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Abstract

Background: Despite the two-fold cost of sex, most of the higher animals reproduce sexually.
The advantage of sex has been suggested to be its ability, through recombination, to generate
greater genetic diversity than asexuality, thus enhancing adaptation in a changing environment. We
studied the genetic diversity and the population structure of three closely related species of bag
worm moths: two strictly sexual (Dahlica charlottae and Siederia rupicolella) and one strictly asexual
(D. fennicella). These species compete for the same resources and share the same parasitoids.

Results: Allelic richness was comparable between the sexual species but it was higher than in the
asexual species. All species showed high heterozygote deficiency and a large variation was observed
among Fs values across loci and populations. Large genetic differentiation was observed between
populations confirming the poor dispersal ability of these species. The asexual species showed
lower genotype diversity than the sexual species. Nevertheless, genotype diversity was high in all
asexual populations.

Conclusion: The three different species show a similar population structure characterised by high
genetic differentiation among populations and low dispersal. Most of the populations showed high
heterozygote deficiency likely due to the presence of null alleles at most of the loci and/or to the
Wahlund effect. Although the parthenogenetic D. fennicella shows reduced genetic diversity
compared to the sexual species, it still shows surprisingly high genotype diversity. While we can
not totally rule out the presence of cryptic sex, would explain this high genotype diversity, we never
observed sex in the parthenogenetic D. fennicella, nor was there any other evidence of this.
Alternatively, a non-clonal parthenogenetic reproduction, such as automictic thelytoky, could
explain the high genotypic diversity observed in D. fennicella.

Background Nevertheless, most of the higher animals reproduce sexu-
Parthenogenetic females have a two-fold advantage over  ally[1]. This leads to a fundamental question which con-
sexual females because they produce only the fecund sex  tinues to puzzle evolutionary biologists: how is sex
while sexual females produce also males. The elimination =~ maintained? A large body of theories seek to explain the
of sex is predicted whenever the two strategies compete  maintenance of sex [2-7].

unless there are factors that overcome this disadvantage.
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Advantages of sexual reproduction arise from genetic
recombination in cross-fertilisation, which purges delete-
rious mutation and increases genetic variability in the
population [8-10], enhancing adaptation in a changing
environment. The idea that sexual reproduction and
recombination may be favoured in changing environ-
ments has been the subject of several papers [11-15]. If a
trait is subjected to stabilising selection, genetic variability
introduces a genetic load as a consequence of the pro-
duced phenotypes that deviate from the optimum [16].
However, in a varying environment that exerts directional
selection on a trait, genetic variability is essential because
the response to selection will be proportional to the addi-
tive genetic variance in the population [15]. Under the
mutation accumulation theory, the persistence of asexual
lineages is more problematic unless asexuals are able to
minimise the competition with sexuals through high dis-
persal rates [17].

Under the Red Queen hypothesis for sex [18], we should
expect that heavy directional selection exerted by parasites
can favour greater genetic variability in host populations.
Parasites are more likely to infect the most common gen-
otypes while rare genotypes, produced by sexual females,
may escape infection [19-23]. Asexual reproduction is
expected to be an unstable long term strategy since asexual
females can only generate offspring with new genotypes
through mutation.

The parasite hypothesis relies on several critical assump-
tions: the all-else-equal assumption and assumptions
about the population structure and the genetic diversity of
sexual and asexual populations [24]. The all-else-equal
assumption (e.g. production of equal number and viabil-
ity of offspring) depends on: how the asexuals originate,
the type of parthenogenesis, and the degree of polyploidy
of the asexuals [24,25]. The difference in population
genetic structure between competing sexuals and asexuals
may determine difference in the parasite infection load.
Asexual hosts can persist in the long term, even in the
presence of parasites, if they out-disperse their parasites
[26,27]. The parasite hypothesis also assumes that sexual
populations harbour higher levels of genetic diversity
than asexual populations. The parasite hypothesis does
not select for sex per se, but for diversity [28]. Thus, high
clonal diversity could erode any advantage of sex. Howard
and Lively [29] theoretically showed that host-parasite
coevolution could lead to the accumulation of clones with
different resistance genotypes and, in turn, to the elimina-
tion of sexual populations.

Few systems with coexisting sexual and asexual competi-
tors are known. So, comparisons of genetic diversity
between coexisting sexual and asexual populations are
scarce: e.g. the freshwater snails, Potamopyrgus antipodarum

http://www.biomedcentral.com/1472-6785/5/5

[7,20] and genus Campeloma [17,24] and the aphid Rho-
palosiphum padi [30]. Additional comparisons are needed
to further evaluate the parasite hypothesis for sex.

Bag worm moths (Lepidoptera: Psychidae) provide an
attractive case for investigating the coexistence of sexual
and asexual reproduction in the same locations. In Lepi-
doptera, parthenogenetic reproduction is very rare. How-
ever, in the family Psychidae and especially among
Dabhlica species, parthenogenesis seems to have evolved
several times [31,32]. A parthenogenetic (Dahlica fenni-
cella, Suomalainen 1980) and two sexual species (Siederia
rupicolella, Sauter 1954 and D. charlottae, Meier 1957) are
common in Finland and often coexist in the same habitat.
In these small insects (3-6 mm), adult females are always
wingless, sessile and incapable of dispersing. Males are
always winged but their dispersing ability is very limited
and they can only fly short distances (between 10 and 100
m). Life cycle from egg to adult takes from one to two
years, but the adults only live 3-6 days [33]. S. rupicolella
and D. fennicella are very difficult to separate from each
other and the only distinctive characters are their repro-
ductive mode and genetic markers [32,34]. In central Fin-
land, these bag worm moth species occur patchily in
wooded habitats. The proportion of sexually and parthe-
nogenetically reproducing species varies between locales
from the total absence of the sexual species to only their
presence.

