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Abstract

Background: Marine turtles deposit their eggs on tropical or subtropical beaches during discrete
nesting seasons that span several months. The number and distribution of nests laid during a nesting
season provide vital information on various aspects of marine turtle ecology and conservation.

Results: In the case of leatherback sea turtles nesting in French Guiana, we developed a
mathematical model to explore the phenology of their nesting season, derived from an incomplete
nest count dataset. We detected 3 primary components in the nest distribution of leatherbacks: an
overall shape that corresponds to the arrival and departure of leatherback females in the Guianas
region, a sinusoidal pattern with a period of approximately 10 days that is related to physiological
constraints of nesting female leatherbacks, and a sinusoidal pattern with a period of approximately
I5 days that likely reflects the influence of spring high tides on nesting female turtles.

Conclusion: The model proposed here offers a variety of uses for both marine turtles and also
other taxa when individuals are observed in a particular location for only part of the year.

Background

Many species migrate and hence are present at a particular
geographic location during only part of the year [1,2]. This
behavior often produces 'tidal-waves' in the density of
individuals along the migration route [3] with a lower fre-
quency signal at wintering or aestivating grounds where
the animals tend to stay longer. Accurate detection and
quantification of individuals of a population during

migration is challenging because the movement of indi-
viduals often masks or amplifies the true size of the pop-
ulation, particularly when not all individuals migrate each
year [4]. Periodic signals of high frequency may also be
observed even when animals are resident at a particular
location. For example, the presence of auklets peaks in the
morning and in the evening at some colonies [5]. In this
latter example, population estimates may vary depending
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on whether the crepuscular peaks in presence were taken
into account [5]. Marine turtles exhibit variable seasonal
migration patterns, with adult females being present on
nesting beaches for only part of the year [6]. When on the
beach, nesting sea turtles can be observed and counted as
part of estimating population size [7].

Calculating the size of a marine turtle population is an
essential step in assessing population status and trends
[eg. [8]]. There are various challenges associated with
directly counting the total number of individuals in a
marine turtle population, including cryptic life history
stages, trans-oceanic dispersal, and nonsequential annual
reproduction [9]. As a result, researchers have tradition-
ally relied on enumerating numbers of nests laid by a pop-
ulation as an index of population size [7]. Because marine
turtles nest often on open sandy tropical and subtropical
beaches, and because the adult females leave wide deep
tracks on the beach after nesting, it is a relatively easy task
to identify a sea turtle nesting crawl [10]. However, not
every crawl of a female sea turtle on the beach results in a
nest; for instance, when a female is disturbed before ovi-
position, she may abandon the nesting attempt before
successfully laying eggs [10]. If tracks from non-nesting
and nesting turtles are confounded during monitoring,
this may strongly bias the estimated number of nests laid
during a night. In the case of leatherbacks (Dermochelys
coriacea), this potential bias can be greatly reduced by
counting only those tracks that also contain a body-pit
made during the nesting process: it is relatively rare (<
10% of the time) for leatherbacks to abandon the nesting
process once they have made a body pit [10]. Another
challenge in counting sea turtle nests is that nesting sea-
sons usually span several months and turtles can lay their
eggs on remote beaches that are difficult to access. As a
result, for many sea turtle monitoring programs there are
often temporal and/or spatial gaps in monitoring effort
that must be corrected for, particularly when comparing
datasets from different years or populations.

Several correction factors for gaps in sea turtle nest counts
have been previously suggested [11-13]. One simple
method used to correct for an incomplete dataset from a
sea turtle nesting beach is 1 = n/(proportion of beach cov-
ered) [adapted from [30]]. This correction assumes that all
beach sections being monitored are homogeneous; a bias
is introduced if they are not. This may be irrelevant if the
introduced bias is constant and one is interested only in
trends of the abundance of adult females [14]. However,
if the sections of the beach surveyed are not similar from
year to year, the introduced bias will fluctuate, rendering
this simple correction factor unsuitable. A more compli-
cated situation occurs when there are temporal gaps dur-
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ing monitoring of the nesting season. As the temporal
distribution of nests during a season tends to be bell-
shaped, a simple extrapolation based on the proportion of
the season that was monitored to correct for temporal
gaps in nest monitoring will likely give false results. Fur-
thermore, the distribution of nests during the season is
dependent on many factors, such as the total number of
nesting females, the timing of initial nesting dates for
individual females and the distribution of total number of
nests laid during the season by each female. Marine turtles
are iteroparous [15], nesting up to 14 times in a single sea-
son in the case of leatherbacks in French Guiana [16]. The
internesting interval for females varies according to spe-
cies: from 10 days on average for leatherbacks [16] up to
28 days for olive ridley (Lepidochelys olivacea) females in
mass nesting events [17]. The internesting interval within
some species can vary with fluctuating water temperatures
[18].

