborowski3 and Peter M Kappeler1
Abstract

Background: Spatio-temporal distribution patterns of species in response to natural and anthropogenic drivers
provide insight into the ecological processes that determine community composition. We investigated determinants of
ecological structure in a species assemblage of 4 closely related primate species of the family Cheirogaleidae
(Microcebus berthae, Microcebus murinus, Cheirogaleus medius, Mirza coquereli) in western Madagascar by extensive line
transect surveys across spatial and temporal heterogeneities with the specific goal of elucidating the mechanisms
stabilizing competitive coexistence of the two mouse lemur species (Microcebus spp.).

Results: Interspecific competition between the mouse lemurs was indicated by negative spatial associations in
degraded habitat and by habitat partitioning along anthropogenic disturbance gradients during dry seasons with
resource scarcity. In non-degraded habitat, intraguild predator M. coquereli, but not C. medius, was negatively associated
with M. murinus on the population level, whereas its regional distribution overlapped spatially with that of M. berthae.
The species’ interspecific distribution pattern across spatial and temporal heterogeneities corresponded to predictions for
agent-mediated coexistence and thus confirmed M. coquereli’s stabilizing impact on the coexistence of mouse lemurs.

Conclusions: Interspecific interactions contribute to ecological structure in this cheirogaleid assemblage and
determinants vary across spatio-temporal heterogeneities. Coexistence of Microcebus spp. is stabilized by an
agent-mediated spatial storage effect: M. coquereli creates refuges from competition for M. berthae in intact
habitat, whereas anthropogenic environments provide M. murinus with an escape from resource competition and
intraguild predation. Species persistence in the assemblage therefore depends on the conservation of habitat
content and context that stabilizing mechanisms rely on. Our large-scale population level approach did not allow
for considering all potential functional and stochastic drivers of ecological structure, a key limitation that accounts
for the large proportion of unexplained variance in our models.
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Background
Understanding the composition of communities, as well
as the distribution and relative abundance of their con-
stituent species, i.e. “ecological structure”, has long repre-
sented a fundamental question in ecology [1]. Biological
interactions have been identified as a major structuring
force in taxonomic assemblages: Direct, competitive inter-
actions between species are of particular significance for
ecological structure and often result in checkerboard-like
distribution patterns, particularly between closely related
species [2]. Interspecific predation is a second direct
mechanism known to structure ecological communities,
which may have even greater effects on the size and distri-
bution of prey populations [3-6]. Intraguild predation
(IGP) describes combined effects of competition and pre-
dation [7]. Intraguild predators share resources and sym-
metrically or asymmetrically prey upon each another, with
consequences for the distribution and abundance of both
species. Coexistence under IGP can be stabilized if the
prey represents a superior resource competitor or if the
predator gains considerably from prey consumption [8,9].
One member of a species assemblage may also influ-

ence pairwise direct interactions between other coex-
isting species as a “third agent” via competition,
predation, or IGP, however. Indirect effects of preda-
tion can lead to apparent competition: (intraguild) pre-
dation influences the intensity of competition between
coexisting prey species, thereby creating spatial pat-
terns similar to those of competitive exclusion [10-12].
Interactions with a third agent may also result in sta-
bilizing coexistence of prey, if species outcompete each
other in different tasks: prey superior in resource com-
petition will occur at highest densities in most pro-
ductive habitats, whereas the species superior in
predator avoidance will be found at highest densities in
predator-free space [13,14].
Finally, ecological structure also depends on vegeta-

tion and species composition of the habitat as well as
on the size and distribution of patches that are import-
ant for the resident species. Diversity depends on habi-
tat productivity as well as on floristic and structural
diversity [15]. Habitat heterogeneity may facilitate coex-
istence on a regional scale in both, competitive and
predator–prey systems [16] if competitive rankings are
reversed in patches of different quality, and reciprocal
exclusion provides interacting species with refuges from
competition or predation (“spatial storage effect”
[13,14]). Finally, temporal heterogeneity can promote
coexistence of species that share niches by temporal re-
source partitioning [17]. Because ecological structure is
hard to predict, even for very similar communities [18],
determinants of ecological structure need to be specif-
ically examined for a given community or taxonomic
assemblage.
Lemur assemblages in Madagascar
Lemurs, the strepsirrhine primates endemic to Madagascar,
have been subject to numerous studies of their biogeog-
raphy and community ecology [19-23] because they are
characterized by high α‐diversity and species assemblages
comprise many closely related species. Many lemur com-
munities are phylogenetically clustered and predominately
structured by environmental conditions [24-26], including
Quaternary climatic shifts [23,27,28]. More recently, dra-
matic rates of habitat destruction and degradation have af-
fected the composition of local lemur communities as well
[29]. Susceptibility of lemurs to extinction from fragments
increased with body mass and degree of frugivory [30],
whereas resilience was promoted primarily by behavioral
plasticity [31].

A cheirogaleid assemblage in Menabe Central
An assemblage of 5 relatively well studied members of the
family Cheirogaleidae in the dry deciduous forests of Cen-
tral Western Madagascar [32] qualifies as a model system
to investigate determinants of ecological structure against
the backdrop of anthropogenic disturbances producing
strong spatial and temporal heterogeneities. These lemurs
are all nocturnal, arboreal, relatively small (< 1 kg) and,
with one exception (see below), omnivorous.
Madame Berthe’s mouse lemur (Microcebus berthae) is

