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Abstract

course of migration.

Background: The timing of migration substantially influences individual fitness. To match peak requirements with
peak resource availability, we hypothesized that individual migrants schedule spring migration in close relation to
seasonal changes in environmental conditions along the route and particularly, at the breeding destination.

To test this hypothesis, we investigated the timing of spring migration in male common nightingales Luscinia
megarhynchos, a small Palearctic-African long-distance migrant, by linking spring migration timing to the phenology
of local environmental conditions at non-breeding migratory stopover and breeding sites. In particular, we related
individual migration decisions (i.e. departure and arrival) of nine males to site-specific vegetation phenology (based
on remotely sensed vegetation index) and a proxy of food availability (based on insects’ thermal requirements).

Results: We found weak relation of departures from non-breeding and no relation of stopover timing with local
phenology. However, our results showed that individuals, which departed early from their non-breeding sites and
arrived early at the breeding site closely matched spring green-up there. Early arrival at the breeding site meant also
a close match with peak food availability for adults and in a time-lagged manner, for offspring.

Conclusion: Our findings suggest that male nightingale used cues other than local phenology for their departure
decisions from non-breeding grounds and that there is some evidence for equalizing late departures during the

Background

Annual migration between non-breeding and breeding
sites is a widespread phenomenon in various animal taxa
[1]. As almost all places on earth are seasonal to some
degree, the timing of migration and other subsequent
life-history activities has strong fitness consequences
[2,3]. This applies particularly to the migration from the
non-breeding to the breeding grounds (hereafter referred
to as spring migration), for which arrival time and arrival
body-condition on the breeding grounds are likely corre-
lates of reproductive success and survival [4]. For in-
stance, late arrival at the breeding site may come at the
cost of the best territories already being occupied [5] or
the individuals might release offspring not fully prepared
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to master the challenges of migration to non-breeding
areas [6]. In contrast, too early arrival may expose mi-
grants to adverse weather conditions and risk of starva-
tion [7]. Similarly, individuals arriving in good body
condition may cope better with adverse conditions and
invest more in offspring [8].

However, arrival time and body condition in the breeding
grounds are mainly determined by conditions encountered
during migration, at intermittent stopover sites or even at
non-breeding grounds [9,10]. Ideally, migrants should time
arrival on any stationary site with favourable conditions
and, particularly in the breeding grounds, match peak re-
quirements with peak resource availability [11,12]. This, in
turn, would require that migrant animals can predict the
(future) development of conditions at sites over longer dis-
tances and possibly across ecological barriers. Although
specific cues involved have remained largely elusive, there
are indications that migratory birds are indeed able to tune
migratory progression with the development of resources.
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For instance, passerine birds adjusted travel time according
to conditions en route [13] and aerial-feeding insectivores
can time arrival at the breeding site in accordance to the
local vegetation phenology in the non-breeding grounds
[14]. Furthermore, the annual variation in mean passage
time in the Mediterranean area was positively correlated
with primary production in both departure region and pas-
sage areas in several trans-Sahara migrants [10]. Similarly,
favourable environmental conditions in non-breeding areas
have resulted in late arrival at the breeding sites and good
environmental conditions during stopover in early arrival at
the breeding sites [15,16].

Thus, there is some evidence that birds used cues, which
correlate with conditions at sites ahead or even the
phenology of resources at their breeding sites from non-
breeding areas. The latter was attributed to factors that in-
fluence large-scale climatic patterns, e.g. the North Atlantic
Oscillation (NAO), which enabled long-distance migrant
passerines predicting conditions at European breeding sites
from their non-breeding grounds in Africa (e.g. [17]).
However, while the migration phenology of some species
advanced during the last 20 years, the migratory behaviour
of other migrants relies on endogenous rhythms or is
driven by environmental factors which are not affected by
climate change [18,19].