The temporal pattern of internesting intervals within a
single nesting season can produce fluctuations in the total
distribution of nests, resulting in successive peaks of nests
on certain days during the nesting season. Peaks in nesting
activity every ~15 days in apparent synchrony with the
lunar phase and tide level have been observed on the
leatherback nesting beach of Ya:lima:po beach in French
Guiana [16]. This synchrony may be due to some females
adjusting their subsequent nesting date to coincide with a
particular lunar phase/tide level; nevertheless, the overall
mean internesting interval is 10 days for this population
[16].

The objective of this study was to develop a method that
can transform an incomplete dataset of nesting activity for
a sea turtle population into a dataset that accurately
describes both the pattern of nesting distribution during
the nesting season and any possible short-term fluctua-
tions. The gaps in the data could be both spatial and tem-
poral. The objective was achieved by both extrapolation
and interpolation, based on a derived realistic model of
the nesting season that included parameters that account
for variation in the shape of the nesting season. The result-
ant model is useful not only for calculating the total
number of nests laid (and its standard error) during an
entire season, but also for facilitating comparisons across
nesting beach datasets that contain dissimilar spatio-tem-
poral gaps.

We tested the developed method using an incomplete
leatherback nest count dataset (2002) on Ya:lima:po nest-
ing beach in French Guiana (Figure 1), and tested it using
a complete nest count dataset from 1987.
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Map of Ya:lima:po beach within the estuary of the Maroni and
Mana rivers. Nesting beach sections used in this study are
indicated in bold.

Results
Ya:lima:po entire beach — 2002 data (Table 1)
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A total of 3356 nests were counted during 171 field days
from 1/3/2002 until 31/12/2002 on the Ya:lima:po nest-
ing beach. The Akaike Information Content (AIC) of the 8
models describing the shape of the nesting season was
lowest when the K, parameter was fixed to 0. However, the
various model combinations with K; = 0 and/or K, = 0
had essentially the same support (i.e. Akaike weights were
similar). In contrast, the models with the min parameter
fixed to 0 showed considerable lower support. As outlined
above, our initial model selection criteria were a) low AIC
value and b) fewer parameters. From this, the initial
model we retained used 9 parameters (S;, P, S,, P,, Min,
Max, a, b, ¢). The goodness of fit for this model was r2 =
0.85 and it estimated a seasonal total of 4652 + 73SD
nests.

We added a sinusoid function to this pattern, by generat-
ing a map of -Ln Likelihood with varying ¢, and A, param-
eters (Figure 2). The maximum likelihood was observed

Table I: Model selection for leatherback nest counts on Ya:lima:po beach in 2002. Selected models are in bold.

Models rank by AIC -LnL Parameters AIC Akaike weights Nests & SD
A: No sinusoid Intra Inter

S, P, S, P, K, Max Min 47131 10 962.63 0.3393

S, P, K, S, P, Max Min 471.61 10 963.22 0.2525

S, P, S, P, Max Min 472.60 9 963.22 0.2520 0.0000 4652 SD 73
S, P, K, S, P, K, Max Min 471.16 I 964.32 0.1454

S, P, S, P, Max 477.79 8 971.57 0.0039

S, P, K, S, P, Max 476.80 9 971.61 0.0038

S, P, S, P, K, Max 477.59 9 973.18 0.0017

S, P, K, S, P, K, Max 476.79 10 973.58 0.0014

B: One sinusoid

A0, By 458.32 12 940.65 0.3413

A oo By 457.52 13 941.05 0.2793 0.0005 4719 SD 62
Ao T B, 457.57 13 941.14 0.2674

Aoyt oy By 457.45 14 942.90 0.1105

A, a, 463.76 12 951.52 0.0015

C: Two sinusoids

Ay &y 0, By 449.21 16 930.54 0.6065 0.0864 4716 SD 58
Ay &y T, 04 By 449.07 17 932.14 0.2730

Ay 0, B, 452.84 15 935.69 0.0463

Ay dy 04, 452.93 15 935.87 0.0423

Ay 0,7, By 452.21 16 936.42 0.0320

D: Three sinusoids

A; 0304 B5 44191 20 923.822 0.3994

Az 03 B3 442.95 19 923.900 0.3842 09132

A; 0373055 44191 21 925.822 0.1469

A; 0375 B 444.27 20 928.550 0.0376

A3 d3 04 445.44 19 928.878 0.0319
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Figure 2
Map of-Ln Likelihood with varying ¢, and A, parameters for
2002 nesting season.