the smallest known species of all primates (mean adult
mass 31 g [33]). Its range is confined to Menabe Central
[34], where it is only found in habitat patches >
30,000 ha [35]. It coexists with the larger gray mouse
lemur (M. murinus: average adult mass 60 g [36,37],
which has a much wider geographic distribution [38].
This species has been observed in all forest types across
southern and western Madagascar, including small frag-
ments and the vicinity of villages [35]. The fat-tailed
dwarf lemur (Cheirogaleus medius) is a larger (mean
adult mass: 120 g [39]) dietary generalist that undergoes
months of hibernation during the dry cool season [40].
Its geographical range is similar to that of M. murinus.
Coquerel’s dwarf lemur (Mirza coquereli) is a 250 g
omnivore found in the forests of central western
Madagascar [41,42] that preys upon several species of
vertebrates, including other cheirogaleids [43]. Finally, it
is unlikely that interactions with the 200 g pale fork-
marked lemur (Phaner pallescens) are shaping ecological
structure of this community, as this species is ecologic-
ally differentiated from its family members due to feed-
ing specialization on gum exudates and vertically
separated by its habitat use [41,44,45].
Previous studies revealed various interactions among

the other four sympatric cheirogaleids. Here, we report
on the spatial distribution of coexisting cheirogaleids
across M. berthae’s biogeographic range. We focus on
explaining the distribution and abundance of M. berthae
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because it was only discovered after the pioneering studies
by Charles-Dominique et al. [32] and because it is one of
the more endangered primates [46]. In addition to inter-
specific interactions with coexisting cheirogaleids as deter-
minants of ecological structure in this species assemblage,
we also consider variation in habitat degradation.
The two Microcebus species belong to different sub-

clades [38], indicating allopatric speciation and secondary
coexistence after periods of independent history. Consid-
ering the differences between the mouse lemurs’ biogeo-
graphic ranges as well as population densities, Microcebus
spp. do not comply with ecological similarity sensu Brown
[47]. Moreover, the interspecific body size ratio of Micro-
cebus spp. slightly exceeds the Hutchinsonian ratio for
“limiting similarity” and therefore does not clearly oppose
ecological differentiation [48,49]. Community-wide iso-
tope analysis revealed extensive niche overlap in fruit and
animal matter (δ15N) between M. berthae, C. medius, and
M. coquereli, and in basal resources (δ13C) between the
two mouse lemurs and M. coquereli [50]. Both Microcebus
spp. are omnivorous and experience similar seasonal fluc-
tuations in food supply [37]. Microcebus berthae relies
mainly on insect material and its narrow feeding niche is
embraced by the wider diet of M. murinus, which includes
higher amounts of fruit and gum and is subject to greater
seasonal variation [51]. The small-scale distribution of
Microcebus individuals in Kirindy Forest did neither differ
in relation to the distribution of homopteran larvae col-
onies (a key resource during the lean season), nor to pre-
ferred sleeping sites [52]. Finally, C. medius was found to
partially displace M. murinus on a local scale, whereas
positive spatial associations with M. berthae indicated re-
laxed competition [37].
Microcebus spp. are subject to similar top‐down control

and face intense predation pressure from several classes of
predators, including raptors, snakes, and carnivores
[53-55]. Moreover, there is evidence for opportunistic pre-
dation by M. coquereli on M. murinus [43,54,56], but not
on M. berthae. These intraguild predatory interactions
with third agents have not yet been examined as a poten-
tial mechanism stabilizing interspecific coexistence of
Microcebus spp., however.
Based on population assessments across the complete

range of M. berthae, our study addressed two main
questions. First, does the distribution of mouse lemurs
indicate competitive interactions? In case of competitive
exclusion, we expect negative complementary distribu-
tions of the two mouse lemur populations. Second, is co-
existence of Microcebus spp. stabilized by “third agents”?
In this case, we predicted negative complementary distri-
butions of M. coquereli and/ or C. medius with competi-
tively superior M. murinus and spatial overlap with
inferior M. berthae. In these analyses, we consider both
spatial and temporal heterogeneities to account for
dependence of competitive and intraguild predatory in-
teractions on resource supply.

Methods
Study site
The region of Menabe Central comprises the largest
remnant of Malagasy dry deciduous forest [57]. The cli-
mate in this area between the Tsirihibina and Moron-
dava rivers is characterized by a 4 month hot rainy
season (annual mean rainfall 800 mm) and 8 months
without precipitation and cool nights (as low as 3°C
[58]). Forest cover in this area is being reduced at annual
rates of up to 2.5% [59] by slash-and-burn agriculture
and logging which have transformed pristine habitat into
secondary forest formations, scrub, and savanna [58].
Roads cut into the forest for oil explorations and timber
harvesting facilitate public access and anthropogenic ac-
tivities such as subsistence hunting and the collection of
forest products [57,60]. These activities have resulted in
three major forest patches of heterogeneous quality con-
nected by degraded forest habitat (Figure 1). Ambadira
and Kirindy Forests are connected by a corridor of 5 to
7 km width, and have been increasingly segregated from
the Réserve Spéciale Andranomena. Although never ef-
fectively protected, Ambadira Forest was only moder-
ately accessed and considerable areas of near primary
forest persist [57]. Within Kirindy Forest, illegal activities
have been limited by the presence of a forestry conces-
sion and a research station [58]. In contrast, RS Andra-
nomena is only legally protected and particularly prone
to anthropogenic disturbances due to close proximity of
several villages.

Lemur surveys
We surveyed cheirogaleid species across Menabe Central
by repeated transect walks during 4 dry and 2 rainy sea-
sons between 2003 and 2007. To this end, we established
35 1-km line transects, which were evenly distributed to
the extent feasible in dense dry deciduous forest; forest
areas without abandoned logging trails or oil exploration
tracks were often not accessible (Figure 1). In total, we
surveyed 34 (Ambadira n = 5, corridor n = 6, Kirindy n =
19, RS Andranomena n = 4) transects during dry season,
and 25 (Ambadira n = 4, corridor n = 6, Kirindy n = 11,
RS Andranomena n = 4) during rainy season surveys.
During each survey, cheirogaleid populations were ap-

praised on 13–23 transects by line transect walks [61].
Cheirogaleus medius was not included in dry season sur-
veys because it spends most of this time in hibernation
[40]. The great majority of transects was surveyed twice
per survey and several times over subsequent surveys,
amounting to a total of 150 1-km samples. In order to
control for circadian variation in lemur activity, transect
walks were conducted between 6:00 p.m. and 8:30 p.m.