Psychid larvae are often infected by at least two common
species of Hymenopteran parasitoids, e.g. Orthizema spp.
[31,34]. Kumpulainen et al. [34] found a strong positive
correlation between parasite prevalence and the occur-
rence of sexual reproduction in Finnish bag worm moth
populations for three consecutive years. S. rupicolella (sex-
ual) was more abundant where parasitoids were more
common, whereas D. fennicella (asexual) was more com-
mon in localities where parasitoids were scarce or absent.
This result could argue in favour of the parasite hypothesis
for the maintenance of sex. In light of this previous result,
we investigated the genetic variability and the population
structure of three closely related species of bag worm
moths, two strictly sexual (Siederia rupicolella and Dahlica
charlottae) and one parthenogenetic (D. fennicella) using
isozyme variation.

Results

Genetic variability

Thirteen loci from ten isozymes were detected (Table 1).
All were polymorphic in the two sexual species whereas
twelve were polymorphic in the asexual species, with only
fumaric acid (FUM) being monomorphic. No more than
two bands were observed at all loci in the asexual D. fen-
nicella, thus it is possible that this species is not tetraploid
as are its relatives D. lichenella and D. triquetrella (tetra-
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Table I: Isoenzymatic loci scored for Siederia rupicolella, Dahlica charlottae and D. fennicella. Recipes for buffers used are found at http:/

Iwww.cladocera.uoguelph.cal/tools/default.htm

Buffer

Enzyme E.C* Locus

- Isocitrate Dehydrogenase 1.1.1.42 IDH

- Diaphorase 1.1.1.40 DIA

- Glucose-6-Phosphate Dehydrogenase 1.1.1.49 G6PDH

- 6-Phosphogluconate Dehydrogenase 1.1.1.44 6PGDH

- Aspartate Aminotransferase 2.6.1.1 GOT

- Phosphoglucomutase 5422 PGM

- Malate Dehydrogenase NADP+ 1.1.1.40 MEI
ME2
ME3

- Malate Dehydrogenase 1.1.1.37 MDH MDH2

- Glucose-6-Phosphate Isomerase 5.3.1.9 GPI

- Fumarate Hydratase 42.1.2 FUM

Phosphate 0.02 M pH 7.0

Phosphate 0.02 M pH 7.0
Tris-Maleate-EDTA- MgCl,0.2 M pH 7.8
Tris-Maleate-EDTA- MgCl,0.2 M pH 7.8
Citrate Phosphate 0.04 M pH 6.4
Tris-Maleate-EDTA- MgCl,0.2 M pH 7.8
Tris Maleate 0.1 M pH 5.3

Tris-Maleate-EDTA- MgCl,0.2 M pH 7.8
Tris-Maleate-EDTA- MgCl,0.2 M pH 7.8
Tris Maleate 0. M pH 5.3

* Enzyme Commission Number

ploid race) [35]. Ewens-Watterson [36] and Chakraborty's
[37] test of neutrality indicated that the polymorphism
observed, at the scale investigated, can confidently be
assumed to be neutral.

The estimates of genetic variability are shown in Table 2.
Sufficient sampling of all three species in each population
for population genetic analyses was not possible. There
were two reasons for this; 1) although all three species
were present to some extent in each location, they were
not all abundant, particularly D. fennicella, and 2) females
of the sexual species S. rupicolella are difficult to separate
from D. fennicella without observing their mating behav-
iour. While sexual females secrete pheromones to attract
males and do not lay eggs before mating, parthenogenetic
females lay eggs in their larval case immediately after
hatching from pupa. Species determination for sexual
females was performed by experimental mating with a
male. Because the adults are very short lived, females can
mated with males hatching only few days apart restricting
the sample size.

Allelic richness ranged from 1.61 in D. fennicella to 3.11 in
D. charlottae. The expected heterozygosity (Hs) ranged
from 0.279 in D. fennicella to 0.558 in D. charlottae. Allele
richness and gene diversity (Hs) were similar in the two
sexual species (1000 permutation: P = 0.488 and P = 1.00,
respectively). Both sexual species harbour significantly
higher allele richness and Hs than the asexual species
(permutation tests: D. charlottae vs. D. fennicella P = 0.002
and P = 0.007, respectively and S. rupicolella vs. D. fenni-
cella P = 0.012 and P = 0.012, respectively). As expected,
the proportion of different genotypes (k) was close to 1 in
the sexual populations and no differences were observed
between the two species (Mann-Whitney test U, 4= 50.5,
P =0.439). The proportion of different clones (k) was also

high in the asexual species, ranging from 0.5 to 1 in the
different populations; however it was significantly lower
than in D. charlottae and almost significantly lower than
in S. rupicolella (Mann-Whitney test U, ;= 18, P = 0.020
and Uy = 13, P = 0.082). Evenness was very similar
among asexual populations and it was very close to 1
because of the high genotype diversity. Significant devia-
tion from the Hardy-Weinberg equilibrium was observed
in most of the loci in all three species. In the sexual spe-
cies, this deviation was due to heterozygote deficiency.
The F4 values, over all loci indicated a significant defi-
ciency of heterozygotes in all populations of both sexual
species with the exception of Isosaari (Isa) and Sippulan-
niemi 1 (Sip 1) populations of D. charlottae (Table 3). In
D. fennicella, instead, only two populations showed heter-
ozygosity deficiency (Table 3). A large variation in F;gval-
ues was observed across all loci and populations in all
three species with the exception of MDH2 for which no
heterozygote individuals were ever observed (Table 3).
The exclusion of this locus, however, did not change any
of our results.

Null alleles might cause deviation from H-W proportion.
The presence of null alleles at many of the loci analysed is
strongly suggested by the significant correlation of the Fig
values between the two sexual species (r;=0.93, n =12, P
< 0.001) and between D. charlottae and D. fennicella (r,=
0.774, n= 11, P = 0.005). Calculation of the frequency of
null alleles with the methods of Brookfield [38] indicate
that null alleles are present in high frequencies in most of
the loci in all three species (Table 3).

Population differentiation

The overall differentiation among populations, Fg, was
high and significantly different from zero in all three spe-
cies (Table 2), which is an indication of strong population
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Table 2: Sample sizes, average number of alleles per locus, allelic richness, proportion of different genotypes (k), Simpson's index (D)
and Evenness (E) (D and E calculated for asexual D. fennicella only), observed heterozygosity (H,), gene diversity (H,), and F,g are
presented for each population of each sexual species. In the last column are presented the averaged values per species and the Fgp

values among populations.