for ¢, =9.5 and A, = 6.75. These values were used as initial
points to search for values of a;,8,, ¢;, A,, and T, parame-
ters that also maximized likelihood. We then searched for
a simpler model assuming o, = 0 and/or B, = 0 and/or T4
= |. The model with lowest AIC had a fitted value of 1.
However, based on Akaike weights, this model exhibited
a goodness of fit similar to the model with t, = 0 (0.50 vs.
0.49). As this latter model was simpler, we retained it for
further tests. When one sinusoid was added, the AIC =
940.65, much lower than AIC = 963.22 prior to the addi-
tion of the sinusoid. The goodness of fit for this model
was 12 = 0.87 and the total number of nests is estimated to
be 4719 + 62SD.

A second sinusoid was added using the same procedure.
The map of -Ln Likelihood showed a minimum for (¢, =
14 and A, = 4. These values were used as initial points to
search for values of a,, B,, ¢,, A,, and 1, parameters that
maximized likelihood. Then, we searched for a simpler
model by assuming o, = 0 and/or 3, = 0 and/or 1, = 1. The
model with the lowest AIC value assumed that 7, = L
When the second sinusoid was added, the AIC = 930.54
and was lower than the AIC obtained with one sinusoid
(AIC = 940.65). The goodness of fit for this two-sinusoid
model was 12 = 0.88 and the total number of nests it esti-
mated was 4716 + 58SD (Figure 3). The addition of a third

http://www.biomedcentral.com/1472-6785/6/11
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Figure 3

Leatherback nest distribution during the 1987 and 2002 nest-
ing seasons in Ya:lima:po nesting beach. Black points are the
nest counts. The central curve is the best fitted model and
the upper and lower curves are the error envelopes (+2 SD).
The vertical bars represent, from right to left, d+10%,
d+25%, d+50%, day at peak, d-50%, d-25%, d-10% values (see
text). -Ln L is -logarithm of maximum likelihood for the cor-
responding model and AIC is the Akaike Information Con-
tent.

sinusoid gave the model lower a AIC (923.90), but based
on Akaike weight the overall fit was not significantly bet-
ter than the model with only two sinusoids. Therefore, the
best-fit model based on both AIC and Akaike weight crite-
ria had two sinusoids.

Analysis of beach sections — 2002 data

Nest distribution for each beach section (Figure 1) was fit-
ted as previously described. A homogeneity test showed
that the global shape of nesting was significantly different
for the four beach sections (LRT = 391.65, DF = 18, p <
0.0001). A similar conclusion was obtained when only
the beginning of the nesting season was assumed to be
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identical (LRT = 67.23, DF = 9, p < 0.0001) or the end of
nesting season was assumed to be identical (LRT =294.27,
DF =9, p <0.0001). The index d+10% that describes the
beginning of the nesting season showed a significant spa-
tial tendency, with the nesting season beginning later in
the western section of the beach (Kendall rank correla-
tion, p = 0.04), but no spatial influence was observed for
either the peak of the season or the d-10% descriptor of
the end of the nesting season (p > 0.05).

Although the shapes of nest distribution among the differ-
ent beach sections were significantly different, the use of a
single model for the global shape of nest distribution dur-
ing the nesting season did not affect the estimates of total
nest numbers for each zone (Figure 4).

When one sinusoid with a period varying from 5 to 16
days by steps of 0.25 days was added to the models, the
beach sections also showed strong differences. Indeed, the
sinusoidal period appeared to be different according to
the position of the beach section analyzed. The 14.25-
days signal was significantly strong within section I
whereas the 9.8-days signal was significantly strong
within section IV (Figure 5).

Ya:lima:po entire beach — 1987 data (Table 2)

A total of 33337 nests were counted during 178 field days
from 1/3/1987 until 15/9/1987 on Ya:lima:po nesting
beach. Only 22 daily counts were missing at the end of the
nesting season. This time-series can therefore be consid-

Number of nests

5000 - .