Figure 1 The study area in central western Madagascar, depicting forest heterogeneity and distribution of line transects across
Menabe Central (only two of four line transects shown for RS Andranomena); map based on Landsat 7 ETM 2003, geographic
coordinates WGS84, UTM Zone 38.
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on days without rain. Two observers trained to
recognize cheirogaleids in their natural habitat at night
walked with headlights along line transects at a stan-
dardized pace of about 1 km/h. Using torches and bin-
oculars, they identified visually detected individuals to
species level independently and approached individuals
in great distance from the transect line for identification.
In a number of cases where animals could not be identi-
fied with confidence sights were recorded as ‘non identi-
fied’ and excluded from subsequent analyses [61].

Ethical note
All research reported in this manuscript is in compliance
with animal care regulations and applicable national laws
of Germany and Madagascar. All research protocols
were approved by the appropriate Animal Use and Care
committees of Germany (Bundesamt für Naturschutz,
BfN) and Madagascar (Ministère de l’Environment et
des Eaux et Forêts, MINEEF).

Habitat classification
To take differential habitat suitability and disturbance
levels into account, we assessed the degradation of the
forest surrounding each transect based on stand and
understory density, canopy height and cover [61]. In
addition, we exemplarily sampled forest structure along
7 transects during the dry season 2007 (3 in non-
degraded and 4 in degraded habitat) and along 6
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transects during the late rainy season 2008 (4 in non-
degraded and 2 in degraded habitat, incl. 1 resample): 21
sampling plots were established every 50 m along 1-km
line transects, located alternately on the left and right
side 25 m away from the transect. Spatial forest struc-
ture was assessed by point-quarter sampling [62]: In
each of four quarters per sample point, the distance
from the sampling point to the center of the nearest ma-
ture tree (DBH ≥ 10 cm) and of the nearest tree older
than 10 years (5 cm ≤DBH < 10 cm) was measured, add-
ing up to 84 (21 plots × 4) trees per size class and tran-
sect. For each size class, we compared mean distance of
the nearest tree of each class from the center point as a
measure of forest density on non-degraded and degraded
habitat transects (Mann–Whitney U-test). During the
dry season 2007, we additionally recorded regenerating
vegetation by counting all trees of 1 cm ≤DBH < 5 cm
within an area of 4 m × 4 m around each sample point
and tested tree numbers for differences between non-
degraded and degraded habitat. In both assessments, we
estimated understory density at every sampling point by
systematically positioning a white cloth at breast height
in the four compass directions at a distance of 4 meters
from the appraiser who estimated visibility in four cat-
egories (0-25%, 25-50%, 50-75%, 75-100%). Due to sub-
stantial variation in foliage between dry and rainy
season, we tested understory density in 2007 and 2008
separately for differences between non-degraded and de-
graded habitat (Mann–Whitney U-test). Around every
sampling point, we visually estimated canopy height in
2007 and tested it for differences between degraded and
non-degraded habitat (Mann–Whitney U-test). Canopy
cover was estimated by recording whether the open sky
was visible through a vertically held pipe at 25 m intervals
along transects and respectively 25 m off the trail [35]. As
substantial seasonal differences in visibility between sea-
sons prohibited pooling of data, we tested canopy cover
sampled in 2007 and 2008 separately for differences be-
tween non-degraded and degraded habitat. Finally, we
tested variables that significantly differed between de-
graded and non-degraded habitat for correlations with
other forest variables (Spearman rank correlation).

Data analyses
Analyses were based on encounter rates rather than on
density estimates as they are less fraught with assump-
tions. Density estimates based on line transect survey
data rely on accurate assessment of detected individuals’
perpendicular distance from the transect line and is in-
fluenced by the selected detection function.

Pooling of survey data by season
In order to justify pooling of encounter rates per tran-
sect over surveys for statistical analyses, we tested
specific encounter rates of replicate surveys for differences
(F-tests in RBD with transects as blocks). Moreover, cheir-
ogaleid populations show a pronounced postnuptial in-
crease after the midpoint of the rainy season that might
prohibit pooling of early and late rainy season data. In
order to detect systematic differences between pre-birth
and post-birth rainy season, we compared encounter rates
for 16 transects sampled during the early and late rainy
season (Wilcoxon signed-rank test).
Cheirogaleids’ encounter rates did neither differ sig-

nificantly between repeated transect walks within single
surveys in any of the study regions, nor between repli-
cate surveys within the same season, and they were not
influenced by demographic effects [61]. We therefore av-
eraged encounter rates over repeated transect walks and
over subsequent surveys. Seasonal differences in detec-
tion probabilities as well as in activity patterns (e.g. sea-
sonal torpor in M. murinus) were reflected in the
encounter rates of M. coquereli and in hibernating C.
medius [61]. In order to allow for documenting cheiro-
galeids’ responses to temporal variations in food supply,
we analyzed dry and rainy season data separately.