However, most above-mentioned studies investigated mi-
gration timing at the population level [10,13] and/or con-
sidered only specific parts of the spring journey [20].
Notable exceptions are individual-based studies in migra-
tory geese [21,22], which were shown to closely track the
vegetation growth during spring migration (the so-called
“green-wave hypothesis”, [23]). Thus, we know presently
very little about how individuals time their entire spring mi-
gration, especially in animals other than herbivores and
those that migrate across ecological barriers.

Therefore, we investigated the individual timing of
spring migration in a small insectivorous Palearctic-
African long-distance migrant, the common nightingale
Luscinia megarhynchos (Brehm), in relation to the phen-
ology of the local environmental conditions from its
African non-breeding to its European breeding sites.

We hypothesised that migration timing is tuned with
phenology along individual migration routes and tested
this hypothesis with measures derived from the Normal-
ized Difference Vegetation Index (NDVI) and temperature.
In particular, arrival at and departure from sites of resi-
dency should coincide with particular local phenological
events such as spring green-up or change in NDVI (at the
specific site). Additionally, we tested whether the timing of
spring migration has a consequence on projected subse-
quent reproductive timing. Therefore, we additionally
linked the arrival at the breeding site with the local onset
of insect availability as well as the offspring’s peak food re-
quirements with the period of high food availability.
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Here, we expected the males to arrive after the onset
of food availability at the focal site. We considered re-
productive timing to be optimal, if the period of insect
larvae availability encompasses the period of peak energy
requirement of offspring.

Methods

Migration routes and schedules

We investigated migration in individual nightingales ori-
ginating from three European populations in Bulgaria
(42.1°N, 27.9°E), in Italy (44.6°N, 11.8°E; south of the Alps),
and in eastern France (47.6°N, 7.5°E; north of the Alps).
An earlier study suggested that these populations are rep-
resentative of birds using the western, central and eastern
flyways for crossing the Mediterranean Sea and Sahara
desert [24]. Birds were captured during the breeding sea-
son in 2009, equipped with leg-loop mounted geolocators
(SOI-GDL1, Swiss Ornithological Institute; mean mass:
1.12 g including harness =4.8% of average adult body
mass) and recaptured in spring 2010, for details see [25]
and Additional file 1: Table Al. This yielded complete
spring migration data, i.e. from non-breeding site depart-
ure until arrival at breeding sites of nine individuals
(males) from Bulgaria (B1-4), Italy (I1) and France (F1-4).

We derived timing and positions from recorded light in-
tensities using the following standard procedure [26]: a)
Definition of sun-events (light level threshold = 3 arbitrary
light units); b) Identification of timing and stationary pe-
riods (minimal length of stationary periods=3 days,
change point probability threshold = 90% quantile), in par-
ticular departure from non-breeding sites, the arrival at
and departure from the spring stopover sites as well as the
arrival at the breeding sites and c) calculation of positions.
Please note that although geolocation can by definition
not determine spatial positions during equinox, the timing
of migratory steps can still be identified [26,27]. For more
detailed background information on data analysis see
Additional file 1: Table A3 and Additional file 2.

For all individual stationary periods, we estimated the
Kernel density from the point locations (ESRI ArcGIS 9.3,
search radius: 200 km). We defined a “stationary site” as
the polygon area within 90% Kernel density isopleth. When
stopover sites were composed of more than 50% unsuitable
habitat (e.g. bare or sparsely vegetated areas) according to
reclassified data from the Global Land Cover 2000 database
(European Commission, Joint Research Centre [http://
bioval jrc.ec.europa.eu/products/glc2000/glc2000.php]) we
selected only suitable habitat within the 60% isopleth as
stopover site.

