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Abstract

Background: Fragmentation of plant populations may affect mating patterns and female and male reproductive
success. To improve understanding of fragmentation effects on plant reproduction, we investigated the pollen flow
patterns in six adjacent local populations of Magnolia stellata, an insect-pollinated, threatened tree species in Japan,
and assessed effects of maternal plant (genet) size, local genet density, population size and neighboring population
size on female reproductive success (seed production rates), and effects of mating distance, paternal genet size,
population size and separation of populations on male reproductive success.

Results: The seed production rate, i.e. the proportion of ovules that successfully turned into seeds, varied between
1.0 and 6.5%, and increased with increasing population size and neighboring population size, and with decreasing

were likely to alter the reproductive success.

Paternity analysis, Pollen dispersal, Seed production

maternal genet size and local genet density. The selfing rate varied between 3.6 and 28.9%, and increased with
increasing maternal genet size and with declining local genet density. Male reproductive success increased with
increasing paternal genet size, and decreased with increasing mating distance and separation of population. Pollen
flow between the populations was low (6.1%) and highly leptocurtic.

Conclusions: Our results indicate that habitat fragmentation, separation and reduced size of populations, affected
mating patterns and reproductive success of M. stellata. Local competition for pollinators and plant display size
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Background

Fragmentation disrupts continuous populations, resulting
in smaller, separated populations. The fragmentation of
plant populations may decrease seed production and
outcrossing rates due to limitations of mates and pollina-
tors in the remaining, fragmented populations, potentially
reducing reproductive success [1,2]. Thus, the reproductive
success of parent plants and fitness of their offspring may
be reduced [3-6]. Fragmentation may also lead to reduc-
tions in the frequency of gene flow among populations and
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genetic variation within populations due to genetic drift [7].
Among plant taxa, woody plant species are relatively resist-
ant to reductions in reproductive success and genetic vari-
ation due to habitat fragmentation owing to the longevity
of individuals, relatively high local genetic diversity and ex-
tensive gene flow [8,9]. However, recent meta-analyses sug-
gest that fragmentation is likely to reduce the genetic
variation of woody plant species as much as that of herb-
aceous species [10], and to affect reproductive success of
trees as much as that of other life forms [7].

It is especially difficult to predict the effects of population
fragmentation on mating patterns and seed production of
animal-pollinated trees, since the abundance and behavior
of pollinators may change as the size and isolation of their
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populations change [11,12]. Reductions in the size of tree
populations are expected to decrease the abundance of resi-
dent pollinators and the attraction of pollinators migrating
between populations [13]. Higher local densities of flo-
wering trees may attract disproportionately more pollina-
tors, resulting in higher pollination frequencies [14]. On the
other hand, increases in local tree density may increase
local competition for pollinators, as observed in large popu-
lations of insect-pollinated shrubs [15]. At the individual
level, the size of trees, which is related to floral display size
and resource availability, is also likely to affect pollination
rates and seed production.

Particularly in mixed-mating trees, the selfing rate is
likely to increase as the availability of mates and pollinators
decreases in small, fragmented populations [2,7,16]. Gei-
tonogamous selfing (self-pollination between flowers
within individuals), which is prevalent in trees, also tends
to increase in large trees that produce abundant flowers
and at sites with low local floral density and limited mate
availability [17,18]. Selfed offspring of most outcrossing
trees with high degrees of inbreeding depression [19,20]
have low survival and growth rates, and consequently low
fitness. Population fragmentation is also likely to alter pat-
terns of pollen-mediated gene flow (pollen flow). Forest
fragmentation can either impede or facilitate pollen flow
between tree populations [21-23], because landscape ele-
ments between the remaining forests may have either posi-
tive or negative effects on pollinator transfer [24]. Rather
than hindering pollen flow, fragmentation and reductions
in tree density frequently result in increased pollination
distances [25]. The rates of immigrant pollen flow from
outside often increases in fragmented populations, except
in extremely isolated populations [22,25-27]. Furthermore,
not only immigration but also emigration of pollen, i.e.
pollen donation from one population to another, may play
important roles in the maintenance of genetic connectivity
among populations [28]. Hence, measuring both the direc-
tion and frequency of pollen flow between populations is
necessary to evaluate effects of population fragmentation
on mating patterns.

An explicit method to clarify the direction of pollen flow
between populations, and quantify the composition of
contemporary pollen flow, is paternity analysis of seeds
collected from known mothers to determine the origin of
pollen that fertilized seeds. It was first applied by Adams
and Birkes [29,30] in attempts to simultaneously estimate
pollen flow and factors related to male fertility, such as
distances to mother trees and the degree of floral syn-
chrony. This approach was extended by Burczyk et al.
[31], who constructed a neighborhood model to utilize
genetic marker data from diploid offspring, and Klein
et al. [32], who proposed a new spatially explicit model
to estimate jointly the variance of male fecundity and
pollen dispersal kernels. However, in fragmented tree
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populations, mating patterns may depend not only on in-
dividual properties, such as the tree size and inter-tree dis-
tance, but also population properties, such as the size and
separation of populations. Hence, models including factors
at both individual and population levels are required to es-
timate determinants of pollen flow patterns and male re-
productive success.