Jyvaskyla Orimattila
D. Ko Lvi Lv2 Lv3 Lv4 Muu Hj Pih Isa Sipl Sal Tuk Vilj vill
charlotta
e
N 18 1] 9 14 10 12 16 14 7 7 14 9 13 I 11.786
. 3.846 3077 2692 2923  3.000 3.154  3.692 3077 2154 2692 3462 3.000 3231 3538 5.6154
alleles + (1.039) (0.485) (0.537) (0.611) (0.553) (0.761) (0.888) (0.564) (0.281) (0.511) (0.719) (0.707) (0.649) (0.860) (1.4485)
(S.E)
Allelic  3.029 2.871 2543 2593 2.765 2790  3.049 2702 2119 2582 2.877 2804 2884 3114 2.766
richness
k 1.000 1.000 0889 0929 1.000 1.000 1.000 0.786  1.000  1.000 1.000  1.000 1.000 1.000 0.972
Ho+ 0297 0307 0249 0295 0.308 0245  0.266 0251 0374 0.393 0248 0274 0284 0.285 0.2955
(S.E) (0.077) (0.093) (0.087) (0.095) (0.081) (0.075) (0.070) (0.070) (0.109) (0.112) (0.063) (0.065) (0.087) (0.076) (0.1046)
Hs+  0.469 0.548 0451 0437 0.508 0.447  0.505 0.502 0405 0.425 0.524 0468 0.528 0.558 0.4851
(S.E) (0.107) (0.086) (0.102) (0.114) (0.110) (0.107) (0.127) (0.093) (0.087) (0.102) (0.080) (0.121) (0.099) (0.093) (0.0841)
Fsr (P) 0.168 0.154 0.1530
(<0.001) (<0.001) (<0.001)
3 Kv Lv2 Lv4 Lv5 Muu Hj Sipl Vill Pen
rupicolell
a
N 10 14 10 9 14 17 26 I I 13.556
. 2.846 3.000 3.000 2385 3.23I 3.385 3.692 2538 2308 2932
alleles + (0.337) (0.358) (0.340) (0.368) (0.426) (0.549) (0.634) (0.332) (0.208) (0.815)
(S.E)
Allelic 2.742 2.794 2783 2275 2914 2988 3.001 2480 2.198  2.686
richness
k 1.000 0.929 1.000  1.000  0.929 1.000 1.000 0.909 0909 0.964
Ho 0.364 0.327 0247 0253 0312 0.343 0.266 0303 0.192  0.290
(S.E) (0.084) (0.086) (0.063) (0.071) (0.084) (0.092) (0.068) (0.096) (0.073) (0.072)
Hs + 0.534 0.512 0.507 0380 0492 0.526 0.501 0477 0399 048I
(S.E) (0.057) (0.072) (0.057) (0.073) (0.062) (0.069) (0.066) (0.058) (0.066) (0.049)
Fsr (P) 0.114 0.116 0.101
(<0.001) (<0.001) (>0.001)
X Hn Pih Isa Sipl  Sip2  Sip3
fennicell
a
N 9 13 17 18 21 8 14.333
E 1923 2692 2615 2385 2769 1.692 3615
alleles + (0.211) (0.365) (0.241) (0.350) (0.411) (0.208) (0.488)
SE.
Allelic 1.692 2123 2126 1955 2125 .61l 1.939
richness
k | | 0.824 0778 0.667 0.500 0.795
D 9 13 9.966 11.571 10.756 3.556 9.642
E | | 0712 0827 0.964 0.889 0.899
Ho + 0376 0383 0363 0443 0436 0375 0.397
(S.E) (0.117) (0.115) (0.122) (0.122) (0.133) (0.130) (0.116)
Hs + 0308 0458 0448 0379 0466 0.279 0.390
(S.E) (0.069) (0.067) (0.058) (0.0793) (0.066) (0.076) (0.033)
Fsr (P) 0.213 0.213
(<0.001) (<0.001)

structure. Mean Fqp values across loci and the 95% confi-
dence interval (bootstrap over loci) are shown in Figure 2.
The overall differentiation was significantly different in
the three species. While the mean Fq;value of D. fennicella
was not different from that of D. charlottae, it was signifi-
cantly higher than that of S. rupicolella. Hierarchical
analyses of molecular variance (AMOVA) indicated that
the two areas, Jyviskyld and Orimattila, did not differ
from each other for both sexual species. In D. charlottae
the percentage of variance among sites was 1.61, P = 0.12,

while it was 16.07, P < 0.001 among populations within
sites. In S. rupicolella the percentage of variance among
sites was 0.85, P = 0.27, while it was 11.45, P < 0.001
among populations within sites. We did not observe iso-
lation by distance (Mantel test between Fg/(1-Fg;) and
the natural logarithm of the geographical distance) in any
species at either of the sites: D. charlottae (Jyvaskyld R = -
0.257, P = 0.089; Orimattila R = 0.353, P = 0.512), S.
rupicolella (R = 0.222, P = 0.338) and D. fennicella (R = -
0.300, P =0.277).
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Table 3: Fg values and frequency of null alleles for each population of the three species at each locus. Null alleles frequencies (a*) were
calculated with the method of Brookfield [38].