Shape of nesting season fitted
[ A .

individually for each section

4000 a Shape of nesting season fitted
once for all sections

3000

2000 -

1000 -

0 “ , .
SectionI ~ SectionIl ~ SectionIIl ~ Section IV Total

Yalimapo beach sections

Figure 4

Estimated nest numbers for various beach sections if each
beach section was fitted using its own model (4 different
models, open bars) or if a single fitted model was used for all
beach sections (| single model, closed bars).
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Figure 5

Likelihood for nest distributions on the different beach sec-
tions when one sinusoid with varying period was added. The
dashed line defined the limit of -Ln L statistical significance
using Akaike weight after applying a Bonferronni correction
for multiple tests.

ered as essentially complete as the nesting after July is rel-
atively sparse. The AIC of the 8 models describing the
overall shape of nesting season was lowest when the K;
parameter was fixed to 0, but was not significantly differ-
ent from several other models based on Akaike weight
(Table 2A). We choose the first one in the series with
Akaike weight > 0.05 and minimum number of fitted
parameters.

We added a sinusoid function to this pattern, by generat-

ing a map of -Ln Likelihood with varying ¢, and A, param-
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Table 2: Model selection for leatherback nest counts on Ya:lima:po beach in 1987. Selected models are in bold.

Model ranked by AIC -LnL Parameters AIC Akaike Weights Nests & SD
A: No sinusoid Intra Inter

S, P, K; S, P, Max Min 857.26 10 1734.53 0.3551

S, P, S, P, K, Max 858.92 9 1735.84 0.1847 0.0000 33563 SD 44
S, P, K, S, P, Max 859.20 9 1736.41 0.1392

S, P, K, S, P, K, Max Min 857.26 Il 1736.54 0.1306

SI PI KI S2 P2 K2 Max 858.56 10 1737.13 0.0972

S, P, S, P, K, Max Min 858.94 10 1737.90 0.0661

S, P, S, P, Max Min 860.92 9 1739.85 0.0249

S, P, S, P, Max 864.34 8 1744.69 0.0022

B: One sinusoid

Aoyt o4 B, 844.89 14 1717.79 0.4755

A0y oy By 845.94 13 1717.90 0.4494 0.0000 33624 SD 49
A0 o 848.78 12 1721.56 0.0722

Ao, B, 852.30 12 1728.61 0.0021

Aot By 852.32 13 1730.64 0.0008

C: Two sinusoids

Ay 0,0, B, 828.43 18 1692.86 0.5988

Ay &y 0, By 829.83 17 1693.67 0.3992 0.1168 33424 SD 40
A,y 0,04 836.10 16 1704.20 0.0021

Ay 0,7, By 841.28 17 1716.56 0.0000

Ay 0, B, 842.35 16 1716.71 0.0000

D: Three sinusoids

A; 0375 B 823.81 21 1689.63 0.4555 0.8832

A; 0304 B5 824.47 21 1690.94 0.2370

Ay 0373055 823.80 22 1691.60 0.1704

A3 0373 B3 826.21 20 1692.42 0.1129

A; 05 05 827.74 20 1695.49 0.0243

eters. The maximum likelihood was observed for (¢, =
15.25 and A, = lI. These values were used as initial points
to search for values of the o, B;, ¢;, A, and 1, parameters
that maximized likelihood. We then searched for a sim-
pler model assuming o, = 0 and/or 8; = 0 and/or 1, = 1
(Table 2A). The model with the lowest AIC had a nearly
identical AIC value to the model that was had one less
parameter (T, was set to 1). Using the principle of parsi-
mony, we retained the model with fewer parameters for
further exploration. Second and third sinusoidal signals
were added to the model; we selected the single model
within all groups of models (0, 1, 2, or 3 sinusoidal sig-
nals added) with the lowest AIC values. Of these four, we
found that the model with 2 sinusoidal signals had the
lowest Akaike weight (Table 2). The two sinusoidal peri-
ods fitted were 10.60 and 15.34 days. The Gratiot et al.
model [19] when applied to this time-series was strongly
rejected compared to the model presented here (AIC
2047.30 vs. 1693.67; p < 10-19 based on Akaike weight).
The number of observed nests during the 178 night

patrols was 33337. The number of nests calculated by the
models was as follows: 33223 (& =-0.34%) for no sinusoi-
dal signal, 33305 (¢ = -0.09%) for 1 sinusoidal signal
added, and 33118 (& = -0.65%) for 2 sinusoidal signals
added (Figure 3). All three estimates are close to the
observed number of nests (note that the number of nests
reported in Table 2 are for the entire nesting season,
including the final 22 days without available nest counts).

The periodic signal within number of nests that was
detected in the 1987 database comprised of 161 consecu-
tive day counts can be also tested using classical mathe-
matical tools. The Multi-Taper method (MTM) of spectral
analysis provides a means for spectral estimation [20,21]
of a time series that is believed to exhibit a spectrum con-
taining both continuous and singular components. A
MTM test for white noise in this time-series indeed detects
a significant period signal at both 10.60 days (p < 0.01)
and at 15.34 days (p < 0.05). However, the MTM method
can be used only with continuous time-series, which
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therefore makes it ineffective when analyzing marine tur-
tle datasets that contain gaps in coverage.