In this study, we assessed pollen flow and assessed
selfing rates and female and male reproductive success
in six fragmented populations of a threatened tree spe-
cies, Magnolia stellata. This species produces insect-
pollinated flowers, it has a mixed mating system with
substantial amounts of selfed seeds, and its seed produc-
tion is often pollen-limited [33,34]. Thus, the species is
suitable for investigating effects of population fragmen-
tation on selfing rates and reproductive success. First we
assessed seed production rates in the studied popula-
tions to obtain estimates of female reproductive success,
and then conducted paternity analysis of seeds collected
from the trees. Next, we examined the selfing rates, from
the assigned paternity data. Then, we estimated male re-
productive success and pollen dispersal from the results
of the paternity analysis. Finally, we evaluated the effects
of genet size, local genet density, population size and
neighboring population size as a indicator of population
isolation on female reproductive success and selfing
rates, and the effects of mating distance, genet and
population size and geographical separation of the popu-
lations on male reproductive success in the populations.

Methods

Study species

Magnolia stellata Maxim. [35] (synonym, M. tomentosa
Thunb.; [36]) is a deciduous tree of the Magnoliaceae.
The species is endemic to the area around the Ise Bay of
Central Japan and is now considered near threatened
(NT) in the Japanese Red List [37]. Habitats of this spe-
cies are swampy places, such as streamsides and marshes,
in the uppermost parts of valleys [38]. The species
reaches heights up to 10 m. It blossoms in early spring,
forming protogynous, insect-pollinated flowers. The
mean flowering duration for an individual tree is 13.2
days, and the mean total flowering duration of the indi-
vidual flower and the durations of the female, transition-
ary and male phases of individual flowers are reportedly
10.3, 4.1, 0.7 and 5.5 day, respectively [39]. The main
flower visitors are small beetles [40], as in many other
Magnolia species [41-44]. Each flower can produce one
fruit. The fruits have ca. 30 to 40 carpels, and each carpel
usually has two ovules and can produce at most two red
seeds. Seeds are dispersed by both gravity [45] and birds,
such as the brown-eared bulbul (Hypsipetes amaurotis)
and Japanese thrush (Turdus cardis) (T. Kimura et al. un-
published data).
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Study area

The research site is located in the Kaisho Forest, near
Nagoya City, Aichi Prefecture, Japan (35° 11’ 25” N, 137°
06’ 55” E). This area supports a secondary forest that is
mainly composed of Pinus densiflora, Ilex pedunculosa,
Quercus serrata and Clethra barvinervis [46]. The potential
natural vegetation of this area is evergreen broad-leaved
forest, but the forest is now mainly dominated by decidu-
ous trees because people utilized the trees for fuel wood for
a long time in the past. However, since people stopped
using the wood for fuel, evergreen broad-leaved trees have
been increasing via secondary succession.

We define ‘a population” here as a group of genets in
the uppermost part of one of the valleys in the area, each
of which is separated from adjacent populations by
ridges (Figure 1). Eight M. stellata populations (desig-
nated Y, T, A, B, C, D, E and F) in the southwestern part
of the Kaisho Forest were surveyed. The locations and
designations of these populations are shown in Figure 1.
No other population is present in or around the study
area and the nearest population outside the study area is
about 1 km north of Population C.
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Determination of adult genets

Since M. stellata genets usually consist of several ramets,
due to sprouting and layering [45], different genets were
distinguished in previous studies based on the connections
between ramets above the ground and multilocus nuclear
microsatellite (nSSR) genotypes [38,45]. In one of the previ-
ous studies we also surveyed all genets that flowered at least
once from 2002 to 2004 (defined as adult genets) in the
eight populations, and recorded the spatial coordinates and
diameter at breast height (DBH) of the largest stem of each
adult genet in 2007 [39].

Measures of female reproductive success

In March 2005, we selected three to 14 genets (8.3 on
average and 50 in total) from six populations (Y, T, A, B, C
and F) and marked 11 to 96 individual flowers (33 on aver-
age and 1648 in total) of each genet (Table 1). In August
2005, we sampled mature fruits that developed from the
marked flowers. The number of ovules in the marked
flowers of each selected genet was estimated from the num-
ber of carpels in sampled fruits of the genet, assuming that
flowers and fruits had equal numbers of carpels, and that
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Figure 1 Spatial distribution of Magnolia stellata populations and genets examined in this study. The letters and numbers in parenthesis
indicate the designations of populations and numbers of adult genets (i.e. population size), respectively. Crosses indicate the locations of genets.
Gray (Y, T, A, B, C, F) and meshed areas (D, E) indicate locations of populations in which seeds were and were not sampled, respectively. Arrows

represent pollen flow and the numbers by the arrows indicate the numbers of pollen migration events.
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Table 1 Seed production rate, results of paternity analysis, immigration and selfing rates per tree per population

