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Abstract
Background: Plotless density estimators are those that are based on distance measures rather
than counts per unit area (quadrats or plots) to estimate the density of some usually stationary
event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance
measures between events and from random points to events to derive an estimate of density. The
error and bias of these estimators for the various spatial patterns found in nature have been
examined using simulated populations only. In this study we investigated eight plotless density
estimators to determine which were robust across a wide range of data sets from fully mapped
field sites. They covered a wide range of situations including animal damage to rice and corn, nest
locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied
to sample the data sets, and in all cases the error of the estimate (measured as relative root mean
square error) was reduced with increasing sample size. The method of calculation and ease of use
in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in
their original published forms, although the variable area transect (VAT) and ordered distance
methods have been the subjects of optimization studies.

Results: An estimator that was a compound of three basic distance estimators was found to be
robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can
be used either with the basic distance formula or the formula used with the Kendall-Moran
estimator in which case a reduction in error may be gained for sample sizes less than 25, however,
there is no improvement for larger sample sizes. The variable area transect (VAT) method
performed moderately well, is easy to use in the field, and its calculations easy to undertake.

Conclusion: Plotless density estimators can provide an estimate of density in situations where it
would not be practical to layout a plot or quadrat and can in many cases reduce the workload in
the field.
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Background
Plotless density estimators are those that based on dis-
tance measures rather than counts per unit area (quadrats
or plots) to estimate the density of some fixed event, e.g.
burrow openings, damage to plant stems, etc. Plotless
density estimators can provide an estimate of density in
situations where it would not be practical to layout a plot
or quadrat, e.g. difficult terrain, crops, situations where a
low impact is required. These techniques make certain
assumptions about the spatial distribution of the event
that in the worst case assume that the event is randomly
distributed, a situation that occurs infrequently in nature.
Other techniques permit greater degrees of non-random-
ness. It is important therefore to understand when a cer-
tain plotless density estimator is robust to departures from
non-randomness.

An evaluation of which plotless density estimator (PDE)
is suitable for a given field situation requires examination
of fully enumerated field populations and is ideally suited
to computer simulation. Inferences about PDEs using
simulated populations [1] are limited because field data
rarely consists of a single type of spatial pattern. Instead
natural populations tend to occur as a mixture of spatial
patterns at various levels of intensity and grain (intensity
is the variability in pattern seen from place to place and

grain is an expression of the amount of spacing between
them, [2]). Some plotless density estimators are better at
handling departures from randomness due to the inten-
sity and grain of the overall spatial pattern.

Methods
Estimation Methods Used
We selected the eight best estimators from the 24 evalu-
ated by [1] to test using seventeen fully enumerated field
data sets. In the discussion that follows the closest individ-
ual (CI) is the individual that is closest to the random
sample point and this individual can have a nearest neigh-
bor (NN). The closest individual to the NN is referred to
as the second nearest neighbor (2NN). One or more of the
following distances need to be measured depending on
the estimator: from the ith random point to the first, sec-
ond or third closest individual; from the closest individual
to the first or second nearest neighbor and; the distance
from a transect baseline of width w, to the gth event such
that all g events are within the transect. Estimators used in
this study (Table 1) comprise four general types: basic dis-
tance; Kendall-Moran; ordered distance and angle order;
and variable area transect. The quadrat method was done
to check that the simulation routines were working cor-
rectly (see Additional file 1) and not as an explicit test of
this method as this has been done elsewhere [1,3]. No

Table 1: Summary of estimators used, their formulae and main reference.

Estimator Formula§ Reference

Basic Distance (BD) estimators
Compound of CI, NN & 2NN (BDAV3) BDCI = 1/(4 [∑ R(1)i/N]2) [1]

BDNN = 1/(2.778 [∑ H(1)i/N]2

BD2N = 1/(2.778 [∑ H(2)i/N]2

BDAV3 = (BDCI + BDNN + BD2N)/3
Kendall-Moran (KM) estimators
CI and NN Search areas pooled (KMP) KMP = {[∑ (pi + ni)] - 1}/∑ Bi [5,6]
CI, NN and 2NN search areas pooled (KM2P) KM2P = {[∑ (pi + ni + mi)] - 1}/∑ Ci [5]
Ordered Distance (OD) estimators
Second Closest Individual (OD2C) OD2C = (2N - 1)/π∑ (R(2)i)2 [7,8]
Third closest Individual (OD3C) OD3C = (3N - 1)/π∑ (R(3)i)2