Discussion

The total number of nests deposited during the nesting
season is often used as an index of abundance for marine
turtle species. To obtain reliable data, monitoring of the
nesting beach should be conducted on a regular basis dur-
ing the nesting season. However, nesting seasons can span
up 6 months or more, making it challenging to effectively
collect data on a daily basis [12]. It is common for nesting
beach datasets to be missing information, either during, at
the beginning and/or at end of the nesting season. One
means to account for data gaps during the nesting season
is to employ interpolation. For instance, Girondot &
Fretey [16] were able to fill in data gaps for a leatherback
nesting population using interpolation with a small asso-
ciated error (5%). However, this procedure is inadequate
if the beginning and/or the end of a nesting season is not
monitored. Troéng et al. [8] used a moving average, but
again, the behavior of such a function can be erratic at the
boundaries of the time-series. Yet gaps at the beginning or
end of the season are common because research teams
tend to concentrate monitoring effort at the peak of the
nesting season. To be able to extrapolate data, one needs
an equation that accurately describes the global nesting
season. A recently proposed symmetrical model of a leath-
erback nesting season [19] is inadequate for modeling the
dataset from Ya:lima:po because the time series analyzed
above was not symmetrical (for example, based on the
2002 time-series: symmetric model with S; = S, and (K, =
K,) # 0 AIC 966.26 or S, = S, and K, = K, = 0 AIC 964.51
vs. asymmetrical model - see Table 1B - S; # S, and K, =
K, = 0 AIC 963.22). Also, nest counts outside the main
sinusoid were calculated separately before the fitting pro-
cedure used by Gratiot et al. [19]. Finally, a fitting proce-
dure based on two rounds should be avoided, as they
generally do not converge on the best fit of the data.

In contrast, we have shown that the best fit model describ-
ing the nesting season of leatherback at Ya:lima:po exhib-
its three components: an overall shape describing the
nesting season and two sinusoids signals. For 1987, one
signal has a period of 10.60 + 0.0003 SD days and the
other a period of 15.34 + 0.0004 SD days. For 2002, one
signal has a period of 9.74 + 0.01 SD days and the other a
period of 14.11 + 0.004 SD days. The first signal likely rep-
resents the reproductive cycle of females that nest sequen-
tially during the nesting season, with nests separated by
approximately nine to ten days [16]. The second signal
could be related to the lunar or tidal phase when full and
new moon alternate every 14.25 days [16]. This signal was
particularly strong for the beach section located furthest
within the estuary (Section I, Figure 5). In this section, the
peak of nesting coincided with the spring high tides

http://www.biomedcentral.com/1472-6785/6/11

observed during each full and new moons. Interestingly,
it has been observed that greater numbers of female leath-
erbacks become trapped in exposed mud flats after nest-
ing during neap tides on the nearby beaches in Suriname
[22]. However, we do not think that the peak of nesting
during spring tides represents a selective avoidance
response to this potential mortality factor, for the follow-
ing two reasons. First, the actual mortality rate is low for
females that are temporarily trapped in the mud-flats
(M.G., personal observation), making it unlikely that this
would constitute a strong selective pressure. Second, the
peak of nesting during spring tide is not observed in all
beach sections (Figure 4). Nesting at high tide during
spring tide could be also viewed as a way to minimize
energy expenditure while selecting a suitable site for nest-
ing on the beach [23]. Alternatively, the peaks in nesting
distribution at spring high tide could result from currents
in the Maroni river that may prevent individual leather-
backs from nesting too far inside the estuary at neap tide
(Figure 1). However, an expected complementary peak at
neap tide in other beach sections further away from the
Maroni was not detected (Figure 5). A third possible
explanation is that a shift of female turtles from other
nesting beaches in the region (Figure 1) to Ya:lima:po
beach may be associated with the spring high tide. Cur-
rent data are insufficient to test this hypothesis.

In French Guiana, leatherback females can adjust their
return nesting date from 6 to 16 days between two nesting
events in order to be closer to a full or new moon [16].
This effect was not observed in leatherbacks nesting on the
Pacific coast of Costa Rica [24]. However, the number of
observations available from Costa Rica was only one tenth
of the number in Girondot & Fretey [16], which is insuffi-
cient to detect an effect similar to the one observed in
Ya:lima:po (M.G., unpublished results). Note that even
with this significant peak of nesting at the spring high tide,
leatherbacks in French Guiana have a stronger signature at
9.8 days that is the characteristic nesting interval for this
species [25]. Stronger and more significant periodic sig-
nals were detected at both ends of the Ya:lima:po nesting
beach (Sections I and IV, Figure 5). The lack of significant
signal in sections Il and III is probably the consequence of
reduced environmental constraints from tide or river cur-
rents for the central sections of the beach.