DIA° FUM G6PDH  GOT GPI IDH MDH MDH2  MEI ME2  ME3 6PGDH  PGM All

D. charlottae

Jyvaskylda Kol Fg -0.278 NA 0.141 0721 0619 0.115 0.256 I 0.368 | I 0211 0.0II 0367
a* 0 0 0027 0257 0215 0038 0.092 0363 0.116 0.172 0.095 0.042 0

Lvl Fg -0.653 NA -0297 0.773 0828 -0.071 0.877 | 0429 | I 0.100 0279 0441
a* 0 0 0 0202 0265 0 0348 0410 0.145 0346 0.284 0.014 0.094

Lv2 Fq -0.556 I 0276 0.000 0.636 -0.297 0.429 | | | NA -0.143 0.689 0.448
a* 0 0.165 0.069 0 0.130 0 0.033 0331 0308 0417 0 0 0258

Lv3 Fg 0.034 NA -1 0840 0.576 -0.243 0425 | NA | NA 0407 0278 0326
a* 0 0 0 0243 0214 0 0.146 0252 0 0417 0 0092 0.097

Lv4 Fq -0.292 NA -0.125 0385 0.717 -0.021 0217 | I 0.509 0 I 0223 0.393
a* 0 0 0 0.128 0271 0 0070 0383 0.153 0.169 0 0319 0.067

Muu F 0.165 NA -0.100 0681 0701 0.079 0.133 | | | I 0429 0471 048I
a* 0.044 0 0 0215 0231 0014 0038 0379 0.133 0217 0.133 0.089 0.186

Hj Fs 0.167 NA -0.189 0.605 0683 0.025 0.534 I 0.659 | 0 0556 0544 0474
a* 0.045 0 0 0220 0285 0 0221 0418 0.095 0.105 0 0.173 0229

Pih  Fq -0.241 NA 0226 0.658 0506 0.158 0.477 I 0871 | I -0294 0577 0501
a* 0 0 0049 0.105 0.139 0052 0.195 0384 0294 029 0.333 0 0223

Isa Fg -1 NA 0 0 0.091 -1 0.143 I -0.200 I 0750 -1 -0.714 -0.113
a* 0 0 0 0 0.006 0 0.021 02899 0 0.1967 0238 0 0

Sipl Fg 0.615 NA -0.091 -0.333 -0.161 -0.333 0.300 I 0.647 NA I -0.667 -0.448 0.076
a* 0.152 0 0 0 0 0 0.059 03725 0.158 0 0.197 0 0

Orimattila Sal Fg 0.393 -0.040 0.189 0589 0482 -0.026 0816 I 0.662 0.769 I 0.154 0564 0527
a* 0.121 0 0047 0223 0.179 0 0338 0351 0.191 0.178 0332 0.030 0.133

Tuk Fg -0.333 NA -0200 0.632 0575 0.127 0.744 | -0.067 | NA -0.091 0571 0415
a* 0 0 0 0211 0223 0029 0315 0331l 0 0.165 0 0 0220

Vilj  Fg 0.208 NA 0294 0222 0.177 -0.200 0.866 | | | I 0353 0392 0463
a* 0.066 0 0061 0.073 0.048 0 03Il 0362 0327 0321 0.124 0.103 0.155

Vill  Fg -0.135 I 0438 0615 0870 0.067 0.512 | 0 | | 0.043 0681 0489
a* 0 0.142 0.130 0232 0335 0.009 0.195 0284 0 0.142 0332 0 0289

S. rupicolella

Jyvaskyld Kv  Fg -0.800 NA 0.250 0.554 0419 -0.268 0.534 | 0442 0852 0542 0351 -0.184 0318
a* 0 0 0.067 0.198 0.091 0 0.185 029 0.159 0319 0.190 0.096 0
Lv2 Fq -0.307 NA 0.559 0458 0780 -0.279 -0.078 | 0.579 0.882 NA 0.100 0242 0.361
a* 0 0 0.192 0.165 0.178 0 0 0413 0216 0330 0 0014 0.080
Lv4 F -0.091 0 0617 0664 | 0.338 0.820 I 0471 | 0 -0207 -0.154 0.513
a* 0 0 0.18 0223 039 0.120 0.269 0398 0.148 0.296 0 0 0
Lvs Fg 0.067 NA 0.368 -0.091 0573 -0.085 -0.067 | 0818 NA NA 0478 0.190 0.333
a* 0 0 0.087 0 0172 0 0 0.257 0.283 0 0 0.137 0.045
Muu Fq 0.007 NA -0.132 0480 0623 -0.226 0.182 | 0.196 | | -0.176 0507 0367
a* 0 0 0 0.178 0.158 0 0.063 0364 0033 0333 0.29 0 0.170
Hj Fs -0.333 I 0364 0202 0615 -0200 0813 I 0509 0.652 NA 0336 -0.049 0.347
a* 0 0.72 0.1l 0.072 0.25I 0 0299 038 0.177 0.088 0 0.09 0
Sipl Fg -0.090 NA -0.154 0301 0788 0.001 0.708 I 0.091 I 0928 -0.091 0358 0468
a* 0 0 0 0.085 0321 0 0303 0393 0018 0316 03l6 0 0.132
Orimattila Vill Fg -0.800 NA -0.047 | | -0.125 0612 I -0.296 | | -0.2000 0474 0.366
a* 0 0 0 0339 03l6 0 0240 03l6 0 0.153 0316 0 0.142
Pen Fq 0.438 NA 0.217 0.091 I -0.524 0.680 | 0 | | NA -0.026 0518
a* 0.130 0 0054 0014 0332 0 0225 0373 0 0301 0332 0 0
D. fennicella
Jyvdaskyla Hn  Fg 0.304 NA - 0 -0600 -0.091 0.448 NA NA NA - -1 -0.222
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Table 3: Fg values and frequency of null alleles for each population of the three species at each locus. Null alleles frequencies (a*) were

calculated with the method of Brookfield [38]. (Continued)

a* 0.093 0 0 0 0 0 0.108 0331 0 0 0 NA 0

Pih  Fq 0.268 NA -1 I 0200 0.050 0.553 I 0351 | | -1 -0.581 0.145
a* 0.110 0 0 0321 0000 0058 0301 038 0256 0.299 0 0 0

Isa Fg 0.657 NA -1 I -0.333 0.185 0.780 | 0.840 | NA -0.800 -1 0.208
a* 0.058 0 0 0333 0067 0008 0205 0279 0.067 0233 0.172 0 0

Sipl Fg -0.732 NA -1 | -0.308 -0.244 0.532 | NA -0.097 NA -0.846 -1 -0.168
a* 0 0 0 0.095 0 0 0207 0436 0 0 0 0 0