Interspecific distribution of Microcebus spp. across
heterogeneous habitats
To assess the importance of interspecific competition be-
tween mouse lemurs as a function of spatial and temporal
heterogeneities, we examined their distribution for poten-
tial spatial exclusion from degraded and non-degraded
habitat transects in dry and rainy seasons, respectively.
For this purpose, we tested mouse lemur encounter rates
by season for differences between degraded and non-
degraded habitat in which the congener was either present
or absent (Mann–Whitney U-test), or occurred in differ-
ent abundance classes (Kruskal-Wallis ANOVA). Low en-
counter rates for M. berthae only afforded opportunity to
use presence/absence as an explanatory factor, whereas
encounter rates of abundant M. murinus allowed for
categorization into four abundance classes (M. murinus:
absence, ≥ 1 and < 5 ind./km, ≥ 5 and < 10 ind./km, ≥ 10
ind./km).

Determinants of regional mouse lemur distribution
We fitted log-linear models to the encounter rates of ei-
ther Microcebus spp. in SPSS [63], which allow for ap-
praising the relative strength of structuring factors, as
well as for detecting interactions between interspecific
effects and environmental variables.
The number of transects was too low to allow for testing

all potentially influential variables and factors simultan-
eously. Therefore, explanatory variables were systematic-
ally added based on the results of exploratory analyses
[61]. We started adding the forest regions, proxies for an-
thropogenic disturbances (i.e. habitat degradation and
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distance to the nearest village), and encounter rates of
relevant coexisting cheirogaleids before proceeding to ana-
lyzing factor interactions. For each mouse lemur species,
we fitted negative binomial distributions of detection
events combined with a natural log-link function to loga-
rithmic encounter rates (overdispersion indicated that
Poisson models were prone to Type I errors). Encounter
rates were corrected by an offset term for varying survey
effort (i.e. total transect length). Model fit was assessed
based on Akaike’s Information Criterion (lowest AIC/
AICc), and the amount of total variation in encounter
rates explained by best-fitting models was quantified by
the coefficient of determination (pseudo-R2).

Results
Habitat classification
We consider our ground-based classification of the for-
est into non-degraded and degraded habitat reliable, as
it was broadly congruent with a forest classification
based on a Landsat ETM 7 picture (Figure 1). Non-
degraded and degraded habitat did not differ in tree
density of any size class (DBH ≥ 10 cm: MWU7,5 = 8.0, p
= 0.123; 5 cm ≤DBH < 10 cm: MWU7,5 = 11.0, p = 0.291),
nor did we detect differences in counts of regenerating
trees (1 cm ≤DBH < 5 cm: MWU3,4 = 4.0, p = 0.480) or
understory density (dry season: MWU3,4 = 2.0, p = 0.150/
rainy season: MWU4,2 = 2.0, p = 0.355). Canopy height
was higher in non-degraded habitat in the available dry
season sample (MWU3,4 = 0.0, p = 0.034). Differences in
canopy cover only became apparent during the dry sea-
son, when it was more closed in non-degraded as in de-
graded habitat (MWU3,4 = 0.0, p = 0.034), whereas rainy
season forest cover did not differ between non-degraded
and degraded habitat (MWU4,2 = 0.0, p = 0.060). However,
canopy cover was negatively related to the mean distance
of trees from the center point in both size categories (trees
older than 10 years with 5 cm ≤DBH< 10 cm as well as
mature trees with DBH ≥ 10 cm: Spearman r = −0.637, n =
12, p = 0.026). Moreover, mean distances from PCQM cen-
ter points in trees of the two size classes were positively
correlated (Spearman r = 0.846, n = 12, p = 0.001). Thus,
there are indications that closed canopy cover in non-
degraded habitat is associated with higher tree density.

Interspecific distribution of Microcebus spp. across
heterogeneous habitats
Complying with habitat partitioning along anthropo-
genic disturbance gradients, mouse lemurs divergently
tracked seasonal changes in carrying capacity in non-
degraded and degraded habitat. During the dry season,
M. berthae was present on 62.5% of non-degraded habi-
tat transects, and on 38.8% of degraded habitat transects.
During the rainy season, we encountered M. berthae on
72.7% of transects surveyed in non-degraded habitat, but
only on 21.4% of those in degraded habitat (for details
see [34]). Thus, the population of M. berthae spread out
to degraded habitat during the dry season, while it con-
centrated in non-degraded habitat during the rainy sea-
son. In contrast, M. murinus was encountered on 87.5%
of transects surveyed in non-degraded habitat and on
72.2% in degraded habitat during the dry season. During
the rainy season, M. murinus was present on 45.5% of
transects in non-degraded habitat and on 42.9% in de-
graded habitat (for details see [61]). The species there-
fore spread out by local dispersal during the dry season
across habitats, whereas its population was concentrated
on fewer transects during the rainy season in both, in-
tact and degraded habitat.
Microcebus berthae encounter rates differed between

transects classified by M. murinus’ encounter rates only
during the dry season in degraded habitat (Kruskal-Wallis
H3,18 = 9.419, p = 0.024). In the dry season, we did not
encounter any M. berthae individuals in degraded habitat
when M. murinus was absent or occurred in medium
abundance. Microcebus berthae’s encounter rates were
highest on transects with low encounter rates of the
congener, but the species also occurred on some transect
with high M. murinus encounter rates (Figure 2a, b). No
significant differences in encounter rates appeared in
non-degraded habitat during the dry season (H2,16 = 2.946,
p = 0.229) or, regardless of habitat type, during the rainy
season (non-degraded: H3,11 = 4.139, p = 0.247; degraded:
H2,14 = 0.697, p = 0.706). However, Figure 2b indicates that
during the rainy season, M. berthae only occurred on
transects on which M. murinus was absent or present in
low abundance.
We did not find differences in M. murinus’ encounter

rates between transects with M. berthae either present
or absent, regardless of season or habitat degradation
(dry season, non-degraded: MWU6,10 = 21.0, p = 0.327;
dry season, degraded: MWU11,7 = 25.5, p = 0.238; rainy
season, non-degraded: MWU4,7 = 11.0, p = 0.567; rainy
season, degraded: MWU11,3 = 11.5, p = 0.456).