Population Seed DBH No. flower Seed production No. samples for Immigration Pollen source Selfing
(population size)  parents (cm)  marked rate (%) paternity analysis rate by population rate (%)
pollen (%)

Y (84) Y4 54 - - 4 0.0 (0) - 0.0 (0)
Y5 6.0 - - 17 11.8 (2) TQ) 0.0 (0)
Y20 6.3 - - 19 0.0 (©) - 00 (0
Y56 6.0 46 52 6 0.0 (0) - 1000 (6)
Y83 6.2 73 0.6 13 7.7 Q) T 0.0 (0)
Y90 9.0 - - 6 0.0 (©) - 833 (5
Yol 9.2 - - 17 59 (M B (1) 0.0 (0)
Y98 53 - - " 0.0 (0) - 0.0 (0)
Y129 44 20 16 3 00 ) - 333 (1)
Y136 14 - - 3 66.7 (#)] A1), B(1) 0.0 (0)
Y137 32 90 32 " 27.3 (3) T@3) 273 (3)
Y141 2.8 12 76 15 0.0 (0) - 0.0 (0)
Y145 5.7 96 6.0 12 16.7 (@) TQ) 417 (5
Y150 3.7 17 4.5 17 59 Q) T 59 (1
Y158 5.7 54 7.2 1 0.0 (0) - 1000 (1)
Y160 6.4 - - 9 0.0 (0) - 66.7 (6)
Y161 38 29 4.0 3 0.0 (0) - 333 (1)
Y175 46 18 35 - - - -

Mean (Total) 528 4550 (455) 433 9.82 (167) 834 (120 T(9), Al),BQ) 2891 (29)

T (98) T2 5.7 - - 14 14.3 ) Y(1), A(T) 0.0 (0)
T7 7.7 71 0.7 6 0.0 (0) - 0.0 0)
T24 38 25 4.7 2 0.0 ) - 00 (0
T25 39 39 1.0 7 0.0 (0) - 0.0 (0)
126 53 22 44 8 0.0 ) - 00 (0
T27 37 35 10.1 15 0.0 ) - 00 (0
129 4.1 42 64 6 16.7 Q) A 0.0 (0)
T52 25 42 46 25 0.0 ) - 00 (0
T53 28 35 29 16 63 Q) A 63 (1)
T54 2.5 38 2.2 8 125 Q) A 250 (2
177 37 14 0.0 - - - - - -
T91 5.1 32 26.0 1 0.0 (0) - 0.0 (0)
192 6.5 33 34 10 20.0 2) Y(1), B(1) 500 (5)
T99 24 22 30 10 100 (1) E() 00 (0
T100 3.7 63 54 9 0.0 (0) - 0.0 (0)

Mean (Total) 422 3664 (513) 535 9.79 (137) 5.69 €S) Y(2), A@), B(1), E(1) 580 (8)

A (46) Al 59 32 1.2 1 0.0 ) - 00 (0
A2 7.5 18 55 4 0.0 (0) - 250 (1)
A3 104 22 14 2 50.0 Q) Y (1) 0.0 (0)
A18 4.0 18 74 9 1.1 (1 Y (1) 0.0 (0)
A22 7.7 21 46 " 9.1 M B (1) 0.0 (0)
A24 6.7 17 10.7 18 5.6 (M Y (1) 0.0 (0)
A25 84 20 14.7 22 9.1 ) Y(1), E(1) 0.0 (0)
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Table 1 Seed production rate, results of paternity analysis, immigration and selfing rates per tree per population

(Continued)
Mean (Total) 7.22 21.14 (148) 6.50 9,57 (67) 1212 (6) Y(4), B(1), E(1) 357 (1)
B2 50 46 4.7 9 0.0 (0) - 0.0 0)
B9 50 71 03 - - - - - -
B14 50 24 1.0 Il 0.0 ) - 182 (2
B18 59 42 08 0.0 0 - 333 ()
B31 38 18 0.2 4 0.0 (0) - 500 (2)
B32 48 16 0.0 - 0.0 ) - - -
B33 55 21 0.0 - - - - - -
B35 3.1 11 0.0 - - - - - -
B41 58 22 17 - - - - - -
Mean (Total) 487 30.11 (271) 0.98 7.50 (30) 0.00 ) - 2538 (6)
C(24) @ 130 30 03 13 7.7 (1) T(1) 385 (5)
21 7.1 25 54 10 10.0 ) T(1) 200 (2
25 73 19 50 2 0.0 (0) - 0.0 (0)
28 44 17 63 21 0.0 (0) - 0.0 (0)
C34 82 13 138 19 0.0 ) - 158  (3)
C36 6.8 14 24 8 0.0 (0) - 125 (1)
43 26 12 33 10 0.0 (0) - 100 (1)
Mean (Total) 7.04 18.57 (130) 521 11.86 (83) 2.53 ) T2 13.82 (12)
F (4) F1 84 23 04 2 0.0 0) - 0.0 (0)
F2 84 23 0.1 2 0.0 (0) - 500 (1)
F4 54 22 25 5 40.0 (2) T(2) 0.0 )
Mean (Total) 742 22.67 (68) 1.03 3.00 (9) 1333 (2 T(Q) 16.67 (1)