Sip2 F; 0.650 NA -l 0840 -0.772 -0.159 0.162 | | | NA -1 -1 0.057
a* 0.218 0 0 0.185 0 0 0052 0393 0329 0329 0 0 0

Sip3 F; 0.391 NA -1 NA NA -1 -0.029 | NA NA NA -1 -1 -0.345
a* 0.091 0 0 0 0 0 0 0347 0 0 0 0 0

Sixty five different genotypes were detected among the 86
samples of D. fennicella. Only two of them were shared
among different populations. One genotype was shared
between Sippulanniemi 1 (Sipl) and Huviniemi (Hn)
while the other was shared between Sippulanniemi 3
(Sip3) and Pihta (Pih). In both cases the two populations
are geographically distant, and three populations in the
same area (Sipl, 2 and 3 and Hn, Pih and Isa, respec-
tively) did not share any genotypes.

Discussion

Analysis of isozyme variation in three species of psychid
moths revealed that the genetic diversity of the sexual spe-
cies D. charlottae and S. rupicolella is higher than that of the
asexual species D. fennicella. Allele richness, gene and gen-
otypic diversity were also higher in the sexual species than
in the asexual species. Higher genotype diversity in sexual
than in asexual populations is most likely the logical
result of recombination and was an expected result. The
sexual populations also showed higher allele diversity,
which is a more intriguing outcome [30]. One possible
explanation for this difference is that the asexual lineage
retained only a portion of the diversity of its sexual ances-
tor. Alternatively, a lower per locus diversity in the asexual
species could reflect lower population sizes compared to
the sexual species. Asexual D. fennicella is, in general, rarer
than the sexual species, although it was the most abun-
dant species in some locations. A lower population size is
also suggested by the higher differentiation (Fg;) among
D. fennicella populations than among sexual populations.

Surprisingly, parthenogenetic D. fennicella showed a con-
siderable amount of genotype diversity, with 65 different
genotypes detected among 86 individuals. This was in
contrast with a previous analysis with allozyme markers
which found limited diversity among samples of D. fenni-
cella [39]. This amount of genotype diversity was higher

than that recently observed in Potamopyrgus snails [20]
and that reported in animals (reviewed in[40]) and in
plants (reviewed in [41]) in the previous allozymes litera-
ture. Interestingly, clonal lineages of D. fennicella were
mostly restricted to single populations. Only two geno-
types were shared among distant populations. The lack of
a common broadly adapted haplotype spread over differ-
ent populations is in conflict with the hypothesis of the
general-purpose-genotype [42]. Instead, adaptation to dif-
ferent microclimates or other specific environmental con-
ditions of these locales could explain the presence of
many different genotypes, as suggested by Vrijenhoek's
[43] frozen niche variation hypothesis. However, we
found no significant differences in morphology, size and
life-history characters between two different D. fennicella
populations that would reflect ecological specialisation
[34]. Although several studies have reported allozymes as
not neutral (reviewed in [44,45]), in our study there were
no indications that they deviate from neutrality, thus
these markers are expected to be subjected more to drift
than to selection. High genotypic diversity could indicate
the presence of cryptic sex in the parthenogenetic species.
Although we cannot completely rule out this hypothesis,
we never observed sex in the species. All parthenogenetic
females lay eggs immediately after hatching from pupa
and never show the characteristic behaviour of sexual
females when they secrete pheromones to attract potential
mates (Kumpulainen et al. 2004). Moreover, mitochon-
drial sequences from sexual and asexual females clearly
indicate these are two different species (Grapputo et al.
2005). This high genotypic diversity could also be
explained by alternative types of parthenogenesis involv-
ing recombination, such as the automictic thelytoky [46].

High clonal diversity and the observed distribution of dif-
ferent clones could be the result of a restricted dispersal
capacity and the fragmentation of suitable habitats for
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Mean F¢; of each species and its 95% confidence interval
obtained with bootstrap over loci. Asterisk indicates 5% sig-
nificant level.

these psychid moths. Large differentiation was also
observed among populations of diploid parthenogenetic
D. triquetrella in the Alps but not among tetraploid popu-
lations of the same species in Finland [47]. The same pat-
tern, however, could be explained by an extinction-
colonisation process associated with a long persistence of
the populations, which would explain the high intrapop-
ulation diversity. Large genetic differentiation among
populations was also observed in both the sexual species,
D. charlottae and S. rupicolella, which is consistent with
their extremely low ability for active dispersal (see also
[31]) and the patchy distribution of suitable habitats.
Nevertheless, psychid moths sometimes colonise new
areas as suggested by the absence of D. charlottae in the
Isosaari population in 1999 and its presence in 2000 (T.
Kumpulainen, personal observation). Most probably, dis-
persal between different populations is a relatively rare
event taking place as passive aerial dispersal of very small
larvae [31]. The large genetic differentiation among D.
charlottae and S. rupicolella populations is in contrast with
the data obtained for populations of sexual D. triquetrella
in the Alps by Lokki et al[47], where allelic frequencies
were described as homogeneous among populations,
although rigorous tests of population differentiation were
not carried out.

http://www.biomedcentral.com/1472-6785/5/5

The observed proportion of heterozygotes was not differ-
ent between the two sexual species D. charlottae and S.
rupicolella (0.29) and was very similar to that previously
observed in another sexual species D. triquetrella (0.23)
[47]. The level of heterozygosity was also highly similar
among populations in both sexual species. D. charlottae
and S. rupicolella, in contrast to D. triquetrella, were not in
HW equilibrium for most of the loci and populations.
Heterozygote deficiency has been widely reported in
allozyme surveys of natural populations of marine
invertebrates (reviewed in [48,49]) and also in fishes (e.g.
[50,51]), amphibians and reptiles (reviewed in [52]).
Alternative hypotheses have been advanced to explain
such heterozygote deficiencies [48,49,53]. The high heter-
ozygosity deficiency in all three species of bag worm
moths could be explained by null alleles. The high
variation across loci in Fig values correlate among species
and the methods of Brookfield [38] for the calculation of
null alleles frequencies strongly suggest that most of the
loci in the three species are affected by null alleles. Most
populations of sexual psychid moths are small, consisting
of just 30 to 100 individuals. Suitable forest patches are
also small and isolated. Moreover, females are apterous
and unable to disperse. When sexual females emerge from
pupae they quickly start to secrete pheromones to attract
males. Once emerged, males respond promptly to the
female pheromones because they have a very short adult
life span (about 10 hours). Therefore, copulation most
likely occurs between emerging adults that are both
spatially and temporally close. This could create substruc-
tured populations and a Wahlund effect, both spatial and
temporal, which could maintain a high number of alleles
in the population but increase the homozygosity [54].