Vegetation phenology

We used data of the Normalized Difference Vegetation
Index (NDVI) to characterize seasonal patterns in primary
productivity at all stationary sites [28]. We processed
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NDVI data originating from the National Oceanic and
Atmospheric Administration (NOAA [ftp://ftp.orbit.nes-
dis.noaa.gov/pub/corp/scsb/wguo/GVIx/GVIx_VH_16km/
NVI]) — in particular, we selected the area 28°W to 57°E
and 75°N to 55°S, applied a land-sea mask and aggre-
gated the 16x16 km grid to a 64x64 km grid (for an ex-
ample see the background of Figure 1). Afterwards, we
extracted the weekly NDVI for the year 2010 and calcu-
lated the mean NDVI for each stationary site. To identify
the relation between the migration timing and site-specific
phenology we calculated the mean change in NDVI during
the two weeks around arrival and departure on each par-
ticular stationary site.

In addition, we defined the date of spring green-up for
all breeding sites by determining the week of maximum
slope in NDVI phenology data in spring using a logistic
regression [30]. We used the time difference between ar-
rival date and spring green-up to measure how individ-
uals hit the local vegetation phenology.

Insect phenology at the breeding sites

Nightingales, as ground-dwelling insectivorous passer-
ines, mainly rely on the availability of small-sized insects
of the orders Coleoptera, Diptera, Hemiptera, Hymenop-
tera and Lepidoptera on the ground substrate and litter
as well as on protein-rich insect larvae to feed their
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Figure 1 The spring migration routes of nine common
nightingales. The polygons depict 90% kernel density isopleths of
non-breeding (blue), stopover (green) and breeding sites (red) of the
males from three populations (B = Bulgaria, | =Italy and F =France).
Stopover sites composed of more than 50% unsuitable habitat are
marked with asterisks. The currently estimated breeding and
non-breeding distribution of the nightingale, according to [29],
covers the shaded area. The grey-scale of the background indicates
the NDVI (white = non-vegetated, black = dense green vegetation) of
the first week of the year 2010.
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offspring [31]. As direct measures for the (local) phen-
ology and abundance of insects and their larvae are usually
not available but as insect development is temperature
driven we estimated their appearance from local tem-
perature data based on the compilation of thermal re-
quirements of 835 species, provided by Jarosik and
colleagues [32] see [https://secure.fera.defra.gov.uk/prat-
ique/downloadItem.cfm?id=491]). To this end, we calcu-
lated two measures that indicate the time when
hibernating insects and larvae become available and the
period over which (newly produced) insect larvae might
be available. The first can be estimated by determining the
date at which the base development threshold of 10.4°C
mean daily air temperature is reached.

For the second measure, we determined the time
period when insect larvae become abundant from accu-
mulated temperature (degree days), i.e. the ambient tem-
peratures exceed the base development threshold over a
specific time. The period of larvae availability starts
when the accumulated temperature for hatching (28.5
degree days) is reached. It ends, when accumulated
temperature for a complete larval development (328
degree days) is reached. We used daily mean tempera-
tures from near surface air temperature data of 2010
provided by the National Centers for Environmental
Prediction [33], derived for the three breeding locations
using R package RNCEP [34].

Finally, we estimated the period, during which the
offspring food requirements peak. Egg-laying starts
approx. 6-12 days after arrival, 4—6 days are needed
for clutch completion and 13 days for incubation
[35-37]. Additionally, the daily energy requirement of
the offspring reaches its highest value towards fledg-
ing approx. at day 7 for insectivorous passerines with
a weight of about 21 g [36-38]. This resulted in the
offspring’s energy requirements to peak between 30
and 38 days after their parents’ arrival at the breeding
site.

We evaluated how arrival at the breeding grounds
matched the development of food resources both for
adults and offspring by (1) relating date of arrival to date
when the insects’ base development threshold was
reached and (2) calculating the time difference between
the end of offspring’s peak food requirement and the
end of larvae availability.