each carpel had two ovules [numbers of ovules in flowers =
numbers of carpels in fruits x 2]. The fruit set percentages
[(the number of sampled fruits from each genet / the num-
ber of marked flowers of each genet) x 100], and seed set
[(the total number of filled seeds in sampled fruits of each
genet/ the total number of ovules in marked flowers of each
genet) x 100] were calculated for every selected genet. As a
measure of female reproductive success, the percentage
of ovules that developed into filled seeds (seed produc-
tion rate = fruit set x seed set x 100) was calculated for
every selected genet.

Sampling and germination test for paternity assignment

To increase the number of samples for paternity analysis,
we also sampled fruits from nine additional genets that we
did not survey for female reproductive success (eight in
Population Y and one in T). The fleshy pulp of seeds was
removed from the sampled fruits, and the seeds were stored
in water at 5°C for 48 weeks. Then, 30 seeds from each
genet (or all seeds from genets yielding less than 30 seeds)
were sown on damp filter paper. The seeds were then
placed in an incubator under diurnal temperature cycles
of 12 h at 5°C and 12 h at 25°C for about six months to
induce germination. The numbers of seedlings that had

germinated at the end of this time ranged from 0 to 25 per
genet, nine to 167 per population, and 493 seedlings in total
were obtained (Table 1).

DNA extraction and microsatellite genotyping

Genomic DNA was extracted from leaves of adult genets
and seedlings (hereafter referred to as offspring) using
a modified CTAB (Cetyltrimethylammonium bromide)
method [47] with further minor modifications. Genotypes
of the 493 offspring were determined using 10 SSR
markers, namely M6D8 developed for M. obovata [48], and
nine previously developed for M. stellata: stm0148,
stm0184, stm0191, stm0222, stm0223, stm0251, stm0334,
stm0353 and stm0423 [49]. Genotypes at the same loci of
all the 306 adult genets in the eight populations had already
been determined in a previous study [38].

Paternity assignment

High levels of genetic diversity (Hg = 0.773 £ 0.019) have
been observed in the adult genets of all the populations
[38]. Based on fixation indices (Fis), no significant deviation
from Hardy-Weinberg equilibrium was found at any loci in
any populations. No significant linkage disequilibrium be-
tween loci was observed for any population, except at one



Setsuko et al. BMC Ecology 2013, 13:10
http://www.biomedcentral.com/1472-6785/13/10

pair of loci in one population. Therefore, the loci seemed to
be independent and had few null alleles, and the exclusion
probability for the second parent was 0.99992. Detailed
summaries of the data pertaining to these findings are avail-
able in Setsuko et al. [38].

Parentage analyses were performed based on the
multilocus SSR genotypes of the offspring and candidate
parents (i.e. adult genets) using CERVUS version 3.0 [50]
with maximum-likelihood algorithms [51]. The simulation
parameters were as follows: 10,000 cycles, 306 candidate
parents, 0.95 as the proportion of candidate parents sam-
pled, 0.997 (calculated from the data) as the proportion of
loci typed, 0.01 as the rate of typing errors, 95% for the
strict confidence level and 80% for the relaxed confidence
level. For the proportion of candidate parents sampled, we
were confident that we sampled all extant candidate par-
ents within the populations. However, we did not conduct a
flowering census in 2005 (the year seeds were sampled), so
it is possible that a few adult genets that had not identified
as flowering genets in the censuses from 2002 to 2004 may
have flowered in 2005. Therefore, we set this parameter at
0.95. We allowed selfing in the parentage testing, because
M. stellata is self-compatible, setting the selfing rate at 0.20
based on our previous data [52]. According to the assigned
paternity data, we categorized the offspring as derived from
selfing, outcrossing within the study area, and outcrossing
with a paternal parent that was not present in the study
area. We defined the selfing rate as the number of selfed
offspring divided by the number of examined offspring
from each genet.