Conclusion

In summary, the three different moth species show a sim-
ilar population structure characterised by high genetic dif-
ferentiation among populations and low dispersal. The
parthenogenetic D. fennicella shows reduced genetic diver-
sity compared to the sexual species but still shows high
genotype diversity that could indicate the presence of
cryptic sex. All species show a very high heterozygote defi-
ciency due to the presence of null alleles at most of the
loci or to the Wahlund effect. DNA markers certainly need
to be investigated to determine the causes of such hetero-
zygote deficiency shown by the allozymes.

Methods

Source populations

Two sexual species, Siederia rupicolella and Dahlica charlot-
tae, and an asexual species, D. fennicella were sampled to
study their genetic variability and population structure.
Samples were collected in April 2000 from 20 different
study areas of suitable forest type [34]. All areas were situ-
ated in central Finland, 15 of them around the city of
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Jyvaskyld (62 °15 N', 25°43 E') and five close to the town
of Orimattila (60 °49 N', 25 °40 E') (Figure 1). Study
areas consisted of old forest patches, separated by mead-
ows and fields and sometimes by human settlements. All
study areas were dominated by mixed forests of Norwe-
gian spruce (Picea abies) and silver birch (Betula pendula),
many of them also contained Scotch pine (Pinus sylvestris).
Final instar larvae of all three moth species climb on tree
trunks to pupate and they can easily be caught by setting
tape traps on tree trunks. Larvae remain stuck on the tape
and they can later be collected. Each collected larva was
taken to the laboratory and kept individually until hatch-
ing to adult, allowing us to determine the reproduction
mode and identify the species [34]. Samples were subse-
quently frozen at -80°C until analysis.

Electrophoresis

Frozen samples were squashed in 20 pl of grinding buffer
(Tris-HCI1 0.1 M pH = 8.0) and then applied to Titan® Il
cellulose acetate plates (76 mm x 76 mm) using the Super
Z-12 applicator Kit (Helena laboratories) following the
method of Hebert and Beaton [55]. Electrophoresis was
carried out at room temperature at 200 volts for 20-25
minutes in the appropriate buffer for each enzyme as indi-
cated in Table 1. Of twenty-three enzymes tested, ten were
polymorphic (listed in Table 1) from which a total of thir-
teen loci could be scored. Enzymes excluded from the
analysis because they were monomorphic or unreadable
were: ACON (EC 4.2.1.3), AK (EC 2.7.4.3), ADH (EC
1.1.1.1), ALP (EC 3.1.3.1), ATT (EC 2.6.1.1), EST (EC
3.1.1.1), HEX (EC 2.7.1.1), LDH (EC 1.1.1.27), LAP (EC
3.4.11.1), MPI (EC 5.3.1.8), SOD (EC 1.15.1.1), ¢, ¢+Tre-
halase (EC 3.2.1.28) and SKDH (EC 1.1.1.25).

Data analysis

Tests of neutrality for each locus, population and species
were carried out using the Ewens-Watterson test [36] with
the software package Popgene [56]. The genetic diversity
and population structure of each species were analysed
using Fstat [57]. We tested the Hardy-Weinberg equilib-
rium (HW) for each locus and population by randomisa-
tion of alleles among individuals within populations.
Significance levels were adjusted using the sequential
Bonferroni correction for multiple comparisons [58]. For
each population we estimated the number of alleles per
locus, allelic richness [59], gene diversity (Hs) [60],
observed heterozygosity (Ho) and Fg value. Frequency of
null alleles per locus and population was estimated with
the method of Brookfield [38] as implemented in Micro-
Checker v.2.2.3 [61], which does not require detecting
null allele homozygotes. Genotypic diversity (or clonal
diversity in asexuals) within populations was determined
simply as the proportion of different genotypes in the
population k = G/N, where G is number of genotypes and
N is the number of individuals in the population. For the

http://www.biomedcentral.com/1472-6785/5/5

asexual species, we also measured clonal diversity using
Simpson's diversity index D = 1/3p,, where pi is the fre-
quency of the i-th clone (Simpson, 1949). D varies from 1
(monoclonal population) to N if each individual carries a
different genotype. This measure takes into account the
frequency of clones, but it depends on the sample size, so
we also calculated the evenness (E) of Simpson's index E
= D/D,,. which is constrained between 0 and 1. Popula-
tion structure was assessed by calculating Fq-[62] between
populations and tested by permuting genotypes among
samples because most of the populations were not in HW
(as suggested in Fstat). Hierarchical analysis of molecular
variance (AMOVA, [63]) including all populations and
populations within the two areas (Jyvaskyld and
Orimattila) was performed with Arlequin ver. 2.000 [64].
If the differentiation between populations is due to isola-
tion by distance, a positive correlation between genetic
distance and geographical distance is expected. Isolation
by distance was tested as suggested by Rousset [65] and a
Mantel test was performed between populations in each
site using Fstat.

List of abbreviations

ACON = Aconitate Hydratase, AK = Adenylate Kinase,
ADH = Alcohol Dehydrogenase, ALP = Alkaline Phos-
phatase, AAT = Amino Aspartate Transferase, EST = Car-
boxylesterase, HEX = Hexokinase, LDH = Lactate
Dehydrogenase, LAP = Leucine Aminopeptidase, MPI =
Mannose-6-Phosphate Isomerase, SOD = Superoxide Dis-
mutase and SKDH = shikimate dehydrogenase.