The numbers of total nests calculated by the various meth-
ods proposed here were not significantly different: the
additions of one or two sinusoidal signals in 2002
changed the estimation of total nest number from 4652 +
73 SD (no sinusoids), to 4719 + 62 SD (one sinusoid) and
4716 + 58 SD (two sinusoids). Given the consistency of
total nest estimates, one could question why a more com-
plex model is needed. It should be noted that the standard
deviations of the estimates were lower with the addition
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of sinusoids because these sinusoids explained some of
the variation that was expressed by the standard deviation
of the simpler models (Figure 6). Therefore, the beta risk
was reduced when the estimate was derived with the more
complex model.

Conclusion

The model proposed here offers a variety of uses beyond
its application in accurately estimating total counts from
an incomplete dataset. It also can detect intraseasonal
concentrations of animals that may be the result of behav-
ioral interactions, synchronization with external factors
and/or biological constraints. When applied to leather-
backs nesting in French Guiana, the model detected 3
principal components that contribute to the seasonal nest
distribution: a global shape that corresponds to the arrival
and departure of leatherback females in the Guianas
region, a sinusoidal pattern with a period of approxi-
mately 10 days that is related to physiological constraints
of nesting leatherbacks, and a sinusoidal pattern with a
longer period that likely reflects the influence of the spring
high tide on nesting turtles.

The proposed model is an improvement over previously
published methods [8,16,19] but we should keep in mind
that nest number is only an index of the population size.
Indeed, variable remigration interval [26] and variable
number of nest per female [15] affect also strongly the
observed number of nests for a particular year.

Fitted standard deviation model for a night

70 - No sinusoid

60
One sinusoid
50
40 - Two sinusoids
30 -

20 +

10 1

0 50 100 150 200
Nest count for a night

Figure 6
Standard deviations of the fitted model with zero, one or
two sinusoids added to the global pattern.
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Methods

Nesting data

Nest count data were collected in 1987 and 2002 on
Ya:lima:po nesting beach in French Guiana (Figure 1).
This nesting beach is approximately 4 km long and was
divided into 4 sections that were roughly equal in dis-
tance. Nesting activity of leatherback turtles was moni-
tored either by conducting daily dawn patrols to count all
nest tracks made the previous night and/or by counting
individual nesting females at night when total nests per
night > 50 [see complete description in [27]]. False crawls
are relatively rare in leatherbacks nesting in French
Guiana and only tracks that reach the upper part of the
beach and had signs of post-oviposition camouflaging by
the female turtle were counted as nests. Nest counts were
made during the primary nesting season, from 1st March
(defined as day 0) until 15 September 1987 or 31 Decem-
ber 2002. Data for January and February were not
included because leatherbacks display a smaller second-
ary nesting season during these months [28].In 1987,178
nights from 1/3/1987 until 15/9/1987 were worked on
the Ya:lima:po nesting beach. Only 22 daily counts were
missing at the end of the nesting season (10/8/1987 to
31/8/1987). This time-series can be considered as nearly
complete as the nesting after July is relatively rare. A total
of 33337 nests were counted during the 1987 season. Of
the 305 days of the 2002 primary nesting season, 3356
nests were counted on 171 nights (56% coverage).
Whether observed at night or the following morning, each
nest was assigned the date prior to midnight of the night
it was laid. The lunar phase for each night was also calcu-
lated using internet moon phase calculator [29].

The model to describe the nesting season

Nesting seasons of marine turtles are typically character-
ized by a peak of nesting approximately during the middle
of the nesting season. The number of nests at the start and
end of the nesting season is low ; generally less than one
nest per week or per month in some populations (unpub-
lished data). This typical pattern has been modeled as a
sinusoid function [19]. However, this function presup-
poses that the shape of the seasonal nesting distribution is
symmetrical. Several different populations of marine tur-
tles display asymmetrical peaked patterns associated with
their nesting season [e.g. [30-32]]. Moreover, the assump-
tion that the temporal nesting distribution of sea turtles is
a simple sinusoid has several inherent statistical weak-
nesses (see below).

