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Abstract

Background: Intense consumer pressure strongly affects the structural organization and function of marine
ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals
produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some
marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists
seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the
biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-
laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome
P450s (CYPs), which have received little attention in marine invertebrates despite the importance of allelochemicals
in their evolution.

Results: Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly
involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on
chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of
C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and
CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high
concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and
CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically
important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected
allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in
eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate CYP4A/
4F forms share identical amino acid residues at key positions within fatty acid substrate recognition sites.

Conclusions: These results demonstrate differential regulation of CYP transcripts in a marine consumer feeding on
an allelochemical-rich diet, and significantly advance our understanding of both the adaptive molecular
mechanisms that marine consumers use to cope with environmental chemical pressures and the evolutionary
history of allelochemical-metabolizing enzymes in the CYP superfamily.

Background
The dominance of gorgonian corals (Cnidaria, Octocoral-
lia, Gorgonacea) on Caribbean reefs can be attributed, in
part, to their chemical defenses, which limit predation by
most potential consumers [1,2]. Among the classes of nat-
ural products isolated from gorgonians are acetogenins,

prostanoids, highly functionalized steroids, and a diverse
suite of terpenoid derivatives (e.g., diterpenes and sesqui-
terpenes) [3,4], all of which contain representatives with
anti-predatory activity (reviewed in [5]). Despite the
unique toxicological challenge that gorgonians present to
marine consumers, the ovulid gastropod Cyphoma gibbo-
sum thrives solely on a diet of allelochemically-rich octo-
corals [6], implying that this obligate consumer has
evolved mechanisms of allelochemical tolerance. Addition-
ally, C. gibbosum’s tissues do not mirror the chemical
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composition of its octocoral prey [7], suggesting that this
generalist consumer can biotransform dietary secondary
metabolites.
Elucidating the molecular mechanisms governing alle-

lochemical resistance is crucial for understanding the
genetic basis of adaptation in consumers like C. gibbo-
sum that regularly feed on chemically defended prey. In
marine systems, however, knowledge of genes conferring
consumer tolerance to dietary allelochemicals is in its
infancy [8] compared to that of terrestrial systems
[9,10]. Metabolic resistance of insects to host plant tox-
ins is known to involve a battery of cytochrome P450
(CYP) enzymes that oxidize a variety of hydrophobic
compounds including dietary allelochemicals [11]. Much
of the apparent diversity of CYP isoforms in insects is
likely due to reciprocal evolutionary influences between
host chemical defenses and consumer detoxification
mechanisms, aptly termed a co-evolutionary “arms race”
[12,13]. According to this view, multiple gene duplica-
tion and adaptive divergence of consumer CYP genes
have allowed isoforms to gain new functions and
increase the range of possible substrates while retaining
ancestral metabolic capabilities [14]. For generalist con-
sumers that must cope with a diversity of allelochem-
icals, having an assortment of catalytically versatile
cytochrome P450 genes may provide a competitive
advantage in dealing with the unpredictability of prey
chemical defenses [15].
Consumer allelochemical tolerance is driven not only

by the genetic and functional diversity of cytochromes
P450, but also has been correlated with the elevated
transcription of CYP genes [16]. In vertebrate systems,
CYP induction following exposure to dietary xenobiotics
(including allelochemicals) primarily involves genes
within CYP families 1 through 4 [17], while in insects
allelochemically inducible forms are found chiefly in
CYP families 4, 6 and 9 [11]. The identification of mol-
luscan CYP genes involved in allelochemical metabolism
has proved difficult because many of the CYP families
previously identified in such reactions are either taxon-
specific (i.e., insect-specific CYP 6 and 9) [18], or lack
full-length sequenced representatives from protostomes
in general, including molluscs (i.e., CYP1, 2 and 3)
[19,20]. In contrast, members of the CYP4 family repre-
sent a substantial portion of the CYP cDNA sequences
identified to date in both arthropods and molluscs
[18,21,22].
The CYP4 family is considered one of the most

ancient CYP families, having evolved from the steroid-
synthesizing CYPs and since diverged into an array of
subfamilies and genes encoding enzymes acting on
diverse substrates [23]. In vertebrates, CYP4 genes are
the predominant fatty acid ω-hydroxylases, preventing
lipotoxicity by hydroxylating eicosanoids, including