Authors' contributions

TK collected samples and performed most of the labora-
tory procedure with SP. AG and JM performed the analysis
of the data and wrote the manuscript. All the authors con-
tributed to the study.

Acknowledgements

We want to acknowledge K. Kulmala for assisting in the field work and in
the insect laboratory. We thank M. Hietanen and M. Myllyla for their assist-
ance in the genetic laboratory, P. Halme, V. Heino, T. Hiltunen, I. Kananen
and A. Kolehmainen, for assisting in the field work, K. E. Knott and A. Vei-
janen for help in scoring allozyme gels. Finally, we acknowledge K. E. Knott,
M. Bjorklund, P. Mutikainen and four anonymous reviewers for their valua-
ble comments on previous versions of the manuscript. This study was car-
ried out at the University of Jyviskyld and was financially supported by the
Academy of Finland, project number 779874, and by the Centre of Excel-
lence in Evolutionary Ecology.

References

I. West-Eberhard M): The maintenance of sex as a developmen-
tal trap due to sexual selection. Q Rev Biol 2005, 80:47-54.

2. Williams GC: Sex and evolution Princeton (NJ), Princeton Univ. Press;
1975.

3. Maynard Smith J: The evolution of sex Cambridge, Cambridge Univ.
Press; 1978.

4. Bell G: The masterpiece of nature: the evolution and genetics of sexuality
Berkeley, Univ. of California Press; 1982.

Page 9 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15884735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15884735

BMC Ecology 2005, 5:5

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31

32.

33.

Kondrashov AS: Classification of hypotheses on the advantage
of amphimixis. | Hered 1993, 84:372-387.

Burt A: Sex, recombination, and the efficacy of selection -
Woas Weismann right? Evolution 2000, 54:337-351.

Jokela , Lively CM, Dybdahl MF, Fox JA: Genetic variation in sex-
ual and clonal lineages of a freshwater snail. Biol ] Linn Soc 2003,
79:165-181.

Muller H): The relation of recombination to mutational
advance. Mutat Res 1964, 1:2-9.

Kondrashov AS: Deleterious mutations and the evolution of
sexual reproduction. Nature 1988, 336:435-440.

Rice WR: Experimental tests of the adaptive significance of
sexual recombination. Nat Rev Genet 2002, 3:241-251.

Maynard Smith J: Selection for recombination in a polygenic
model - the mechanism. Genet Res 1988, 51:59-63.

Crow JF: An advantage of sexual reproduction in a rapidly
changing environment. | Hered 1992, 83:169-173.

Charlesworth B: The evolution of sex and recombination in a
varying environment. | Hered 1993, 84:345-350.

Kondrashov AS, Yampolsky LY: Evolution of amphimixis and
recombination under fluctuating selection in one and many
traits. Genet Res 1996, 68:165-173.

Biirger R: Evolution of genetic variability and the advantage of
sex and recombination in changing environments. Genetics
1999, 153:1055-1069.

Mather K: Polygenic inheritance and natural selection. Biol Rev
1943, 18:32-64.

Johnson SG: Population structure, parasitism, and the survi-
vorship of sexual and autoploid parthenogenetic
Campeloma limum. Evolution 2000, 54:167-175.

Van Valen L: A new evolutionary law. Evol Theor 1973, 1:1-30.
Hamilton WD: Sex versus non-sex versus parasite. Oikos 1980,
35:282-290.

Fox JA, Dybdahl MF, Jokela ], Lively CM: Genetic structure of
coexisting sexual and clonal subpopulations in a freshwater
snail (Potamopyrgus antipodarum). Evolution 1996,
50:1541-1548.

Howard RS, Lively CM: The maintenance of sex by parasitism
and mutation accumulation under epistatic fitness functions.
Evolution 1998, 52:604-610.

Ooi K, Yahara T: Genetic variation of geminiviruses: compari-
son between sexual and asexual host plant populations. Mol
Ecol 1999, 8:89-97.

Lively CM, Dybdahl MF: Parasite adaptation to locally common
host genotypes. Nature 2000, 405:679-681.

Johnson SG, Leefe WR: Clonal diversity and polyphyletic origins
of hybrid and spontaneous parthenogenetic Campeloma
(Gastropoda: Viviparidae) from the south-eastern United
States. | Evol Biol 1999, 12:1056-1068.
Vrijenhoek RC: Factors affecting clonal
coexistence. Am Zool 1979, 19:787-797.

Ladle R}, Johnstone RA, Judson OP: Coevolutionary dynamics of
sex in a metapopulation: escaping the Red Queen. P Roy Soc
Lond B Bio 1993, 253:155-160.

Judson OP: Preserving genes: a model of the maintenance of
genetic variation in a metapopulation under frequency-
dependent selection. Genet Res 1995, 65:175-191.

Lively CM, Howard RS: Selection by parasites for clonal diver-
sity and mixed mating. Philos T Roy Soc B 1994, 346:271-281.
Howard RS, Lively CM: Parasitism, mutation accumulation and
the maintenance of sex. Nature 1994, 367:554-557.

Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC: Genetic
architecture of sexual and asexual populations of the aphid
Rhopalosiphum padi based on allozyme and microsatellite
markers. Mol Ecol 2002, 11:711-723.

Hattenschwiler P: Die Sacktrager der Schweiz (Lepidoptera,
Psychidae). In Schmetterlinge und ihre Lebensrdume Arten - Gefdhr-
dung - Schutz. Band 2 Basel, Switzerland, Pro Natura; 1997:165-308.
Kumpulainen T: The evolution and maintenance of reproduc-
tive strategies in bag worm moths (Lepidoptera: Psychidae).
Edited by: Sarkka ), Olsbo P and Tynkkynen ML. Jyviskyld, University
of Jyvaskyld; 2004:0-42.

Suomalainen E: The Solenobiinae species of Finland (Lepidop-
tera: Psychidae), with a description of a new species. Ent
Scand 1980, 11:458-466.

diversity and

34.
35.
36.

37.