Factors influencing the female reproductive success and
selfing rate

To investigate the factors that influence the female repro-
ductive success and selfing rate, we applied a GLM with a
binomial error distribution and a logistic-link function
using R 2.11.1 [53]. We defined genet size as the basal area
(cm?) of the largest stem of each adult genet at breast
height (mx (DBH of the largest stem of genet/2)2). As ex-
planatory variables in the GLM, we chose maternal genet
size (genet size of a focal maternal genet), local genet dens-
ity (summed size of adult genets within a certain radius, x
in meters, of the focal maternal genet), population size
(summed size of adult genets in the focal maternal genet’s
population) and neighbouring population size (sum of
neighbouring population size within a 300 m radius from
the focal maternal genet) as a indicator of population isola-
tion. We have previously shown that the size of maternal
genets affects their floral display size and thus attractiveness
to pollinators [39,40]. Therefore, we used summed genet
sizes to indicate the local genet density and population size,
rather than numbers of adult genets, in order to evaluate
effects of both the number and size of individual genets
simultaneously. To determine the most appropriate radius
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for neighbouring genets, radii with 5 m increments from 5
to 50 m were tested in the GLMs. We set the upper radius
at 50 m since most pollen flow occurs within 50 m in this
species [38]. Neighboring populations were defined as the
populations that including at least one individual within the
radius 300 m from the focal maternal genet except for the
focal maternal population. The radius for neighboring
population was set as 300 m since it can cover the adjacent
populations from each focal population. To select models
for estimating parameters for the explanatory variables we
calculated Akaike’s Information Criterion (AIC) values [54].
Models with lower AIC values have higher likelihoods and
smaller numbers of parameters than alternative models.

Estimation of pollen dispersal parameters and factors
affecting male reproductive success

Pollen dispersal events identified by paternity analyses
were used to estimate a pollen dispersal kernel character-
izing pollen movements within our study area, in terms
of an exponential power function [55]. Using this func-
tion, the probability of pollen dispersal d over distance r
(m) was defined as:

a’b

d= 3T 2/b) exp(—[ar]b),

where I' is the gamma function, and a and b are scale
and shape parameters, respectively. The mean dispersal
distance is expressed as I' (3/b)/al (2/b) [56]. This func-
tion has been more frequently used than Weibull, geo-
metric, Student’s ¢ and other functions because various
dispersal patterns can be expressed using solely the shape
parameter of the exponential power function, such as an
exponential distribution (b = 1), normal distribution (b = 2),
fat-tailed (b < 1) or thin-tailed (b > 1), leptokurtic (b < 2)
or platykurtic (b > 2) distributions [56].

We examined the male reproductive success based on
the dispersal kernel. For maternal genet i = {1, 2, ...,
M}, the number of seeds 7;; (i # j) sired by male genet
j=1{1,2, ..., N} is assumed to follow a multinomial
distribution with the probability p; and sample size

N-1

Z nix. The probability p;; (i # /) that male genet j sired
k=1(k=i)
seeds of maternal genet i was determined using parameters
of pollen dispersal a, b and male reproductive success f;
(i # j) from male genet j to maternal genet i in the form:

i e (il
N—1 ’

> )fik exp (*[ﬂfik]b)

k=1(k=i

Pij=

where 7 (i # j) is the distance (m) between maternal genet
i and male genet j. Male reproductive success f; was
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determined from the relative size s; of male genet j to ma-
ternal genet i (s;; = genet size of j / genet size of i, relative
genet size), the relative size ¢; of the population of male
genet j to the population of maternal genet i (£; = popula-
tion size of genet j / population size of genet i, relative
population size) and the geographic separation u; of
populations of the maternal genet i and male genet j
(u; = 0 when the maternal and male genets belonged
to the same population, and #; = 1 when they belonged
to different populations, separation of population) in
the form:

Ji= Sijati/ﬁ exp (yﬂij)v

where o, B and y are parameters of s; f; and u;; re-
spectively. The mating likelihood function for M mater-
nal genets and N male genets was expressed as:

M N-1

L(n,r,s,t,u | a,b,tx,/)’,y):H H pi]'nij.
)

=1 =1 (i

The posterior probability distributions were derived
from the likelihood and non-informative prior probabil-
ity distributions (gamma distributions with mean 1 and
variance 1,000 for 4 and b, and normal distributions with
mean 0 and variance 1,000 for o, p and ).

Posterior distributions of the parameters were com-
puted as conditional distributions that were updated based
on the ny, 1y, s t;; and u; data. Initial values (a = b = 1,
a = p =y = 0) were first defined and then updated, to fit
the data relating to the probability p; that male genet
j sired seeds of maternal genet i, in three chains of MCMC
sampling implemented in JAGS software using the rjags
package in R2.11.1 [57]. Each chain was run for 20,000 iter-
ations with parameter values recorded every 20 iterations
after a burn-in period of 2,000 iterations. MCMC conver-
gence after all iterations in the three chains for the parame-
ters was visualized by the coda package, and confirmed by
R-hat < 1.1 using the function gelman.diag. The parameter
estimates, the median and range between 2.5 and 97.5 per-
centiles, were obtained from the 2,700 MCMC samples.

Results

Female reproductive success

The mean seed production rate for each population ranged
from 0.98% (population B) to 6.50% (population A) and
was 4.00% for the six populations on average (Table 1).
According to the AIC and AAIC values, the model provid-
ing the best explanation for the variation in the seed pro-
duction rate included four explanatory variables: maternal
genet size, local genet density within a 50 m radius, popula-
tion size and neighboring population size (Table 2). The
estimated parameters of these variables were positive
for population size and neighboring population size and
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negative for maternal genet size and local genet density
(Table 3), indicating that female reproductive success in-
creased as the population size and neighboring population
size increased and as the maternal genet size and the local
genet density decreased.