As an alternative, the seasonal nesting pattern can be
modeled using the product of two sigmoid equations, the
first one ranging from 0 to 1 and the second one from 1 to
0. The product shows a 0-1-0 pattern if the transition of
the first equation is observed at an abscissa of lower value
than the second one. For each sigmoid equation, we use a
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modified form of the Verhulst equation [33] that allows
asymmetry to be set. Note that the first-order derivative of
this equation is similar to the Richards equation [34]:

1/eX

M(d)=(1+(2ef< _1)e(§(P‘d))] (1)

where d is the Julian date, P is related to the dates before
and after the peak nesting day when there is an observed
maximum rate of change (increase or decrease) in nest
numbers, and S and K are related to the change in slope of
the change in nest numbers at date P.

The value of M(d) ranges from 0 to 1 with M(d) = 0.5 for
P = d, with d being the number of days since the start of
the nesting season. The steepness of M(d) at P = d depends
on S and K values. M(d) is increasing when S is negative
(i.e. at the start of the nesting season) and decreasing
when S is positive (i.e. at the end of nesting season).
Asymmetry around P is determined by a positive or nega-
tive value of K. The equation (1) is reduced to a simple
logistic equation (i.e. symmetrical around P) when K = 0.

To avoid a computing overflow, the equation (1) was sim-
plified to

() - e_l/EK[(zeK . )g(é”"‘”] ]

Lp-a) )

when
d-pP
1| gf
and to Ee ¢ when K > 3 and

(2" —1)6(

sign(P-d) = sign(S).

The mathematical description of a nesting season can
therefore be expressed as:

N(d) = min + (max - min) - (M, (d) - M, (d)) (2)

with M, (d) and M, (d) being the first and second halves of
the nesting season, respectively. The difference between
the two largely rests on the sign of the S parameter: S, is
negative, S, is positive and P; <P,. The parameter min is
the basal level of nesting outside the nesting season and
max-min is a scaling factor. Note that max is not the maxi-
mum of the function because (M,(d) - M, (d)) can be
lower than 1 at the peak of nesting season. The maximum
must be calculated numerically.

The entire nesting season can be expressed using equation
(2), which is based on 8 parameters. The number of
parameters can be reduced using the Verhulst equation
around P, (K, = 0), P, (K, = 0), or both. The basal level of
nests min can be fixed to 0. Also, if it is assumed that the
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beginning and the end of nesting season show similar
shapes, this can be expressed by setting S; = -S, and K; =
K,. The most reduced form of equation 2 uses only 4
parameters (min = 0, K; = K, =0, §; = -S,). The test for an
asymmetrical shape of the nesting season was performed
by forcing S, = -S; and K, = K,

Equation (2) describes the global shape of the nesting sea-
son. A more complete model could also incorporate peri-
odic variation within the nesting season. Traditionally,
spectral analysis has been used to describe periodic pat-
terns, but the discontinuities in the daily nest count data-
set makes the use of these tools inappropriate [35].
Instead, a sinusoid function was incorporated into the
equation (2) and the corresponding parameters are fitted
against the daily nest counts. When several periodic sig-
nals were detected, the sum of/sinusoid equations was
used:

k=1

1
N'(d) = N(d)+ Z[Sin[Zﬂ d-;Ak J((xk + By - N(d)** )J (3)

Parameter ¢ defines the period of the sinusoidal pattern
and A is the phase shift. The amplitude of variation is gov-
erned by o, B and T parameters. If the amplitude is inde-
pendent of the number of nests, then a.# 0 and 8 = 0 (the
parameter T is not used and set to 1). If oo # 0 and 8 # 0,
then the amplitude(s) of the fluctuations have two com-
ponents, one dependent and one independent of the
number of nests. The parameter T # | renders a non-linear
dependent relationship between amplitude of the fluctu-
ations and number of nests. Equation (3) implies that
sinusoid signals are additive. It can be changed to allow a
multiplicative effect but this kind of model performs less
well than the additive model and will not be discussed
further (data not shown). The model defined with equa-
tion (3) uses 5] parameters more than the model defined
with equation (2). Equation (3) can be simplified setting
o=0orf=0and/ort=1(3 or 4 parameters).

The curve was fitted to experimental data by maximum
likelihood method using a simplex search [36] followed
by a gradient search [37]. For this purpose, we assumed
that the nest distribution for day d is normally distributed
with a standard deviation ¢, = Exp(a.N'(d)¢ + b) where g, b
and ¢ are parameters that are also fitted. This function has
the advantage of being strictly positive and monotonically
increasing according to N'(d) when a and ¢ are positive. It
also accounts for the observed heteroskedasticity, i.e. nest
counts were more dispersed at the peak of nesting season.
An alternative is to use the lognormal distribution for nest
number which has the advantage of being always positive
but also requires a forced origin that is not zero as zero
nests is not a possible output.
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For ease of use, this modeling application has been
scripted for both MacOS and Microsoft Windows plat-
forms [38].