Angle-Order (AO) estimators
Second closest individual in each quadrant (AO2Q) [7,8]

Third closest individual in each quadrant (AO3Q) [7,8]

Variable Area Transect (VAT)
Variable Area Transect V AT = (3N - 1)/(w∑ li) [9]
Quadrat (QUAD)
Quadrat QUAD = ∑ qi/liwiN) [17]

CI – closest individual, NN – nearest neighbor, 2NN – second nearest neighbor. R(1)i = the distance from the ith sample point to the CI; R(2)i = the 
distance from the ith sample point to the second CI; R(3)i = the distance from the ith sample point to the third CI; R(3)ij = the distance from the ith 

sample point to the third CI for the jth quadrant; H(1)i = the distance from the ith CI to its NN; H(2)i = the distance from the NN at the ith random 
point; pi, ni, mi = the number of Cis, NNs and 2nd NNs respectively, Bi = the total search area at the ith sample point for the CI and NN combined; 
Ci, = the total search area at the ith sample point for the CI, its NN, and the second NN combine; N = the sample size (number of random sample 
points used to gather distance information); wi = width of quadrat; w = width of transect; li = length of quadrat.

AO Q N R ij2 28 1 2
2= ∑/ / ( )p

AO Q N R ij3 44 1 3
2= ∑/ / ( )p
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attempt was made to optimize the dimensions of the
quadrat or the VAT. The latter has been dealt with explic-
itly elsewhere [4].

Basic distance estimators assume a random spatial pattern
and the measurements taken are similar to those used for
deriving indices of aggregation [2]. Only one basic dis-
tance estimator is considered in this paper. It is the aver-
age of three basic distance estimators that measure the
distance to the closest individual, the nearest neighbor
and the second nearest neighbor [1].

Kendall-Moran estimators, [5,6] although relatively sim-
ple to implement in the field, these methods present cal-
culation difficulties in order to derive the density estimate.
Calculations are complicated because the estimator uses
combined search areas, i.e. the area that must be traversed
to locate the required individual, minus their intersection
(Figure 1). While this is difficult enough for the closest
individual and the nearest neighbor search area it
becomes a great deal more difficult when the second near-
est neighbor search area is also considered. An algorithm
for its calculation was originally developed for the simu-
lations by [1], and was incorporated into the simulation
programs used here.

Ordered distance and angle order methods[7,8] are very
similar. Both utilize distance to the closest individual.
Angle order methods use measurements within each of a
specified number of sectors surrounding the random sam-

pling point while ordered distance methods use the whole
search area around the sampling point. Angle order meth-
ods are less effected by non-randomness in a clumped
population if the events are essentially random within
each sector. Both types of estimator can be extended to use
more than the first closest individual and in angle-order
methods these measurements are repeated for each sector.

The variable area transect method uses a fixed width, var-
iable length transect that is extended until the gth individ-
ual is encountered. In this study we used g = 3. A random
distribution of events is assumed since the method relies
on density being a function of transect length. [9] suggests
that pre-sampling should be undertaken to ensure that
homogenous strata could be defined, although [1] found
it to be fairly robust. This method is easy to use in the field
as the user needs only to search a strip transect in one
direction. Transect width is the most important factor
affecting estimation quality [10]. Transect width was set at
2 m to avoid comparisons becoming difficult between
optimised and unoptimised estimators.

Simulation Study Design and Data Sets
Eight plotless density estimators were examined in the
present study using 5000 Monte Carlo simulations, Table
1. The simulation program was written in Fortran 77, and
each simulation was a specific combination of a spatial
data set and sample size (10, 25, 50 and 100 samples per
simulation were undertaken). The uniform random
number generator, UNIF [11], was used to locate sam-
pling points and, where required, the VNORM routine
[11] was used to convert uniform random numbers to
normal random numbers to generate the synthetic data
sets used for comparison with natural data sets (see
below). The input for each simulation included: the name
of the data file containing the location of all events as X-Y
coordinates on a Cartesian plane; selects the number of
samples to be taken; the sizes of the VAT width and quad-
rat; an output file specification and; the number of simu-
lations to be performed. These inputs were provided
within in a batch-processing environment and could be
left to run unattended. The output file, one for each data
set comprised the estimated density, relative bias and rel-
ative root mean square error for each estimator.