prostaglandins [24]. Prostaglandins are potent signaling
molecules, known as regulators of fever, inflammation,
and pain response in human biology. In marine systems,
prostaglandins function as feeding deterrents and can
comprise up to 8% of the wet weight of some gorgonian
species (reviewed by [25]). Yet the diversity of CYP4
substrates extends far beyond fatty acid derivatives to
include anti-herbivory isoquinoline alkaloids [26] and
terpene derivatives, including sesquiterpenoids [27]. The
capacity of CYP4 genes to metabolize terpenoid deriva-
tives is of particular interest due to the predominance of
defensive diterpenoid and sesquiterpenoid compounds
across all members of the Octocorallia [28]. This overlap
between the diverse pool of CYP4 substrates and the
major structural classes of gorgonian natural products
make the CYP4 family an appropriate target for further
investigation with respect to allelochemical detoxifica-
tion in molluscan consumers.
An initial investigation by Vrolijk and Targett [29] was

the first to suggest that the ability of C. gibbosum to toler-
ate dietary allelochemicals may involve enhanced biotrans-
formation by enzymes such as cytochromes P450. The
authors measured both P450 content and activity from
field-collected C. gibbosum feeding on four species of gor-
gonian corals (Briareum asbestinum, Gorgonian ventalina,
Plexaura homomalla, and Pseudopterogorgia americana).
However, P450-specific content in C. gibbosum digestive
gland was low and only quantifiable in individuals col-
lected from P. americana. Moreover, two spectrofluoro-
metric assays (methoxyresorufin O-deethylase (MROD)
and ethoxyresorufin O-deethylase (EROD)), classically
used to detect CYP1A-specific activity in vertebrates
exposed to anthropogenic pollutants, failed to detect the
presence of CYP activity in C. gibbosum digestive gland.
Since publication of that paper, advances in the field of
molecular ecology warrant a re-evaluation of this hypoth-
esis. Using a targeted molecular approach, we identified
putative allelochemical-responsive C. gibbosum CYP4
cDNAs, measured their transcript expression following
allelochemical exposure, and assessed their ability to meta-
bolize diagnostic substrates. Evidence presented here
emphasizes the role of CYP genes in the adaptation of
marine consumers to their chemically defended prey.

Methods
Animal collection and feeding assay design
A total of 151 adult Cyphoma gibbosum (ca 2-3 cm
length) were collected from five shallow reefs (< 20 m)
(Big Point - 23°47.383’N, 76°8.113’W; North Normans -
23°47.383’N, 76°8.264’W; Rainbow Gardens - 23°
47.792’N, 76°8.787’W; Shark Rock - 23°45.075’N, 76°
7.475’W; Sugar Blue Holes - 23°41.910’N, 76°0.23’W)
surrounding the Perry Institute of Marine Science
(PIMS), Lee Stocking Island, Exuma Cays, Bahamas
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(Figure 1) in January 2006. Snails were immediately
transported to wet laboratory facilities provided by
PIMS where a series of feeding assays were conducted
with seven gorgonian species (Briareum asbestinum,
Eunicea mammosa, Gorgonia ventalina, Pseudopterogor-
gia acerosa, Pseudopterogorgia americana, Pseudoptero-
gorgia elisabethae, Plexaura homomalla) observed to
serve as hosts for C. gibbosum in the field.
Individual snails were housed separately in 3-L polycar-

bonate tanks which were placed in a 12’ × 20” raceway
supplied with filtered, continuous-flow seawater at a flow
rate of approximately 1 L min-1. This design allowed for
a common water source to feed each tank but prevented
mixing between tanks. Snails collected from the same
reefs were housed separately in the same raceways and
randomly assigned to one of nine groups – one of seven
gorgonian diets, a control diet, or a time-zero group – at
the start of the feeding assays (Figure 2). Snails assigned
to the time zero groups were dissected within two hours
after field collection and digestive glands were preserved
in RNA Later® (Ambion, Austin, TX) and stored at -80°C.
Time-zero snails provide baseline information about the
CYPs expressed in a population of C. gibbosum on a par-
ticular reef at the time of collection. The remaining snails
were maintained on their respective diet (gorgonian or
control) for a total of four days, reflecting the mean resi-
dence time of C. gibbosum on gorgonian colonies [30].
Gorgonian colonies were collected from shallow reefs