Determinants of regional mouse lemur distribution across
spatial and temporal heterogeneities
Microcebus berthae
The distribution of M. berthae in either season was influ-
enced by habitat degradation. During the dry season, we
found a positive association with M. coquereli in non-
degraded habitat, but not in degraded habitat. Moreover,
dry season encounter rates of M. berthae significantly rose
with increasing distance to the nearest village (Table 1).
The log-linear model with the best fit to dry season en-
counter rates of M. berthae explained 10.74% of total vari-
ance (Figure 3).
During the rainy season, we encountered more M.

berthae in non-degraded than in degraded habitat. The



Figure 2 Encounter rates of M. berthae in [a] dry and [b] rainy season on transects with varying M. murinus encounter rates; black
filled points and dashed line: non-degraded habitat, green circles and continuous line: degraded habitat; abundance classes: absent,
low (< 5 ind./km), medium (5 ≤ ind./km < 10) and high (≥ 10 ind./km).
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positive association of M. berthae with M. coquereli was
independent of habitat degradation, but non-significant,
and the population distribution was not related to the
distance from villages (Table 2). The best fitting log-
linear model accounted for 13.05% of total variance in
rainy season encounter rates (Figure 4).

Microcebus murinus
During the dry season, M. murinus’ distribution varied
regionally, with significantly lower encounter rates in
Ambadira compared to other forests. Moreover, M.
murinus was negatively associated with M. coquereli in
non-degraded habitat, and encounter rates decreased
non-significantly with increasing distance from a village
(Table 3). In order to enhance comprehensibility, model
predictions and observations are only shown for
Kirindy Forest in Figure 5. The dry season model ex-
plained 10.25% of total variance in M. murinus’ en-
counter rates.
Rainy season data yielded a negative interspecific as-

sociation with M. coquereli in non-degraded habitat
(Figure 6). Regional variation in the distribution of M.
murinus across forest regions was non-significant, and
Table 1 Dry season modelling results for M. berthae

n (transects) Survey effort [km]

34 96

Dry season model coefficients

Constant term

Factor interactions ER_Mc.ds in non-degraded habitat

ER_Mc.ds in degraded habitat

Distance to nearest village
(*), Significance level 0.1 > p ≥ 0.05; *, significance level 0.05 > p ≥ 0.01; **, significa
vicinity to villages did not have any effect. Rainy season
predictions were based on coefficients given in Table 4
and the model term accounted for 9.11% of total
variance.

Discussion
The mouse lemurs’ regional distribution across spatio-
temporal heterogeneities was negatively complemen-
tary and indicated habitat partitioning when resources
were scarce and where coexistence stabilizing mecha-
nisms were lacking. Interspecific distribution of the
mouse lemur species in relation to M. coquereli com-
plied with predictions derived from the hypothesis of a
third agent’s coexistence stabilizing impact: In either
season, log-linear models suggested that M. coquereli
regulates M. murinus’ abundance predominately in
non-degraded habitat, which M. berthae essentially re-
lies on [34], whereas M. berthae’s regional distribution
largely matched that of M. coquereli. In contrast, we
found no consequences of interspecific interactions
with C. medius for the spatial population structure of
mouse lemurs.
n (obs) AIC AICc pseudo-R2

69 116.070 117.45 10.74%

B df p

−2.075

1.148 1 0.019*

−0.09 1 0.845

0.211 1 0.016*

nce level p < 0.01.



Figure 3 Observed dry season encounter rates of M. berthae (points) and predictions by log-linear model (curved surfaces) in [a]
non‐degraded (n = 16, model equation: ER_Mb.ds = exp(−2.075 + 1.148*ER_Mc.ds + 0.211*dist.village)) and [b] degraded habitat (n = 18,
model equation: ER_Mb.ds = exp(−2.075-0.09*ER_Mc.ds + 0.211*dist.village)) across Menabe Central; deviance of observed encounter
rates from model predictions are represented by dashed lines.
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Direct interspecific interactions: interspecific competition
in Microcebus spp.
Local movements of mammalian dietary specialists to track
resources in seasonally dry tropical forests are widespread
[64], and there is evidence that community dynamics
change in response to localized resource heterogeneity
[65]. Thus, a spatial storage effect in a permanent spatio-
temporally heterogeneous environment represents a plaus-
ible mechanism facilitating coexistence in Microcebus spp.:
the two mouse lemurs are relieved from intense interspe-
cific competition in heterogeneous habitat types at differ-
ent times of the year, and competitive exclusion is
prevented by retreat into the respective refuges.
During the dry season, M. berthae’s expansion to de-

graded habitat may be a consequence of resource track-
ing along forest edges, where homopteran larvae
aggregate [66]. Yet, the species evaded anthropogenic
Table 2 Rainy season modelling results for M. berthae

n (transects) Survey effort [km] n (obs) AIC AICc pseudo-R2

25 56 40 73.826 74.969 13.05%

Rainy season model coefficients B df p

Constant term −2.289

Non-degraded habitat 2.007 1 0.005**

Degraded habitat 0

ER_Mc.rs 0.681 1 0.094(*)