Paternity assignment

Pollen parents of all 493 offspring examined here were
identified at the 95% confidence level, thus no offspring
with a pollen parent outside the study area was found. Of
the 493 offspring, 57 (11.56%) were derived from selfing
(Table 1), and pollen parents of 436 outcrossed progeny
were assigned to 115 out of 306 candidates (37.58%)
within the study area.

Selfing rate

No selfing was detected for 30 genets, but the selfing rates
of the other 22 ranged from 5.88 to 100.00% (Table 1). The
model providing the lowest AIC value for the variations in
the selfing rate included two explanatory variables (mater-
nal genet size and local genet density within a 25 m radius)
(Table 2). The estimated parameter for the local genet
density was negative (Table 3), indicating that the selfing
rates were higher for genets with lower densities of neigh-
boring genets. The estimated parameter for the maternal
genet size was positive, suggesting that larger genets have
higher selfing rates.

Pollen flow and male reproductive success

Of the 436 outcrossed progeny, 30 originated from mat-
ing between genets in different populations (6.88%), and
406 from mating between genets in the same populations
(93.12%) (Table 1, Additional file 1). Among pollen flow
events detected between populations, the most frequent
were from T to Y, A to Tand Y to A (nine, four and four
mating events, respectively; Figure 1, Additional file 1).
All six populations used in this analysis were connected
by pollen flow, but the central three populations (A, T
and Y) were both donors and recipients of the observed
pollen flow, while the peripheral populations were either
donors (population B) or recipients (populations C and
F) (Figure 1).

On the basis of the observed pollen flow pattern, poster-
ior distributions of the two pollen dispersal parameters
and three male reproductive success parameters were esti-
mated from three converging MCMC sampling chains
(R-hat < 1.1) (Table 4). Medians and 95% ranges of the
pollen dispersal scale and shape parameters, which were
correlated (Figure 2a), were estimated, and a pollen disper-
sal curve with confidence levels was obtained from the esti-
mates (Figure 2b). The curve was leptokurtic and fat-tailed
(b = 0.206) (Table 4), and the mean dispersal distance was
602 m, with a 95% range from 95 to 7,962 m. Among the
three male reproductive success parameters, the size of
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Table 2 The intercept and parameters included in the best and other models (according to Akaike’s Information
Criterion, AIC) explaining the female reproductive success and selfing rate of Magnolia stellata offspring

Model Ovule survival rate Selfing rate
rank Model AAIC Model AIC  AAIC
1 ¢, maternal genet size, local density (50 m), population size,  15766.1 0.0 ¢, maternal genet size, local density (25 m) 299.5 00
neighboring population size
2 ¢, maternal genet size, local density (50 m), neighboring 157765 104 ¢, maternal genet size, local density (25 m), 3008 13
population size population size
3 ¢, maternal genet size, local density (40 m), population size, 157918 257 ¢, maternal genet size, local density (25 m), 3013 1.8
neighboring population size neighboring population size
4 ¢, maternal genet size, local density (45 m), population size,  15799.9 33.8 ¢, local density (25 m) 301.7 22
neighboring population size
5 ¢, local density (40 m), pulation size, neighboring population size 158054  39.3 ¢, maternal genet size, local density (30 m) 3018 23

Abbreviations: AAIC, the difference in AIC between the model considered and the most parsimonious model; ¢, intercept. Numbers in the parentheses after local

density are the radius used to calculate the local genet density.

paternal genets relative to maternal genets had a positive ef-
fect (a = 0.711), whereas both the population size of pater-
nal genets relative to that of maternal genets (p = —0.302)
and geographical separation of populations (y = —0.575)
had negative effects (Table 4). The relative genet size and
separation of populations had substantial effects, since 95%
ranges of these parameter estimates did not include 0, while
the relative population size did not have a clear effect.
Hence, the estimated parameters indicated that male repro-
ductive success in mating between populations was lower
than that within populations, and positively associated with
the size of paternal genets, but negatively associated with
the size of the genets’ populations.

Discussion

Female reproductive success and selfing rate

Of the germinating seeds included in this study, 11.56%
originated from selfing, in accordance with the known
self-compatibility and mixed mating system of M. stellata
[34] and congeneric species M. obovata [58,59]. Habitat
fragmentation tends to decrease reproductive success
less in self-compatible species than in self-incompatible
species because selfing can compensate for reductions in
seed production due to pollen limitation in fragmented

populations [7]. However, despite the selfing potential,
pollen limitations of seed production have been detected
in fragmented M. stellata populations [33,60]. Hirayama
et al. [33] found that manual cross-pollination results in
the highest seed production rate, natural pollination the
lowest, and manual self-pollination intermediate levels in
fragmented populations of the species, suggesting that
pollen shortage causes ovule mortality and selfing causes
embryo mortality. Therefore, if outcross and/or self
pollen is limited in the studied populations, pollen limita-
tion is likely to impair their seed production and/or
outcrossing opportunities.