Natural data sets
Seventeen data sets (Table 2) were obtained from unpub-
lished studies by the authors and colleagues that included
animal damage to rice and corn, bird nest locations, active
rodent burrows and distribution of plants. Densities
ranged from 0.06 m-2 (bee-eater nest sites) to 19.3 m-2

(damaged sugar). A boundary strip of 10% of the length
and width of the extent of the population of points was
used to remove the bias associated with sampling close to
the edge of the study area.

Schematic representation of how KM2P and BDAV3 are implemented in the fieldFigure 1
Schematic representation of how KM2P and BDAV3 
are implemented in the field. Shading shows the search 
area less intersection used in the calculation of KM2P. R – 
the random sample point CI – closest individual; NN – near-
est neighbor; 2NN – second nearest neighbor, R(1)i = the dis-
tance from the ith sample point to the CI; H(1)i = the distance 
from the ith CI to its NN; H(2)i = the distance from the NN at 
the ith random point.
Page 3 of 11
(page number not for citation purposes)



BMC Ecology 2008, 8:6 http://www.biomedcentral.com/1472-6785/8/6
For ground or cliff nesting birds the density of nest sites
provide important information on the number of breed-
ing females or pairs. Two data sets were used with densi-
ties of 0.06 (bee eater) and 3.2 m-2 (Alaskan waterfowl
nests).

Burrowing species such as gophers and rabbits can be
monitored through the presence of active burrows. Two
data sets of a population of pocket gophers measured in
two successive years were used to demonstrate the appli-
cation of PDE as a suitable method for monitoring popu-
lations.

The use of PDEs for monitoring damage to crops was done
using corn and rice in the Philippines, and sugar cane in
Hawaii.

The remaining data set is from a coastal sand island, north
of Brisbane, Australia. Grass trees, Xanthorrhoea sp., grow
in heath communities inland from the foredunes. Unlike
the crop data sets these are naturally occurring communi-
ties.

Simulated data sets
Five data sets whose spatial characteristics were predeter-
mined were also included for comparison. The artificial
data sets (where n is the number of individuals, λ is the
density m-2) had distributions that were Poisson (n = 100,
λ = 1), uniform – regular lattice (n = 100, λ = 1), hexago-
nal – regular triangular (n = 100, λ = 0.9), first-order
clumped (n = 100, λ = 1.1, number of offspring per parent
(nop) = 10, clump radius (cr) = 0.5 m) and second order
clumped (n = 100, λ = 2.1, nop = 10, cr = 0.5 m). The Pois-
son or random pattern was created by generating the
required number of random coordinates within the desig-

nated area. The uniform data set was generated by first
dividing the area into a grid of rectangles, the same
number as the population size. One population member
was randomly located within each grid cell. The hexago-
nal pattern was generated so that population members
were located at the vertices of a lattice of equilateral trian-
gles. For the clumped data sets, the required number of
clump centers was randomly created within the desig-
nated area. In addition to the clump center point, off-
spring for the clumps were located within a designated
radius from the parent. These offspring were located
within the clump about the parent using coordinates ran-
domly generated using a standard bivariate normal distri-
bution. For the second order clumping, the individuals in
the clump are used for parent points. The two individuals
of the sub-clumps include the parent plus offspring
points, which are randomly generated from the standard
bivariate normal distribution. The radius for the sub-
clump is limited to half that for the clump. The second
order clumping approximates the situation that can occur
with rodent damage in field crops.

Statistics
The relative root mean square error (RRMSE) was used as
the basis of comparisons between the different PDEs
[1,12], where I is the number of simulations (5000), Dest
is the estimated density and λ is the true density in the
population, such that:

In addition, relative bias (RBIAS) shows the bias relative
to the true density and the direction of that bias such that:

RRMSE
Dest

I
= −∑( ) /l l2 2

Table 2: Description of data sets used and density of the event.