When assessing whole-part correlations, e.g. between
individual date of arrival at the breeding sites and the
time difference between the arrival at the breeding site
and the local spring green-up, we avoided any artificial
restriction to positive r-values following the argumen-
tation of [39,40]. The analysis of geolocator was done
in the R package GeoLight [41]. All analyses (t tests
and ordinary linear regression) were performed in R
2.14.x [42].
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Results

Migration routes and schedules

We identified the migration routes (Figure 1) and sched-
ules (Additional file 1: Table A2) of in total nine individ-
uals. The non-breeding sites of the nine individuals were
located in sub-Sahelian Africa, stretching from African
west coast to the eastern border of Sudan. All individuals
used intermittent stopover sites in the Mediterranean
region ranging from Spain, southern France and Corsica
to northern Algeria, Tunisia and Libya. On average,
birds left their non-breeding sites on 23 March (range
18-27 March), arrived at their Mediterranean stopover
sites on average on 31 March (range 28 March-8 April),
where they stayed for approx. 13 days (5-20 days), and
arrived at the breeding sites on average on 19 April
(range 14—-26 April). Thus, spring migration lasted on
average 27 days (20-33 days).

Vegetation phenology

Mean changes in weekly NDVI during two weeks around
the date of arrival at and departure from the spring
stop-over site were not significantly different from zero
(meanaggr s=2.23+5.27 SD, t=1.27, df=8, p=0.24;
meanpgp s = 1.63+3.94 SD, t=124, df=8, p=0.25;
Figure 2). In contrast, the mean weekly NDVI changes
during departure from the non-breeding sites (mean =
426 +4.17 SD, t=3.07, df =8, p=0.02) and arrival at the
breeding grounds (mean =16.18 + 7.77 SD, t = 6.24, df =8,
p <0.001) were significantly larger than zero. Both depart-
ure from non-breeding sites (r*=047, df=7, p=0.04;
Figure 3) and arrival at the breeding sites (r* = 0.45, df =7,
p = 0.05; Figure 3) were positively related with time differ-
ence between the arrival at the breeding site and the local
spring green-up such that individuals departing early from
the non-breeding site and arriving early at the breeding
site matched spring green-up closest.

Insect phenology at the breeding sites

Arrival at the breeding grounds was closely related to
the difference between arrival and the date when the
base developmental threshold was reached, i.e. early ar-
riving individuals also arrived shortly after insects be-
came available (r*=0.74, df=7, p<0.001). In contrast,
stop-over duration was only slightly related to the time
difference between arrival and the date when the base
developmental threshold was reached (r*=0.34, df=7,
p=0.1). Thus, how closely individuals matched arrival
with insect availability was independent of whether they
stayed longer or shorter on stop-over sites. The period
between the end of offspring’s peak food requirement
and the end of larvae availability correlates with the de-
parture from the non-breeding sites (r*=0.39, df=7,
p=0.07), so that birds leaving their non-breeding sites
early, profit from a longer period of high larvae
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Figure 2 Change in NDVI during two weeks around migration
events of the nine male nightingales. Departure from non-breeding
site (Tpep_np), arrival at (Tagg_s) and departure from the spring stopover
site (Tpep_o) as well as arrival at breeding site (Tagr g). Three asterisks
and one asterisk indicate high (p < 0.001) and moderate (p < 0.01)

significance of difference from zero in a t-test, respectively.

availability after the period of the offspring’s highest food
requirements. Additionally, the time difference between
the arrival at the breeding site and the date when the base
development threshold was reached was negatively related
to the period between the end of offspring’s peak food re-
quirement and the end of larvae availability, i.e. if individ-
uals arrived close to the day when base development
threshold was reached, the period of high larvae availabil-
ity after the period of the offspring’s highest food require-
ments was long (r*=0.69, df=7, p=0.01). Finally, the
individual time difference between arrival and spring
green-up at the breeding site was related with the individ-
ual time difference between arrival and the date when the
base development threshold was reached (r* = 0.66, df = 7,
p = 0.01; Figure 3) as well as the time between the end of
offspring’s peak food requirement and the end of larvae
availability (r* = 0.57, df = 7, p = 0.02; Figure 3).