38.

39.

40.
41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.

58.
59.

60.

http://www.biomedcentral.com/1472-6785/5/5

Kumpulainen T, Grapputo A, Mappes |: Parasites and sexual
reproduction in psychid moths. Evolution 2004, 58:1511-1520.
Narbel M: La Cytologie de la Parthénogénése chez Solenobia
s p. (Lepidopteres Psychides). Chromosoma 1950, 4:56-90.
Watterson G: The homozygosity test of neutrality. Genetics
1978, 88:405-417.

Chakraborty R: Mitochondrial DNA polymorphism reveals
hidden heterogeneity within some Asian populations. Am |
Hum Genet 1990, 47:87-94.

Brookfield JFY: A simple new method for estimating null allele
frequency from heterozygote deficiency. Mol Ecol 1996,
5:453-455.

Suomalainen E, Lokki J, Saura A: Genetic polymorphism and evo-
lution in parthenogenetic animals. X. Solenobia species
(Lepidoptera: Psychidae). Hereditas 1981, 95:31-35.

Parker ED: Ecological implications of clonal diversity in par-
thenogenetic morphospecies. Am Zool 1979, 19:753-762.
Ellstrand NC, Roose ML: Patterns of genotypic diversity in
clonal plant species. Am | Bot 1987, 74:123-131.

Lynch M: Destabilizing hybridization, general-purpose geno-
types and geographic parthenogenesis. Q Rev Biol 1984,
59:257-290.

Vrijenhoek RC: Ecological differentiation among clones: the
frozen niche variation model. In Population biology and evolution
Edited by: Wohrmann K and Loeschcke V. Berlin, Springer-Verlag;
1984:217-231.

Gillespie JH: The causes of molecular evolution New York, Oxford Uni-
versity Press; 1991.

Mitton |B: Selection in natural populations New York, Oxford Univer-
sity Press; 1997.

Suomalainen E: Significance of parthenogenesis in the evolu-
tion of insects. Annu Rev Entomol 1962, 7:349-365.

Lokki J, Suomalainen E, Saura A, Lankinen P: Genetic polymor-
phism and evolution in parthenogenetic animals. Il. Diploid
and polyploid Solenobia triquetrella (Lepidoptera:
Psychidae). Genetics 1975, 79:513-525.

Zouros E, Foltz DW: Possible explanations of heterozygote
deficiency in bivalve molluscs. Malacologia 1984, 25:583-591.
Singh SM, Green RH: Excess of allozyme homozygosity in
marine molluscs and its possible biological significance. Mala-
cologia 1984, 25:569-581.

Allegrucci F, Fortunato C, Sbordoni V: Genetic structure and
allozyme variation of sea bass (Dicentrarchus labrax and D.
punctatus) in the Mediterranean Sea. Marine Biology 1997,
128:347-358.

Castric V, Bonney F, Bernatchez L: Landscape structure and hier-
archical genetic diversity in the brook charr Salvelinus
fontinalis. Evolution 2001, 55:1016-1028.

Waldman B, McKinnon JS: Inbreeding and outbreeding in fishes,
amphibians and reptiles. In The natural history of inbreeding and out-
breeding: theoretical and empirical perspectives Edited by: Thornhill NW.
Chicago, University of Chicago Press; 1993:250-283.

Castric V, Bernatchez L, Belkhir K, Bonhomme F: Heterozygote
deficiencies in small lacustrine populations of brook charr
Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of
alternative hypotheses. Heredity 2002, 89:27-35.

Hartl DL, Clark AG: Principles of population genetics 3rd edition. Sun-
derland, MA, Sinauer Associates; 1997.

Hebert PDN, Beaton M]J: Methodologies for allozyme analysis using cel-
lulose acetate electrophoresis Beaumont, Texas, Helena Laboratories;
1993.

Yeh FC, Yang RC, Boyle TJB, Ye ZH, Mao JX: POPGENE, the user-
friendly shareware for population genetic analysis. 1997
[http://www.ualberta.ca/~fyeh/]. University of Alberta, Canada,
Molecular Biology and Biotechnology Centre

Goudet J: FSTAT (vers. 1.2): a computer program to calcu-
late F-statistics. | Hered 1995, 86:485-486.

Rice WR: Analysing tables of statistical tests. Evolution 1989,
43:223-225.

Petit R}, El Mousadik A, Pons O: Identifying populations for con-
servation on the basis of genetic markers. Conser Biol 1998,
12:844-855.

Nei M: Molecular Evolutionary Genetics New York, Columbia University
Press; 1987.

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8409359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8409359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10937212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10937212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3057385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3057385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3366381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3366381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1624761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1624761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8409356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8409356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10511578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10511578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10937193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10937193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10937193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10864323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10864323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11972759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15341153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15341153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14812634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14812634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2349953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2349953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8688964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8688964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1126629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1126629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1126629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12080367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12080367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12080367
http://www.ualberta.ca/~fyeh/

BMC Ecology 2005, 5:5 http://www.biomedcentral.com/1472-6785/5/5

61. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P: MICRO-
CHECKER: software for identifying and correcting genotyp-
ing errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.

62. Weir BS, Cockerham CC: Estimating F-statistics for the analy-
sis of population structure. Evolution 1984, 38:1358-1370.

63. Excoffier L, Smouse PE, Quattro JM: Analysis of molecular vari-
ance inferred from metric distances among DNA haplotypes
- Application to human mitochondrial-DNA restriction data.
Genetics 1992, 131:479-491.

64. Schneider S, Roessli D, Excoffier L: Arlequin ver. 2.000: A soft-
ware for population genetic data analysis. University of
Geneva, Switzerland, Genetics and Biometry Laboratory; 2000.

65. Rousset F: Genetic differentiation and estimation of gene flow
from F-statistics under isolation by distance. Genetics 1997,
145:1219-1228.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1644282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9093870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9093870
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Table 1

	Results
	Genetic variability
	Table 2
	Table 3

	Population differentiation

	Discussion
	Conclusion
	Methods
	Source populations
	Electrophoresis
	Data analysis

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

