Skip to main content

Table 1 Six families of 1-dimensional dispersal kernels used in this study, together with their characteristics. The mean distance travelled is obtained from δ = ∫ − ∞ + ∞ | x | γ ( x ) d x MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF0oazcqGH9aqpdaWdXbqaamaaemaabaGaemiEaGhacaGLhWUaayjcSdGae83SdCMaeiikaGIaemiEaGNaeiykaKIaemizaqMaemiEaGhaleaacqGHsislcqGHEisPaeaacqGHRaWkcqGHEisPa0Gaey4kIipaaaa@42AA@ . Expression Γ() stands for the Gamma function.

From: Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential

Kernel families

Expression

Parameters values

Weight of the tail

Mean distance travelled, δ

Exponential

γ 1 ( x ) = 1 2 α exp ( − | x α | ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeGymaedabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9maalaaabaGaeGymaedabaGaeGOmaiJae8xSdegaaiGbcwgaLjabcIha4jabcchaWnaabmaabaGaeyOeI0YaaqWaaeaadaWcaaqaaiabdIha4bqaaiab=f7aHbaaaiaawEa7caGLiWoaaiaawIcacaGLPaaaaaa@442C@

α>0

Rapidly varying

Exponential

α

Gaussian

γ 2 ( x ) = 1 π α exp ( − x 2 α 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeGOmaidabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9maalaaabaGaeGymaedabaWaaOaaaeaacqWFapaCaSqabaGccqWFXoqyaaGagiyzauMaeiiEaGNaeiiCaa3aaeWaaeaacqGHsisldaWcaaqaaiabdIha4naaCaaaleqabaGaeGOmaidaaaGcbaGae8xSde2aaWbaaSqabeaacqaIYaGmaaaaaaGccaGLOaGaayzkaaaaaa@4449@

α>0

Rapidly varying

Thin-tailed

α π MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaGGaciab=f7aHbqaamaakaaabaGae8hWdahaleqaaaaaaaa@3035@

Power-law

γ 3 ( x ) = a − 1 2 α ( 1 + | x α | ) − a MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeG4mamdabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9maalaaabaGaemyyaeMaeyOeI0IaeGymaedabaGaeGOmaiJae8xSdegaamaabmaabaGaeGymaeJaey4kaSYaaqWaaeaadaWcaaqaaiabdIha4bqaaiab=f7aHbaaaiaawEa7caGLiWoaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiabdggaHbaaaaa@457E@

α>0

a>1

Regularly varying

Fat-tailed

α a − 2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaGGaciab=f7aHbqaaiabdggaHjabgkHiTiabikdaYaaaaaa@318C@

Exponential power

γ 4 ( x ) = c 2 α Γ ( 1 / c ) exp ( − | x α | c ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeGinaqdabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9maalaaabaGaem4yamgabaGaeGOmaiJae8xSdeMaeu4KdCKaeiikaGIaeGymaeJaei4la8Iaem4yamMaeiykaKcaaiGbcwgaLjabcIha4jabcchaWnaabmaabaGaeyOeI0YaaqWaaeaadaWcaaqaaiabdIha4bqaaiab=f7aHbaaaiaawEa7caGLiWoadaahaaWcbeqaaiabdogaJbaaaOGaayjkaiaawMcaaaaa@4C56@

α,c>0

Rapidly varying

Thin-tailed for c>1

Fat-tailed for c<1

Exponential for c = 1

α Γ ( 2 / c ) Γ ( 1 / c ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFXoqydaWcaaqaaiabfo5ahjabcIcaOiabikdaYiabc+caViabdogaJjabcMcaPaqaaiabfo5ahjabcIcaOiabigdaXiabc+caViabdogaJjabcMcaPaaaaaa@3AE2@

2Dt

γ 5 ( x ) = Γ ( a ) α π Γ ( a − 1 2 ) ( 1 + x 2 α 2 ) − a MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeGynaudabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9maalaaabaGaeu4KdCKaeiikaGIaemyyaeMaeiykaKcabaGae8xSde2aaOaaaeaacqWFapaCaSqabaGccqqHtoWrdaqadaqaaiabdggaHjabgkHiTmaalaaabaGaeGymaedabaGaeGOmaidaaaGaayjkaiaawMcaaaaadaqadaqaaiabigdaXiabgUcaRmaalaaabaGaemiEaG3aaWbaaSqabeaacqaIYaGmaaaakeaacqWFXoqydaahaaWcbeqaaiabikdaYaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiabdggaHbaaaaa@4DF5@

α>0

a>1/2

Regularly varying

Fat-tailed

α π ( a − 1 ) Γ ( a ) Γ ( a − 1 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaGGaciab=f7aHbqaamaakaaabaGae8hWdahaleqaaOGaeiikaGIaemyyaeMaeyOeI0IaeGymaeJaeiykaKcaamaalaaabaGaeu4KdCKaeiikaGIaemyyaeMaeiykaKcabaGaeu4KdC0aaeWaaeaacqWGHbqycqGHsisldaWcaaqaaiabigdaXaqaaiabikdaYaaaaiaawIcacaGLPaaaaaaaaa@40A9@

Mixture of two Gaussians

γ 6 ( x ) = p ( 1 π α 1 e − x 2 / α 1 2 ) + ( 1 − p ) ( 1 π α 2 e − x 2 / α 2 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFZoWzdaWgaaWcbaGaeGOnaydabeaakiabcIcaOiabdIha4jabcMcaPiabg2da9iabdchaWnaabmaabaWaaSaaaeaacqaIXaqmaeaadaGcaaqaaiab=b8aWbWcbeaakiab=f7aHnaaBaaaleaacqaIXaqmaeqaaaaakiabdwgaLnaaCaaaleqabaWaaSGbaeaacqGHsislcqWG4baEdaahaaadbeqaaiabikdaYaaaaSqaaiab=f7aHnaaDaaameaacqaIXaqmaeaacqaIYaGmaaaaaaaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaeGymaeJaeyOeI0IaemiCaahacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiabigdaXaqaamaakaaabaGae8hWdahaleqaaOGae8xSde2aaSbaaSqaaiabikdaYaqabaaaaOGaemyzau2aaWbaaSqabeaadaWcgaqaaiabgkHiTiabdIha4naaCaaameqabaGaeGOmaidaaaWcbaGae8xSde2aa0baaWqaaiabikdaYaqaaiabikdaYaaaaaaaaaGccaGLOaGaayzkaaaaaa@5ADB@

α1≠α2

p>0

Rapidly varying

Thin-tailed (but leptokurtic)

p α 1 π + ( 1 − p ) α 2 π MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGWbaCdaWcaaqaaGGaciab=f7aHnaaBaaaleaacqaIXaqmaeqaaaGcbaWaaOaaaeaacqWFapaCaSqabaaaaOGaey4kaSYaaeWaaeaacqaIXaqmcqGHsislcqWGWbaCaiaawIcacaGLPaaadaWcaaqaaiab=f7aHnaaBaaaleaacqaIYaGmaeqaaaGcbaWaaOaaaeaacqWFapaCaSqabaaaaaaa@3D24@