Discussion
For the nine male nightingales in our study we found
the timing of only one migration event namely arrival at
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Figure 3 Correlations between breeding site phenology and the timing of individual migration events. The time difference between
arrival and spring green up at the breeding site (Tarr s — tspring) iN relation to migration timing (top left and right) and to resource phenology
at the breeding site (bottom left and right). Significant positive relation between Tagg g — tspring and departure from the non-breeding site
(Toer_ns; top left), arrival at the breeding site (Tagg g top right) and time difference between arrival and the date when insects start to develop at
the breeding site (Tagrs g — tgor; bottom left). Significant negative relation between Tagg g — tspring and the time difference between the end of
the offspring's peak food requirement and the end of larvae availability (Tars_g* — top; bottom right). At each solid regression line the
corresponding confidence interval (grey shaded area) and confidence limits (dotted lines) are given. For the test statistics see main text.

the breeding site to be significantly linked to NDVI
phenology there. In contrast, departure from non-
breeding sites was only very weakly linked to local NDVI
phenology. All other migration events such as arrival or
departure from stopover sites were not related to any of
the local phenology measures we tested. These results
stem from only nine individuals and future studies
with larger sample sizes are required to confirm our
findings.

Our results are in contrast to the expectations and
suggest that male nightingales used other cues for the
departure decisions from the non-breeding sites. For the
departure from the non-breeding sites, photoperiod
might be the most important trigger. Indeed, photo-
period has been identified as a universal cue triggering
(preparations for) migration in the majority of migratory
species across all taxa [43], and even marginal changes
of photoperiod can be sufficient to trigger preparation
for migration in migrants wintering at low-latitudes [44].
The fact that departures from non-breeding sites in our
study showed the lowest variability also suggests a prom-
inent role of photoperiod for the onset of migration.
This also points out to a potential threat: if climatic

changes differ in magnitude and direction between the
various places migratory birds use [45], birds relying on
the invariant photoperiod might mistime various activ-
ities in their annual cycle. For instance, departing too
late from the non-breeding areas can have cascading ef-
fects, with mistimed arrival in the breeding grounds, a
large mismatch between peak food availability and peak
food requirement of offspring, and thus, negative fitness
consequences [46]. Hence, relying only on photoperiod
for timing of migration might become an ecological trap
[47] and has been discussed as one major factor for the
declines of many species within the Palaearctic-African
migration system [48]. It has sometimes been argued
that migrants could catch up in the course of migration
even if departure from the non-breeding site was non-
optimal (usually: too late), e.g. by changing migration
route or speed, but often migration strategy remained
unaffected by climate trends [49].

Surprisingly, we also found no behavioural response to
environmental conditions en route. Arrival at and depart-
ure from stopovers were unrelated to local phenology sug-
gesting that birds used stop-over sites regardless of the
progress of vegetation phenology at the focal site. This
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may be explained by a) differences in quality of sites and
resulting differences in fuelling rates, b) carry-over effects
of site-quality/fuelling rates in earlier sites, ¢) methodo-
logical issues inherent to geolocation and our assumed re-
lation between NDVI and insect abundance (see below).

Accordingly, we infer, that fuel deposition rate di-
verged widely among the different individuals or stop-
over sites they visited. Fuel deposition rate depends on
many factors, e.g. food abundance and accessibility, wea-
ther, predation risk as well as competition and individual
state [50]. Furthermore, we found that arrival at the
breeding sites was related to stopover duration, i.e. indi-
viduals that stayed shorter at stopover sites also arrived
earlier at their breeding sites, regardless of total migra-
tion duration. Although it remains elusive at this stage
why staging times at stopover sites differ between indi-
vidual nightingales, there are several non-exclusive ex-
planations: First, the quality of stopover sites in terms of
re-fuelling could differ substantially and individuals in
“high-quality” sites may rapidly replenish their body re-
serves in preparation for the next migratory step. Sec-
ond, individual condition on arrival at a stopover site
might be co-determined by the quality of preceding
sites, which affects their requirements at the present site
(carry-over effects, see [51]). If a spatial autocorrelation
in quality between successive sites exists, migrants might
adjust the timing of migratory progression according to
conditions at sites ahead [52]. Unfortunately, our results
are inconclusive here — we found no significant relation
between absolute NDVI data and individual differences
in four measures of timing (e.g. the date of arrival at the
breeding site, the time difference between arrival at the
breeding site and local spring green-up, the time differ-
ence between the arrival at the breeding site and the
date when the insects’ base development threshold was
reached, and the period between the end of offspring’s
peak food requirement and the end of larvae availability)
suggesting the latter not being explained by differences
in productivity between stopover sites.