Data Set Description n Dimensions (m) Density (m-2)

Bee eater Bee eater nest sites 64 41.5*24 0.06
Corn 1 Rat damage to corn in the Philippines for three different fields 2406 89.25*103.2 0.26
Corn 2 1596 86.25*121.6 0.15
Corn 3 1342 99.2*96.75 0.14
PG 92 Active pocket gopher burrows – 1992 132 28.5*22 0.21
PG 93 Active pocket gopher burrows – 1993 136 32.6*22.5 0.19
Rice 1 Rat damage to rice in the Philippines for five different fields 1678 63.5*12.25 2.16
Rice 2 177 7.31*16.66 1.45
Rice 3 3105 17.8*19.8 8.81
Rice 4 262 18.36*8.16 1.75
Rice 5 275 21.08*7.99 1.63
Sugar 1 Rat damage in sugarcane, Mauna Kea Agribusiness fields, Hawaii, USA 921 7.99*5.96 19.34
Sugar 2 199 7.77*5.94 4.31
Sugar 3 689 7.98*5.98 14.44
Sugar 4 174 7.48*6.52 3.57
Waterfowl Alaskan waterfowl nests 497 26.3*5.9 3.20
Xanth Distribution of grass trees (Xanthorrhoea sp.), Bribie Island, Queensland, Australia 748 25*50 0.60
Page 4 of 11
(page number not for citation purposes)



BMC Ecology 2008, 8:6 http://www.biomedcentral.com/1472-6785/8/6
The R index, [13], was calculated for all data sets (Table 3)
including examples of simulated distributions such that:

where RO is the average observed nearest neighbor dis-
tance, ri is the nearest neighbor distance to the ith sample
point and n is number of nearest neighbor distances
measured;

where RE is the expected nearest neighbor distance for a
random pattern of events;

R was calculated for the complete data set less a 10%
buffer. When the pattern is entirely random R = 1, if the
events are uniform then R > 1 (R = 2.149 for a perfect hex-

agonal uniform distribution) and conversely when the
population of events is clumped R < 1 (R approaches 0 for
maximally clumped distributions). The z test statistic was
calculated that measured the difference between the
observed and expected values of R, i.e. it considers a null
hypothesis that the spatial distribution is random.

where se is the standard error of RE

A Spearman (rank) correlation coefficient was calculated
between the log of (λ) and the log of Dest for AO3Q,
BDAV3, KM2P and VAT across all natural data sets.

Results and Discussion
Interpretation of the performance of estimators based on
relative root mean square error (RRMSE) (Table 4) and
relative bias (RBIAS) (Table 5) was undertaken for estima-
tors that were ranked highly by [1] (Table 1) for the natu-
ral and simulated data sets described in Tables 2 and 3.
Complete results of the simulations are provided in Addi-
tional file 1.

RBIAS
Dest I= −∑( / ) l

l

R

ri
i

n

nO = =
∑

1

R E = 1
2 l

R = RO
RE

z
RO RE

se
=

−

se
n

= 0 26136.
l

Table 3: R index, standard error of expected mean, s, and z statistic [13] for the data sets used. When the pattern is entirely random R 
= 1, if the events are uniform then R > 1 (R = 2.149 for a perfect hexagonal uniform distribution) and conversely when the population of 
events is clumped R < 1 (R approaches 0 for maximally clumped distribution). The z test statistic considers the null hypothesis that the 
spatial distribution is random. Data sets comparable to those generated in [1] in italics.

Dataset R s z Pattern

Hexagonal 2.15 0.003 76.53 Uniform
Rice 3 1.41 0.002 39.57 Uniform
PG 92 1.36 0.067 6.16 Uniform
Bee-eater 1.34 0.086 8.17 Uniform
PG 93 1.3 0.077 4.9 Uniform
Uniform 1.25 0.003 17.34 Uniform
Rice 1 1.08 0.004 6.12 Uniform
Rice 5 1.04 0.016 0.99 Random
Poisson 0.98 0.003 -1.1 Random
Rice 4 0.94 0.013 -1.59 Random
Xanth 0.89 0.017 -4.3 Clumped
Corn 1 0.88 0.014 -8.69 Clumped
Rice 2 0.88 0.019 -2.43 Clumped
Sugar 1 0.83 0.002 -8.15 Clumped
Clump 1 0.8 0.003 -14.79 Clumped
Clump 2 0.8 0.002 -16.34 Clumped
Sugar 3 0.76 0.003 -9.45 Clumped
Corn 2 0.75 0.039 -11.12 Clumped
Sugar 4 0.7 0.011 -6.57 Clumped
Waterfowl 0.65 0.007 -12.6 Clumped
Sugar 2 0.64 0.013 -7.32 Clumped
Corn 3 0.47 0.043 -21.97 Clumped
Page 5 of 11
(page number not for citation purposes)