(*), Significance level 0.1 > p ≥ 0.05; *, significance level 0.05 > p ≥ 0.01; **,
significance level p < 0.01.
environments at this time of the year, when increased
forest accessibility may favor human frequentation [57].
Concentration in non-degraded habitat during the rainy
season complies with most pronounced productivity
increases in intact forest. During the dry season, the
population of M. murinus was more dispersed than
during the rainy season, and positive spatial association
with villages was only vaguely indicated. Anthropogenic
environments may provide M. murinus with exclusive
resources and relax interspecific competition with M.
berthae in degraded habitat at a greater distance from
villages. Alternatively, M. murinus might be excluded
from forest edges at a greater distance from villages by
interspecific interactions and be crowded into anthropo-
genic environments that are not suitable for sympatric
species. Behavioral observations of interspecific interac-
tions at feeding sites suggested feeding priority of
M. murinus [52], making spatial exclusion by direct in-
teractions with M. berthae therefore unlikely. Absence
from some degraded habitat transects during the dry
season is in line with the finding that suitability of de-
graded habitat is limited even for disturbance-tolerant
M. murinus: the capacity to enter daily torpor is con-
strained by fewer resting holes and higher ambient tem-
peratures in secondary habitat, and individuals have
lower body mass and higher mortality risk than in
primary forest [67]. Occurrence of M. murinus in high
abundances on some non-degraded habitat transects
that was limited to the rainy season is likely a result of
capacity tracking [68].



Figure 4 Observed rainy season encounter rates of M. berthae
(squares: non-degraded habitat, crosses: degraded habitat) and
predictions by log-linear model (dot-dash fine line: non-
degraded habitat, model equation: ER_Mb.rs = exp(−2.289 +
2.007 + 0.681*ER_Mc.rs); dot-dash rough line: degraded habitat,
model equation: ER_Mb.rs = exp(−2.289 + 0.681*ER_Mc.rs))
across Menabe Central; due to low variance in M. coquereli
rainy season encounter rates, model predictions of numerous
transects overlap (only 5 different encounter rate values in
non‐degraded (n = 11) and 4 in degraded habitat (n = 14)).
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We can rule out two alternative explanations for the
divergent results from the rainy and the dry season:
First, lack of seasonal differences in Microcebus encoun-
ter rates challenges the interpretation that the pattern is
simply caused by differential activity patterns, particu-
larly due to dry season inactivity in M. murinus females.
Second, rainy season foliage should hamper visibility
more drastically in non-degraded than in degraded habi-
tat. However, during the rainy season we encountered
more M. berthae individuals and the species was present
on more transects in non-degraded habitat; M. murinus
Table 3 Dry season modelling results for M. murinus

n (transects) Survey effort [km]

34 96

Dry season model coefficients

Constant term

Region Ambadira

Corridor

Kirindy

RS Andranomena

Factor interactions ER_Mc.ds in non-degraded habitat

ER_Mc.ds in degraded habitat

Distance to nearest village
(*), Significance level 0.1 > p ≥ 0.05; *, significance level 0.05 > p ≥ 0.01; **, significa
encounter rates were higher during the rainy season on
some transects in non-degraded habitat.

Indirect interspecific interactions: agent-mediated
coexistence
Our log-linear models incorporating the distribution of
sympatric cheirogaleids did not reveal direct negative in-
terspecific associations of Microcebus populations on the
regional scale, but pointed towards a more complex co-
existence stabilizing mechanism, such as a third agent’s
stabilizing impact on the competitive coexistence of
Microcebus spp. Habitat selecting predators often
stabilize interspecific coexistence by forcing prey into
certain habitat types [4], if landscape heterogeneity pro-
vides species with refuges [9]. Interspecific interactions
with M. coquereli appeared to enhance spatial hetero-
geneity and contribute to stabilizing coexistence in
Microcebus spp. by an agent-mediated spatial storage ef-
fect [14,68]. Microcebus berthae benefitted from relaxed
competition with the congener in non-degraded habitat,
whereas M. murinus escaped negative interspecific inter-
actions with the third agent by crowding into anthropo-
genic environments [69]. Thus, the observed negative
complementary dry season distribution of mouse lemurs
in relation to the distance from villages rather corre-
sponds to apparent competition than to habitat parti-
tioning along disturbance gradients, i.e. it represents an
agent-mediated indirect interaction [10]. Alternatively,
lack of the third agent’s regulating impact on M. muri-
nus’ population structure in anthropogenic environ-
ments during the dry season might locally release this
species from IGP pressure and favor direct interspecific
local exclusion of M. berthae.
Predator-mediated coexistence is considered an im-

portant factor for maintaining diversity in many natural
communities [70-73] that has been acknowledged since
Paine’s pioneering study [3] on the diversity in rocky
intertidal communities: the sea star Pisaster ochraceus
n (obs) AIC AICc pseudo-R2

347 212.273 216.581 10.25%

B df p

3.130

−2.117 1 0.021*

−0.413 1 0.614

−0.876 1 0.249

0

−1.479 1 0.023*

−0.675 1 0.165

−0.131 1 0.079(*)

nce level p < 0.01.



Figure 5 Observed dry season encounter rates of M. murinus (points) and predictions by log-linear model (curved surfaces) in [a]
non‐degraded (n = 12, model equation: ER_Mm.ds = exp(3.130-0.876-1.479*ER_Mc.ds-0.131*dist.village) and [b] degraded habitat
(n = 7, model equation: ER_Mm.ds = exp(3.130-0.876-0.675*ER_Mc.ds-0.131*dist.village) within Kirindy Forest; deviance of observed
encounter rates from model predictions are represented by dashed lines.
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preys upon two competing sessile mussel species (Myti-
lus californianus and M. trossulus) and prevents exclu-
sion of the inferior competitor by preferential predation
on the stronger competitor (but see also [74]). Competi-
tors that share a common predator have been found to
be distributed along various environmental stress gradi-
ents in many natural systems (e.g. freshwater communi-
ties in temporary ponds [75]).
The pattern observed in this cheirogaleid assemblage