(<20 m) surrounding PIMS and housed in a separate
raceway prior to introduction into the tanks containing

C. gibbosum. To ensure representation of gorgonian
chemotypes, if they exist, a minimum of ten colonies
were used in the feeding assays. Gorgonian colonies
were cut into 2-3 inch pieces and introduced into the
feeding assays less than 12 hours after field collection.
The control diet consisted of alginic acid and freeze-
dried squid powder prepared as described in [2]; this
diet mirrored the average nutritional quality and consis-
tency of gorgonian tissue. The squid-alginate paste was
pressed into sixteen 3-mm deep wells drilled into a 3” ×
1” piece of Formica® resembling a domino. The domino
was then placed into a 0.25 M calcium chloride solution
allowing the squid-alginate paste to harden. Both con-
trol and gorgonian diets were replaced every 24 hours
for four days, and feeding activity was monitored by the
presence of feeding scars on their gorgonian prey and
empty wells on control dominos (see Additional file 1
for a summary of digestive glands collected). Upon com-
pletion of the 4 day feeding assay, the digestive glands
were immediately dissected, weighed, preserved in RNA
Later® and maintained at -80°C until further analysis.
A second set of feeding assays running in parallel to
those described above are detailed in [31]. Material
obtained from this subsequent assay was used to investi-
gate the enzymatic activity of C. gibbosum digestive
gland microsomes.

Initial cDNA cloning
In 2004, a preliminary series of feeding assays at PIMS
with 15 adult C. gibbosum feeding on four gorgonian
species (B. asbestinum, G. ventalina, P. acerosa, P. amer-
icana) provided the material for the initial cloning of
CYP4 cDNA fragments. RNA isolation, RT-PCR with
degenerate primers, cDNA cloning, and sequencing are
described in detail in Additional file 2.
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Figure 1 Cyphoma and gorgonian sampling locations in the
Exuma Keys, Bahamas. Black circles indicate the location of reefs
where animals were collected.
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Figure 2 Feeding assay experimental design for snails
collected for RNA isolation. Snails were randomly placed into one
of nine groups, time zero group (To), a control group (C1,C2, C3), or
one of seven gorgonian diet groups (A, Briareum asbestinum;
B, Eunicea mammosa; C, Gorgonia ventalina; D, Pseudopterogoria
acerosa; E, Pseudopterogoria americana; F, Pseudopterogoria
elisabethae; G, Plexaura homomalla). Digestive glands collected after
completion of this feeding assay were used for RNA isolation and
mRNA expression analysis.
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Rapid amplification of cDNA ends (RACE)
Gene specific primers designed to the three initial
cDNA fragments (see Additional file 3) were used in
combination with adaptor-specific primers to obtain
full-length CYP sequences by 5’- and 3’-RACE-PCR.
Digestive gland total RNA from seven snails collected
during the January 2006 feeding assays was purified and
DNAse treated using the RNeasy Maxi Kit and RNase-
free DNAse Kit (Qiagen, Valencia, CA) following the
manufacturer’s instructions. Poly(A)+ RNA was isolated
using the MicroPoly(A) Purist mRNA purification kit
according to the manufacturer’s instructions and equal
amounts of poly(A)+ RNA from each of the seven snails
feeding either on a control diet or one of six gorgonian
species (0.14 μg poly(A)+ RNA/individual) was pooled
to ensure representation of all CYPs expressed under
various dietary conditions. One microgram of pooled
poly(A)+RNA was primed with modified oligo (dT) pri-
mers and used to create an adaptor-ligated double-
stranded cDNA library synthesized using the Marathon
cDNA Amplification Kit (BD Biosciences, Palo Alto,
CA) according to the manufacturer’s instructions.
Amplification of PCR products was carried out accord-
ing to the Advantage 2 PCR Enzyme Kit (Clontech,
Mountain View, CA) and cycling parameters were as
follows: 94°C for 30 sec; 5 cycles of 94°C for 5 sec, 72°C
for 2.5 min; 5 cycles of 94°C for 5 sec, 70°C for 2.5 min;
25 cycles of 94°C for 5 sec, 68°C for 2.5 min; 68°C
for 5 min with the following specific primer pairs
(RACE_1_F/CYP4_A12_R; RACE_1_F/CYP4_D09_F;
RACE_1_F/CYP4_F11_R; RACE_1_F/CYP4_F1; and
AP1/CYP4-3_R1). Once the initiation and termination
codons had been identified, primers were designed to
amplify the full-length CYP4 cDNAs using PfuUltra™
Fusion HS DNA Polymerase (Stratagene, La Jolla, CA)
with the following cycling parameters: 95°C for 1 min;
40 cycles of 95°C for 20 sec, 63°C for 20 sec, 72°C for
1 min; 72°C for 3 min with specific primers pairs
(CYP4-3_F3/CYP4-3_R6, and CYP4-2_F1/CYP4-2_R1).
All PCR products were clones and sequenced as
described in Additional file 2.