BMC Ecology 2008, 8:6 http://www.biomedcentral.com/1472-6785/8/6
An ideal estimator is one that is robust across many spatial
patterns, i.e. RRMSE and RBIAS are low, and where the
amount of fieldwork required can be minimized or at
least be undertaken efficiently. Basic distance estimators
were largely dismissed by [1] because they showed poor
performance for clumped data sets, however, they per-
formed much better in this study than most other meth-
ods with the exception of the angle-order estimators
(Table 4). Across all data sets the compound estimator,
BDAV3 (Figure 1), was the best-ranked method for sam-

ple sizes greater than 10 and performed well in terms of
bias. BDAV3 was less suited for Poisson distributions. For
these distributions Kendall-Moran estimator (KM2P) was
ranked first when sample size was 10 or 25. For sample
sizes of 50 or 100 the variable area transect (VAT) method
was ranked first. The highest ranked estimators for the
clumped distribution were the two angle order estimators
AO3Q (Figure 2) and AO2Q. The VAT performed moder-
ately well overall and is far easier to implement in many
situations.

Table 5: Mean relative bias for 10, 25, 50 and 100 samples/
simulation for each density estimator for each spatial pattern 
(see Table 3)

Sample size Sample size

RBIAS Rank

Estimator 10 25 50 100 10 25 50 100

Uniform (n = 5)
AO2Q 0.222 0.225 0.225 0.225 8 8 8 8
AO3Q 0.205 0.207 0.207 0.207 7 7 7 7
BDAV3 -0.095 -0.136 -0.147 -0.154 4 4 5 6
KM2P -0.136 -0.145 -0.148 -0.150 6 6 6 5
KMP -0.130 -0.141 -0.145 -0.148 5 5 4 4
OD2C -0.051 -0.077 -0.091 -0.097 1 1 2 2
OD3C -0.070 -0.091 -0.101 -0.106 2 3 3 3
VAT -0.074 -0.080 -0.081 -0.083 3 2 1 1

Poisson (n = 2)
AO2Q 0.324 0.324 0.326 0.325 8 8 8 8
AO3Q 0.295 0.295 0.296 0.296 7 7 7 7
BDAV3 0.073 0.014 -0.002 -0.009 6 2 2 2
KM2P -0.037 -0.050 -0.052 -0.052 3 4 4 3
KMP -0.070 -0.089 -0.092 -0.094 5 6 6 6
OD2C -0.045 -0.065 -0.070 -0.071 4 5 5 5
OD3C -0.031 -0.047 -0.051 -0.052 2 3 3 4
VAT 0.019 0.005 0.000 -0.003 1 1 1 1

Clumped (n = 10)
AO2Q -0.079 -0.082 -0.081 -0.080 2 3 3 3
AO3Q -0.063 -0.065 -0.065 -0.064 1 2 2 2
BDAV3 0.080 -0.008 -0.036 -0.049 3 1 1 1
KM2P -0.319 -0.325 -0.333 -0.337 4 4 4 4
KMP -0.350 -0.377 -0.386 -0.391 5 5 5 5
OD2C -0.410 -0.435 -0.444 -0.447 8 8 8 8
OD3C -0.376 -0.399 -0.407 -0.410 7 7 7 7
VAT -0.365 -0.387 -0.393 -0.396 6 6 6 6

All (n = 17)
AO2Q 0.055 0.054 0.055 0.055 2 2 1 1
AO3Q 0.056 0.056 0.056 0.056 3 3 2 2
BDAV3 0.033 -0.039 -0.061 -0.072 1 1 3 3
KM2P -0.227 -0.241 -0.246 -0.249 4 4 4 4
KMP -0.254 -0.276 -0.282 -0.286 7 7 7 7
OD2C -0.266 -0.290 -0.300 -0.304 8 8 8 8
OD3C -0.248 -0.270 -0.278 -0.281 6 6 6 6
VAT -0.236 -0.253 -0.257 -0.260 5 5 5 5