Seed production rates increased as the population size
and neighboring population size increased (Table 3). The
size of focal and neighboring populations, which were in-
dicated by the summed size of adult genets, would be
positively correlated with the floral resources in the focal
and surrounding populations. The rich floral resources
could increase the pollinator abundance in the focal pop-
ulations, leading to higher seed production rates. In the
best model, the coefficient for population size was about
4.4 times higher than that of neighboring population size
(Table 3), which suggests that pollinators maintained in
populations are mainly dependent on floral resources in

Table 3 Fixed explanatory variables of the generalized linear models that best explained female reproductive success,
and the selfing rate of Magnolia stellata populations, selected according to Akaike’s information Criterion (AIC)

Response variables Explanatory variables Coefficients S.E. p value
Ovule survival rate c —4.20200 0.05343 <0.001
maternal genet size —0.00256 0.00074 <0.001
local density (50 m) —0.00056 0.00004 <0.001
population size 0.00055 0.00003 <0.001
neighboring population size 0.00013 0.00001 <0.001
Selfing rate c -1.21029 047454 <0.05
maternal genet size 0.12485 0.06044 <0.05
local density (25 m) —0.00534 0.00105 <0.001

Abbreviations: ¢, intercept. Numbers in the parentheses after local density are the radius used to calculate the local genet density.
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the focal populations and subsidized by those in sur-
rounding populations. In the study site, most populations
covered several hundred meters along the valleys, corre-
sponding to the mean pollen dispersal distance (602 m).
Pollination events between populations were rare (6.09%)
and increases in the geographical separation of the popu-
lations significantly reduced siring success (Table 4),
suggesting that most movements of pollinators occur
within the populations. Thus, the populations are likely
to harbor their own pollinators, partially isolating them
from the other populations.

On the other hand, the local genet density had negative
effects on the seed production rate, and there are two pos-
sible explanations (Table 3). First, the seed production may
be reduced by the inbreeding depression due to biparental
inbreeding, i.e. mating between relatives. If genetic spatial
autocorrelation exists in populations, biparental inbreeding
would occur, especially in the area where local genet density
is high, since the pollen dispersal is limited in M. stellata as
shown in this study. Under such circumstances, the oppor-
tunity to mate with relatives would increase and thus
decrease the seed production rate due to inbreeding de-
pression. However, our previous study did not detect sig-
nificant spatial autocorrelation among adult genets [45],
and therefore increased biparental inbreeding with increas-
ing local genet density is not supported. Second, local com-
petition for pollinators among neighboring plants could
explain the negative effect of local density on seed produc-
tion. Although it is unusual for local plant density to be
negatively correlated with female reproductive success
[61,62], there are a few known examples of large plant ag-
gregations increasing competition for pollinators [15,63]. In
spite of the occurrence of pollen dispersal over several hun-
dred meters, the leptokurtic dispersal curve indicates that
most pollination events occurred within about 50 m, corre-
sponding to the scale of the local genet density (Figure 2).
Thus, pollinator movements seem to be restricted to the
local range, and limited availability of pollinators within the
range is likely to result in the competition among the local
genets.

In a previous analysis of hierarchical variation in the pro-
portion of M. stellata seeds derived from selfing found, the
selfing rate did not significantly differ among popula-
tions, but did vary among genets within populations [34].

Table 4 Medians and 95% confidence intervals of
parameters estimated by MCMC sampling

Parameter Median (95% ClI)
a scale parameter 239.709 (18.107, 1522.016)
b shape parameter 0.206 (0.182, 0.257)
a relative genet size 0.711 (0.593, 0.832)
B relative population size —-0.302 (—0.752, 0.156)
v separation of population -0.575 (—=1.105, -0.021)
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Notwithstanding large variation in the selfing rate among
genets, in the present study it was negatively correlated
with local genet density. In accordance with our findings,
there are tendencies for the selfing rate of various species
to decrease with increases in both the local plant density
and population size [2,64-66]. Van Treuren et al. [67], in
particular, found that selfing in Salvia pratensis was pro-
moted by low plant density, but there was no correlation
between the selfing rate and population size. A low density
of neighboring genets is likely to result in outcross pollen
limitation and a high frequency of selfing, which can partly
compensate for reductions in seed production.