complies with predictions of species interaction models
involving two species that share resources and a com-
mon predator and outcompete each other in the differ-
ent tasks [76,77]: Predators facilitate interspecific
coexistence of prey predominately at intermediate levels
of productivity with intermediate predation risk, as ob-
served for the mouse lemurs during the dry season in
non-degraded habitat and during the rainy season in de-
graded habitat. By contrast, the superior competitor
dominates at low resource supply (and low predation
risk), a prediction that was met during the dry season by
the negative spatial association of the mouse lemurs in
degraded habitat and by the largely exclusive occupancy
of anthropogenic environments by M. murinus. At high
productivity levels and high predation risk, the predator-
resistant inferior competitor dominates, corresponding
to the aggregation of M. berthae in non-degraded habitat
during the rainy season, where it spatially overlapped
with the population of M. coquereli. Opportunistic pre-
dation on M. murinus in non-degraded habitat during
the dry season therefore represents a plausible determin-
ant of ecological structure. During the rainy season, M.
coquereli’s regulative impact on M. murinus population
may alternatively be attributed to intensified feeding
competition among capacity-tracking cheirogaleids in
productive habitat. This would comply with extensive
niche overlap in basal resources between the mouse le-
murs and M. coquereli [50]. However, competition alone
cannot explain the observed interspecific distribution
pattern, as M. berthae is not competitively excluded by
M. coquereli although the two species are isotopically in-
distinguishable in fruit and animal matter as well as in
basal resources. We therefore conclude that M. coquereli
can be attributed the role of a “keystone (intraguild)
predator” that controls the abundance of a primary con-
sumer by preferential predation and/ or resource compe-
tition, which in turn is capable of excluding other
species from the community (for the key-stone species
concept see [78]).
Proposed mechanisms of predator-mediated coexistence

include predator preference switching to the most com-
mon prey, predators preferring the dominant competitor,
and predators altering the resources used by competing
prey, thereby affecting competition between them [79].
Predator‐mediated coexistence of Microcebus spp. was ex-
cluded earlier due to assumed similarity and the same sea-
sonal variations in predation risk [37], but in particular as
M. berthae’s mortality rates exceeded that of superior com-
petitor M. murinus [52]. However, given the great variety



Figure 6 Observed rainy season encounter rates of M. murinus
(squares: Ambadira Forest, crosses: corridor, circles: Kirindy
Forest) and predictions by log-linear model (dot-dash rough
line: Ambadira Forest, dot-dash fine line: corridor, continuous
line: Kirindy Forest) in non‐degraded habitat (n = 11) across
Menabe Central; due to low variance in M. coquereli rainy season
encounter rates, model predictions of numerous transects
overlap (only 5 different encounter rate values in non‐degraded
habitat); RS Andranomena not represented as it entirely consists
of degraded habitat; model equations for non-degraded habitat in
Ambarida Forest: ER_Mm.rs = exp(1.878-2.128-1.841*ER_Mc.rs), in
the corridor: ER_Mm.rs = exp(1.878-0.320-1.841*ER_Mc.rs), in
Kirindy Forest: ER_Mm.rs = exp(1.878-0.077-1.841*ER_Mc.rs).

Schäffler et al. BMC Ecology  (2015) 15:7 Page 11 of 15
of potential anti‐predator strategies and the high selection
pressure, mouse lemurs may likely have evolved divergent
behavioral responses and therefore be differentially af-
fected by specific (intraguild) predators [80]. Moreover,
predators usually favor one particular species among a set
of potential prey, either via specific preference or density
dependence [10,13], and reduce the relative abundance of
the preferred prey [81]. Even if predation risk is shared
among prey, negative effects of predation on a species can
Table 4 Rainy season modelling results for M. murinus

n (transects) Survey effort [km]

25 56

Rainy season model coefficients

Constant term

Region Ambadira

Corridor

Kirindy

RS Andranomena

Factor interactions ER_Mc.rs in non-degraded habitat

ER_Mc.rs in degraded habitat
(*), Significance level 0.1 > p ≥ 0.05; *, significance level 0.05 > p ≥ 0.01; **, significa
be coupled with an indirect positive effect of a competitor
being consumed [82,83].
Mouse lemur coexistence can be stabilized via oppor-

tunistic predation by M. coquereli irrespective of the ques-
tion whether the prey species is selected by specific
preference or in a density‐dependent manner: Predation
has the potential to stabilize coexistence among prey spe-
cies if it is directed preferentially towards the most fre-
quent by preventing competitive exclusion [70,84]. In case
of density‐dependent predation, M. coquereli would also
capture disproportionally more M. murinus individuals,
which are easier to locate as they occur in higher densities
[61] and are clumped in space [51,85]. Differential preda-
tion or competitive pressure exerted by M. coquereli on
the two mouse lemur species is still to be shown by behav-
ioral studies. However, IGP does not only operate via
predatory interactions, but also via interspecific competi-
tion, and effects of an intraguild predator on the ecological
structure in assemblages of closely related species are
therefore rather likely.
We did not find indications for C. medius acting as a third

agent on a regional scale to shape the spatial population
structure of Microcebus populations. Lack of positive spatial
association between M. berthae and C. medius on the popu-
lation level may be due to differential microhabitat prefer-
ences [37]. Interspecific spatial exclusion of M. murinus
despite overlapping ecological requirements might be pre-
vented by this mouse lemur’s acceptance of habitats unsuit-
able to C. medius, which therefore represent competitor-free
rainy season refuges. Our data do not allow for drawing
conclusions on the situation during the dry season, but hi-
bernating C. medius presumably reduce the number of
sleeping holes available forM. murinus to some extent.