Table 4: Mean relative root mean square error for 10, 25, 50 and 
100 samples/simulation for each density estimator and each 
spatial pattern for the natural data sets (see Table 3)

Sample size Sample size

RRMSE Rank

Estimator 10 25 50 100 10 25 50 100

Uniform (n = 5)
AO2Q 0.306 0.266 0.247 0.238 7 8 8 8
AO3Q 0.280 0.247 0.232 0.224 6 7 7 7
BDAV3 0.254 0.202 0.182 0.173 3 5 5 5
KM2P 0.247 0.199 0.177 0.166 1 3 3 4
KMP 0.256 0.201 0.177 0.165 4 4 4 3
OD2C 0.307 0.229 0.202 0.188 8 6 6 6
OD3C 0.251 0.182 0.157 0.143 2 1 1 1
VAT 0.258 0.194 0.167 0.148 5 2 2 2

Poisson (n = 2)
AO2Q 0.392 0.353 0.341 0.333 8 8 8 8
AO3Q 0.345 0.316 0.307 0.302 7 7 7 7
BDAV3 0.270 0.157 0.114 0.091 4 3 3 3
KM2P 0.232 0.149 0.111 0.088 1 1 2 2
KMP 0.288 0.193 0.153 0.130 5 5 5 5
OD2C 0.304 0.199 0.159 0.131 6 6 6 6
OD3C 0.253 0.160 0.123 0.098 2 4 4 4
VAT 0.256 0.154 0.107 0.077 3 2 1 1

Clumped (n = 10)
AO2Q 0.390 0.321 0.293 0.277 2 2 3 3
AO3Q 0.362 0.307 0.284 0.271 1 1 1 2
BDAV3 0.461 0.331 0.287 0.263 6 3 2 1
KM2P 0.424 0.374 0.361 0.354 3 4 4 4
KMP 0.468 0.427 0.413 0.406 7 7 6 6
OD2C 0.491 0.466 0.459 0.455 8 8 8 8
OD3C 0.448 0.426 0.420 0.417 5 6 7 7
VAT 0.439 0.414 0.407 0.403 4 5 5 5

All (n = 17)
AO2Q 0.368 0.311 0.287 0.274 4 4 4 4
AO3Q 0.338 0.292 0.273 0.263 1 2 2 2
BDAV3 0.380 0.273 0.236 0.216 6 1 1 1
KM2P 0.346 0.297 0.279 0.269 2 3 3 3
KMP 0.387 0.335 0.316 0.305 7 7 7 7
OD2C 0.417 0.367 0.350 0.340 8 8 8 8
OD3C 0.369 0.325 0.311 0.301 5 6 6 6
VAT 0.366 0.321 0.303 0.291 3 5 5 5
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Absolute relative bias (i.e. regardless of sign) for the AO
and BD estimators was an order of magnitude smaller
than the others for clumped data sets. However, AO esti-
mators showed higher positive bias for Poisson data sets
compared to the near zero for the others. In uniform data
sets the OD and VAT estimators showed a RBIAS close to
zero.

BDAV3 and KM2P use the same field methodology, how-
ever, data processing is much simpler for BD than for KM
estimators. These estimators use information from the
closest individual, distance to its nearest neighbor and the
second nearest neighbor and that may help to explain why
they are robust across all spatial patterns studied here,
compared to estimators such as AO that rely on informa-
tion derived from the closest individual.

Whereas the calculation for KM2P looks deceptively sim-
ple (Table 1, Figure 1), delineating search areas has to be
done algorithmically when the number of samples is real-
istically large and this difficulty needs to be considered
beforehand. The KM calculation is suggested when the
distribution is likely to be uniform. The formulae AO3Q
is simple to undertake and the methods are suited to situ-
ations where movement and/or vision is good, e.g. it may
not be suitable for crops where excessive movement
would cause damage. The estimator with the lowest
RRMSE for each data type for a sample size of 50 was: uni-
form – OD3C, poisson – VAT, clumped – AO3Q, overall
– BDAV3.