Model selection and goodness of fit

Model selection was performed using the Akaike Informa-
tion Content [39]. This is a ranking measure that takes
into account the quality of the fit of the model to the data
while penalizing for the number of parameters used:

AIC=-2InL+2M (4)

where L = maximum likelihood, and M = the number of
parameters. The models with the lowest values of AIC
were retained as good candidate models and A, was cal-
culated as the difference in value of AIC between a partic-
ular model and the one with the lowest AIC. Akaike
weights (w; = exp(-A,;c/2) normalized to 1) were used to
evaluate the relative support of various tested models
[40]. Akaike weights can be directly interpreted as condi-
tional probabilities for each model. Ideally, the model
with the lowest AIC was kept for further testing. When two
or more models possessed similar Akaike weights, the
model with the lowest number of parameters was
selected. When several of these models had the same
number of parameters, the model with the lowest AIC
among them was selected.

When varying the period of sinusoid signal within the
nesting season, the significance levels of the models with
or without sinusoidal signals were tested using Akaike
weight after a Bonferronni correction. Let L, be the -Ln
likelihood of the best model without a sinusoid and let B
be a matrix of b -Ln likelihoods (b is the Bonferronni cor-
rection factor) obtained by varying ¢, parameter and fit-
ting B, and A,. A likelihood i of the B matrix was
considered as being significantly better than L, if w; <

0.05/b. Therefore, a model with a sinusoid was signifi-
cantly better (p < 0.05) than the model without one if the
likelihoods was higher than

difference between

| _005/b
2t n(l—(0.0S/b))'

Goodness of fit was evaluated using the coefficient of
determination (r2) between the observed and estimated
nest numbers to facilitate comparisons with a previously
published method [19]. However, it is important to note
that the 12 statistic is inadequate for non-stationary time-
series such as those analyzed here, as any distribution
showing a peak at the middle of the time-series will gen-
erate an inflated r2 value.

http://www.biomedcentral.com/1472-6785/6/11

For the model being fitted, the error € in per cent on the
estimate of the total number of nests was calculated as
[19]:

365 365 365

€= z N'(t)- 2 n(t) z n(t) with n(t) being the
t=1 t=1 t=1

observed number of nests for night ¢.

Note that this formula assumes that nest counts are
known for each day of the time series, which is rarely the
case and only days with known nest counts were used to
calculate €.

The standard error for the parameters was estimated using
a standard procedure to estimate the variance of a func-
tion about a point [41]. In short, when applied to the error
in the location of one point this procedure is directly
related to the uncertainty in the model relative to the posi-
tion of the peak (mathematically represented by the
standard error in the estimation of the point where the
first derivative is zero). It is inversely related to the value
of the second derivative about the maximum. It is approx-
imated using a fourth order polynomial function around
the fitted value for each parameter [41].

Synthetic parameters

Not all parameters involved in equation (2) could be
directly derived to describe aspects of nesting season
(beginning, end, or length) because of complex interac-
tions between them. Rather, several new statistics were
calculated. The d+x% and d-x% values are the days where
N(d) is equal to x% of the maximum nest number (d+
indicates the start of nesting season and d- the end of nest-
ing season with x = 10, 25 and 50%). The values d+x%
and d-x% are an index that is proportional to the begin-
ning and the end of nesting season. The value d-x% -
d+x% is an index related to the length of the nesting sea-
son. Equation (2) cannot be transformed to directly
obtain the d + x% values, rather a numerical approxima-
tion was required. The standard errors for the d + x% val-
ues were obtained by 100 replications of equation (2)
with parameter values obtained randomly from values
that maximized the likelihood while taking into account
the standard error. The total number of nests deposited
during the entire season was the sum of the number of
nests laid per night.

Homogeneity test

The test for homogeneity of the nest distribution for sev-
eral nesting beaches was performed using likelihood ratio
test and AIC comparison. We assumed that L; was the
maximum likelihood and M, was the number of parame-
ters for beach section i. Under the hypothesis that nest dis-
tribution was the same for all these nesting beach sections,
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a single common set of parameters could be calculated.
Some parameters may be allowed to vary in specific cir-
cumstances, for example max and min might vary to take
into account that, on various beach sections, the total
number of nests laid can be different. When %k nesting
beach sections are compared, the likelihood of these k sec-
tions analyzed with a single set of M parameters is L. The
statistic -2 In (] L,/L) is distributed as a y2 with M-ZM;
degrees of freedom.
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