Moreover, we found that arrival at breeding sites was
related to proxies of food availability for adults and their
offspring. Birds arriving temporally close to the onset of
insect availability also enjoyed a long time period of high
larvae availability after the offspring’s peak food require-
ment, which implies that covering the food requirements
of arriving males and offspring is not a mutually exclu-
sive task. The timing of arrival of adult birds in the
breeding grounds can importantly influence the fate of
their offspring and thus, their reproductive success [49].

For all individuals of our study populations, the pe-
riods of high availability of larvae covered the periods of
high energy requirements, suggesting no apparent mis-
match between food supply and demand. Possibly, this is
facilitated by wide foraging niche and a seasonally
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flexible foraging strategy in nightingales [25]. However,
in dietary specialist species, like the pied flycatchers, sig-
nificant mismatches between food supply and demand
have been found recently [46].

Another important finding in our study is the link be-
tween the departure decision at the non-breeding sites
and the matching of the spring green-up at the respect-
ive breeding sites about 3800 km away. Individuals, who
left their non-breeding sites early, matched spring green-
up at the breeding site more accurately. Even if depart-
ure from Africa is mainly driven by photoperiod, local
conditions potentially fine-tune the decision, but we
failed to verify this link. However, this would enhance
the relevance of phenological trends at the non-breeding
sites and their potential implications for demographic
rates (survival, reproductive success) at later times at
sites far away.

There are several methodological issues that poten-
tially have confounded our findings — the accuracy of
light-based positioning and the relation between NDVI
data and higher-level productivity that we have implicitly
assumed: Light-based positions naturally have a rela-
tively large inaccuracy, e.g. compared to GPS positions,
especially in woodland species [27]. Therefore, the sites
identified often comprise large areas, possibly including
unsuitable habitats. Although we have explicitly ex-
cluded unsuitable habitats (desert, bare or sparsely vege-
tated ground) and thus, reduced this source of error
considerably, our method is necessarily relatively coarse
and might still confound finer-scale patterns. Many
studies investigating the reliance of migrants on environ-
mental conditions used NDVI data as a potential cue for
timing (e.g. [22]) or as a proxy for food abundance in
non-herbivorous species, i.e. species foraging on higher
trophic levels (e.g. [53]). Although NDVI and primary
production have been related explicitly [28,54], its rela-
tion to productivity at higher trophic levels requires fur-
ther specification (e.g. [55]). By using temperature data
stemming from an atmospheric model for modelling in-
sect phenology and by pooling the thermal requirements
of several insect taxa, we cannot predict small-scale vari-
ations in resource phenology. However, the approach al-
lows for modelling the general insect abundance as for
food for adults and offspring in insectivorous birds
across large areas where field data are often impossible
to achieve.

Conclusions
Our findings suggest that nightingales used cues other
than local phenology for their departure decisions from
non-breeding grounds.

The influence of global warming on vegetation phen-
ology is well-studied in temperate and polar regions
[56,57]. Much less is known about phenological trends
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and their potential role in decision making in birds for
tropical or subtropical regions such as Sahelian Africa
[58]. This, however, is urgently required if we aim at fur-
ther increasing our understanding of the causal relations
between the environmental conditions, a decision the
migrant takes at local scale and their consequences dur-
ing several periods of the annual cycle in migrants. Such
mechanistic links between vastly distant places are key
for assessing the demographic consequences of habitat
and climatic changes [59] and thus, for efficient manage-
ment and conservation of migratory species.
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