The maternal genet size had negative effects on the seed
production rates and positive effects on the selfing rate.
This result conflicts with the expectation that the large
plants have ample resources to produce large number of
seeds and have large floral display to increase pollinator
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Figure 2 A) Distributions of scale (a) and shape parameters (b)
obtained by MCMC sampling. The black circle indicates the
median of the two parameters and plus signs indicate upper and
lower limits of their 95% credible intervals. B) Estimated pollen
dispersal curve (solid line) derived from modeling pollen dispersal
with male reproductive success, when medians of the scale and
shape parameters are applied, and upper and lower limits of the

95% credible interval obtained by MCMC sampling (dashed lines).
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visitation, and thus have high seed production rate [68,69]
and high outcrossing rate [70,71]. The result, however, sug-
gests that larger genets with more flowers are frequently re-
ceived geitonogamous pollination, and thus have higher
selfing rate and reduces seed production [72,73]. Geitonog-
amous selfing is likely in M. stellata because its female-
stage flowers lack rewards but morphologically mimicking
male-stage flowers that produce pollinator-attracting pollen
[42], and asynchronously opening within genets [74]. Self-
pollination rate would increase along with the increase of
maternal genet size, and some self-fertilized embryo would
be aborted as Hirayama et al. [33] reported that 36 to 38%
of the embryo is aborted by the self-pollination in M.
stellata. The partial abortion decreases the seed production
rates, and development of remaining self-fertilized embryos
would increase the selfing rate.

In previous research [39], however, we found that the ma-
ternal genet size and the floral display size of neighboring
genets were both positively correlated with their female re-
productive success in population Y. This result is inconsist-
ent with our present study. Thus, the effects of the
maternal genet size and local genet density on female re-
productive success seem to vary among populations and
among years, and further research is needed to elucidate
more fully the relationships among the variables and to
identify more clearly the influential factors.

Pollen flow and male reproductive success

Owing to the low value of cryptic gene flow (0.025 =
1 — 0.99992%%), the incorrect assignment of genets within
sampled candidates as pollen donors, pollen parents of
nearly all examined offspring were identified amongst adult
genets within the study area. The estimated shape param-
eter (b = 0.21) of the pollen dispersal kernel is smaller than
previously reported values for other insect-pollinated tree
species [21,32,55,56,75-78]. These comparisons suggest that
the dispersal kernel of M. stellata pollen is more fat-tailed
than usual, indicating extreme variation in the dispersal dis-
tance, with frequent short and rare long dispersal [56].
Among various insect visitors of M. obovata flowers, flower
beetles (Scarabaeidae) carry more outcross pollen, and
hence pollen with higher genetic diversity, than bumblebees
and small beetles [79]. Thus, some groups of flower beetles
may carry pollen over during subsequent visits among
flowering genets. The main pollinators of M. stellata are
also reportedly beetles, of the Staphylinidae [40], but their
pollination efficiency has not been evaluated. These find-
ings suggest that the beetle pollinators of M. stellata may
occasionally disperse pollen over long distances, thus
explaining the observed fat-tailed dispersal pattern.

Despite the potential for pollen dispersal over long dis-
tance, male reproductive success in mating between popu-
lations was estimated to be about half (exp (yu;) = e =
0.563) that of mating within populations. This suggests that
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the ridges between the M. stellata populations are topo-
graphical barriers that impede pollen flow, possibly because
different environmental conditions on the ridges hinder
movements of beetle pollinators between the valleys.

The frequency of pollen-mediated gene immigration
often increases as population size decreases [27], and small
populations of tree species reportedly receive immigrating
pollen more frequently from larger populations than vice
versa [80]. These patterns seem to result from the greater
abundance of pollen dispersed from large populations, re-
gardless of the siring success of individual genets. In this
study, however, the male reproductive success of individual
genets tended to be higher in small populations than in
large populations. Movement patterns of pollinators ex-
pected from foraging theory are probably responsible for
this finding [81]. In large populations with many flowering
genets, pollinators are likely to forage sequentially on abun-
dant resources within the populations and rarely leave
them. In contrast, pollinators may stay for short times
within small populations and frequently leave them. These
foraging patterns could enhance the probability of pollen
transfer between populations from genets in small popula-
tions, in accordance with observations of increased average
pollination distances in fragmented populations of animal-
pollinated trees [27,82].

The estimated parameter for the effect of genet size on
male reproductive success was positive, suggesting that
large genets tend to have higher male reproductive suc-
cess. Our previous study also indicated that larger genets
sired more seedlings that had established in the study
area [52]. Large genets tended to have many flowers [39],
and thus abundant rewards that should attract pollina-
tors and increase male reproductive success in spite of
pollen discounting due to geitonogamous selfing.

Conclusions

The findings of this study suggest that population structure
affects mating patterns and reproductive success in M.
stellata. Population fragmentation is likely to reduce its fe-
male and male reproductive success due to associated re-
ductions in population sizes and increases in the
geographic separation of the populations.

In spite of the potential for long-distance pollen disper-
sal, mating between populations was rare. Genets in larger
populations tend to have higher female reproductive suc-
cess, but may have lower male reproductive success. Lar-
ger genets tend to have lower seed production rates and
outcrossing rates, due to geitonogamy, but higher male re-
productive success. In attempts to conserve rare species,
only large populations with large individuals are often
selected as conservation targets. However, our study
suggests that individual populations may have different,
size-dependent roles. In order to conserve M. stellata pop-
ulations, not only large populations but also small
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populations should be considered to maintain seed
reproduction and gene flow between local populations,
respectively.
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Additional file 1: Population size and number of offspring sired by
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