For uniform patterns the OD3C, VAT or KM2P methods
were the most suitable, however, the method of searching
in VAT is the simplest to implement. The fieldwork
required for BDAV3 and KM2P are the same and although
BDAV3 is much easier to calculate it is less able to cope
with uniform data sets. The selection of the required sam-
ple size should be undertaken on a case-by-case basis
using a pilot study. Accuracy will be improved with larger
sample sizes and the techniques used to minimize the var-
iance through stratified sampling, randomization, etc.
should be employed.

The VAT method would seem the most straightforward to
utilize in most field situations, and under optimized sam-
pling constraints the method holds promise for row crops
[14]. In comparisons between the known density and the
mean estimated density (Figure 3), the VAT had the lowest
correlation coefficient of the four estimators tested in this
way, although this was still 0.95. This suggests that rank-
ing solely on RRMSE might lead one to favor methods
that are difficult to implement in the field.

Furthermore, the present study aimed to examine PDE
methods as originally presented, without attempting to
improve performance through optimizing procedures.
Thus we examined VAT sampling using g = 3. The number
of individuals for which to search has been optimized
with substantial improvements in estimation quality for g
≥ 5 [4,10,14]. Other than the KM2P estimator, most other
PDE forms hold opportunity for improving estimation by
optimizing the number of population members for which
to search. [15] examined this for ordered distance estima-
tion using simulated data sets similar to the approach
taken by [4]. Angle-order methods could be optimized for
the number of individuals to search in each sector, and the
number of sectors into which the search area around the
random sampling point is divided.

When damage is the event to be estimated and is caused
by an animal that invades a crop or forestry coup it is
usual to find the damage along the edge. Figures 4a-d
show the diversity of spatial patterns exhibited in the data
sets. Figure 4a shows the distribution of pocket gopher
burrows with a uniform distribution, while Figure 4b
shows an aggregated nesting pattern of waterfowl. Figure
4c shows a random pattern of rodent damage in rice while
4d is highly clumped damage within a cornfield.

Typically the data sets of damage were clumped, however,
random and uniform patterns were also found for data
sets that mapped the distribution of burrows or nest sites.
It is a characteristic of field data that the spatial pattern can
vary within the study area. This was demonstrated by
recalculating the R index for regions within the Corn 2
data set (Figure 5, Table 6). It is therefore advisable to

Schematic representation of how AO3Q is implemented in the fieldFigure 2
Schematic representation of how AO3Q is imple-
mented in the field. The order of the quadrants is arbi-
trary. In practice much time is spent deciding which is the 
third closest individual and into which quadrant an individual 
lies. R(3)ij = the distance from the ith sample point to the third 
CI for the jth quadrant.
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Correlation between mean density estimate against known density for all data setsFigure 3
Correlation between mean density estimate against known density for all data sets. Line shows complete agree-
ment between known and estimated density. Spearman's correlation coefficient shown in parentheses. Symbols denote spatial 
pattern of data set: Uniform – filled circle, Poisson – filled triangle, Clumped – open circle.
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Examples of diversity of spatial patterns foundFigure 4
Examples of diversity of spatial patterns found. (a) uniform distribution of pocket gopher burrows; (b) aggregated nest-
ing pattern of waterfowl; (c) random pattern of rodent damage in rice; (d) highly clumped damage within a cornfield.
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undertake an investigation of the spatial pattern present
and this can be done using either the [13] R index or the
[16] Hopkins and Skellam index as part of any prelimi-
nary study using blocking to detect regions of clumping as
it is this spatial pattern that causes the greatest problems

with many estimators. The latter index is probably more
applicable for field studies as it does not require an esti-
mate of density beforehand. Where clumping is present
angle order methods should be used.

Subsets within the highly clumped Corn 2 data set showing random and uniform patterns, see Table 6Figure 5
Subsets within the highly clumped Corn 2 data set showing random and uniform patterns, see Table 6.

region 1

region 2

region 3
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Conclusion
Plotless density estimators can provide an estimate of
density in situations where it would not be practical to
layout a plot or quadrat and can in many cases reduce the
workload in the field.
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Table 6: R index, standard error of expected mean, s, and z 
statistic [13] for subsets within Corn 2 see Figure 5.

Dataset R s z Pattern

Region 1 1.1 0.053 1.5 Random
Region 2 0.92 0.173 -1.23 Random
Region 3 1.21 0.047 3.21 Uniform
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