Community composition and system stability in view of
habitat change
The ecological structure in the cheirogaleid assemblage
arises from two general niche-based processes that deter-
mine the structure of many communities: convergence of
n (obs) AIC AICc pseudo-R2

229 162.932 167.599 9.11%

B df p

1.878

−2.128 1 0.096(*)

−0.320 1 0.644

−0.077 1 0.902

0

−1.841 1 0.004**

0.021 1 0.964

nce level p < 0.01.
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coexisting species due to environmental filtering (trait‐
based assembly rules [86]) and divergence resulting from
interspecific interactions (niche-based assembly rules
[77]). The closely related species comprising the cheiroga-
leid assemblage are more similar than expected from ran-
dom assortment, most likely in consequence of
overlapping ecological requirements as in many natural
communities (mammals [87], isopods [88], dyscids [89]).
On the other hand, we observed consequences of inter-
specific interactions on the spatial population structure of
the mouse lemurs, which have been identified as a major
structuring force in many taxonomic assemblages (trees
[90], desert rodents [91-93], pond snails [94], tadpoles
[95]).
Our results emphasize the importance of habitat quality

and heterogeneity for system stability. Low productivity
promotes competitive exclusion and hampers the coexist-
ence of ecologically similar species [91]. In line with theor-
etical knowledge [76,77], α‐diversity in lemurs is highest at
medium disturbance levels [96] and drops with increasing
agricultural intensity [97]. Accordingly, this cheirogaleid
assemblage was deprived of one or more species where
anthropogenic pressure is particularly intense. For ex-
ample, the species particularly susceptible to anthropo-
genic disturbances were common in Ambadira, but
largely absent from RS Andranomena. As in many natural
systems [12,75,98-103], such habitat heterogeneity pro-
vides cheirogaleid species with refuges from detrimental
interspecific interactions and allows for coexistence on a
regional scale. White‐footed mice in a fragmented land-
scape, for example, were released from interspecific com-
petition with larger granivores in smaller patches, whereas
they were excluded from larger patches [104].
Changes in habitat content and context affect different

species in different ways and alter the structure of com-
munities [31,105,106]. Habitat reduction alters the level
of interspecific competition and predation pressure
[107-111], and anthropogenic habitat fragmentation af-
fects specialist species more severely than generalists
[112]. Within isolated subpopulations, competitive pres-
sure can increase to a level that causes local interspecific
exclusion [113] and the effects that predators exert on
prey populations may aggravate. If fragmentation ham-
pers recolonization of suitable patches, local extinction
can be irreversible [30]. Occurrence of North American
gray squirrels in an agriculturally fragmented landscape
was positively related to the size of remaining fragments,
whereas sympatric red squirrels could only persist in
patches providing particular resources and were ex-
cluded from patches occupied by gray squirrels due to
increased competition [114]; fragmentation additionally
prevented (re-)colonization of isolated patches and con-
sequently affected community structure in some squirrel
species [115].
Populations do not necessarily respond linearly to
habitat loss and fragmentation, but can decline abruptly
over a narrow range of habitat impairment when extinc-
tion thresholds are exceeded [116]. Given the complexity
of ecological communities, any species’ removal or
addition will have indirect effects on multiple levels [83].
Loss of a single species, even if originally rare, may trig-
ger an extinction cascade that potentially extends to a
large number of species and therefore may have dra-
matic consequences for community stability [117]. Ex-
tinction of predators intensifies the impact of habitat
loss on regional abundance of prey species, which are
consequently threatened with local extinction [118].
Particularly incidental prey for generalist predators
were found more imperiled than the predators by habi-
tat degradation and to face the greatest risk of extinc-
tion [119]. Consequences of keystone predator losses
are exemplified by the destruction of macrophyte asso-
ciations due to increased herbivory by sea urchins after
removal of sea otters [120], or by the displacement of
San Joaquin kit foxes following population increases in
coyotes after local extinction of North American
wolves [121].
Given that interspecific interactions in heterogeneous

habitat shape the ecological structure of our cheirogaleid
assemblage, system stability essentially depends on the
preservation of habitat content and context. In view of
the ongoing population decline in third agent M. coquereli
across the species’ entire range (more than 50% over a
period of 10 years), the species was recently rated as endan-
gered [122]. On a regional scale, extensive population fluc-
tuations in M. coquereli [123] are compensated by
immigration from adjacent populations [124], but con-
tinuing fragmentation may put M. coquereli at risk of ex-
tinction from patches that are too remote to allow for
recolonization. As predator removal will have the stron-
gest effect on species in trophic levels beneath it when the
prey are most extensively engaged in competition [125],
loss of M. coquereli would likely corrupt ecological struc-
ture in the cheirogaleid assemblage and ultimately drive
M. berthae to extinction. Thus, conservation of remaining
high quality habitats as well as retaining their connectivity
will be crucial to prevent biodiversity loss in Menabe
Central.

Conclusions
Our results hint at the complexity of factors determining
ecological structure in this small primate assemblage, in-
cluding the mechanism stabilizing mouse lemur coexist-
ence, which depend on both spatial and temporal habitat
heterogeneity. On a methodological note, the spatial
scale of this study justifies the phenomenological meas-
ure of abundance, even if it may not be the most appro-
priate way to characterize how species respond to
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habitat heterogeneity: treating populations as entities
does neither account for the major components of popu-
lation change [126], nor for divergent reactions of indi-
viduals and age‐specific behaviors [127], which can
fundamentally change interspecific interactions and the
likelihood for spatial exclusion [9]. Finally, the best
models left a large proportion of the total variation in
measures of abundance unexplained. A key limitation of
the species-oriented approach is that not all important
variables can be included in analyses of ecological struc-
ture [126]. In order to extend our approach from the as-
semblage to the community level, additional variables
should be incorporated in multivariate analyses, such as
floristic diversity [96] or the distribution of key resources
[52]. Finally, neutral assembly processes (ecological drift
and dispersal limitation) need to be considered in order to
assess the relative contribution of stochastic and determin-
istic drivers to ecological community structure [24,128].
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