Skip to main content
Fig. 2 | BMC Ecology

Fig. 2

From: Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii

Fig. 2

D. suzukii and D. biarmipes differ in the quantity of food eaten depending on the diet. A Amount of protein and carbohydrate ingested in the no-choice assay. Twenty larvae were offered one of six P:C ratios and were able to forage for 2 or 4 h. Each dot represents the mean value of 10 replicates and the error bars are 95% confidence intervals of the means. B Differences between protein and carbohydrates offsets in D. biarmipes and D. suzukii. Each condition was replicated ten times (both time points were pooled). Dashed line represents the normalized median for each macronutrient (0 = no macronutrient offset). Differences in font type (regular versus italic) between letters represent significant differences across least squared trends for a protein and b carbohydrates between the two species. C Amount of protein and carbohydrate ingested in the two-choice assay. Each dot represents the mean value of 10 replicates, except the triangles, which represent the average intake target for both species calculated from the pooled data of all treatments/time points. Error bars are 95% confidence intervals of the means. Twenty larvae were offered a choice between two protein to carbohydrate (P:C) ratios in three different combinations. Larvae were able to forage for 2 or 4 h and each time point was replicated ten times. The quantity of food in the larval gut was determined by spectrophotometer. D The figures show the percentage of the total amount of food ingested that corresponded to the higher protein food (1:1 for the first and second food pairs, and 1.5:1 for the third food pair) found in the guts of D. suzukii and D. biarmipes larvae in the two-choice assay. Black asterisks represent significant differences to no choice (50%-dashed black line—see Additional file 13: Table S10) and grey asterisks represent significant differences between species for the same diet (Least squared means comparison, see Additional file 14: Table S11)

Back to article page