Sequence alignments and phylogenetic analysis
Partial and full-length CYP4 nucleotide sequences were
clustered by Sequencher 4.6 based on nucleotide identity
(> 80% identity), aligned using ClustalX [32] and this
alignment was used to construct maximum parsimony
trees using PAUP*4.0b10 [33]. The number of possible
distinct CYP4 loci was inferred from tree topologies and
pairwise comparisons of cDNA sequences. Sequences
within each cluster were grouped according to maxi-
mum parsimony tree results, and consensus nucleotide
and deduced amino acid sequences were generated from
these groupings in BioEdit v7.0.5.2 [34]. Multiple

alignments of Cyphoma CYP4 deduced amino acid
sequences and other full-length metazoan CYP4 protein
sequences were performed by ClustalX for phylogenetic
analysis by Bayesian and maximum likelihood methods.
A Bayesian phylogeny was generated using MrBayes
(v 3.1.2; [35] with two independent runs of 3×106 gen-
erations each (sampled every 100th generation) and a
burn-in of 1×106 generations. Monte Carlo Markov
chains estimates with uninformative prior probabilities
were performed using the WAG model of amino acid
substitution [36] and prior uniform gamma distributions
approximated with four categories (WAG+I+gamma).
Maximum likelihood phylogenetic relationships were
calculated with the Pthreads version of RAxML v7.0.0
[37,38] using the WAG+gamma model of amino acid
substitution. Multiple initial ML searches were per-
formed from random starting points and bootstrap sup-
port was estimated for the best ML tree. Trees were
visualized and manipulated using FigTree v1.1 [39].

Homology modeling
Amino acid sequences of C. gibbosum CYP4BK1 and
CYP4BL3 were aligned to human CYP3A4 (PDB ID
1TQN) for which crystal structures are available [40].
Human CYP3A4 was selected as the template for con-
structing models because the two Cyphoma CYP4 pro-
teins share the highest degree of amino acid sequence
identity (23.9% for CYP4BK1, 24.4% for CYP4BL3) with
CYP3A4. Homology models were constructed using
Modeller (v 9.2, r5542; [41]), from alignments generated
using ClustalW [32] and refined using salign_2d (Mod-
eller). Default parameters in Modeller were applied,
excluding water molecules and any ions that were part
of any of the templates with the exception of the heme
and heme iron. Homology model quality was assessed
with DOPE (Modeller) and PROCHECK [42]. Evaluation
of potential substrate access channels was performed
using CAVER [43], while residues within the active sites
were defined based on cavity detection using CASTp
[44]. Putative active site residues were assessed based on
a simple physical proximity metric of ≤ 5 Å from the
oxo-heme moiety.

Real-time quantitative RT-PCR
CYP4 transcript expression levels in 141 C. gibbosum
digestive glands were quantified by real-time quantita-
tive PCR using the iCycler MyiQ Real-Time PCR Detec-
tion System (Bio-Rad). Digestive gland total RNA from
141 individual snails participating in the 2006 feeding
assays was purified and DNAse treated using the RNeasy
Maxi Kit and RNase-free DNAse Kit (Qiagen) following
the manufacturer’s instructions. Poly(A)+ RNA was iso-
lated using the MicroPoly(A) Purist mRNA purification
kit according to the manufacturer’s instructions.
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DNAse-treated poly(A)+ RNA (0.2 μg) was used to
synthesize cDNA as described by the iScript™ cDNA
Synthesis Kit (Bio-Rad, Hercules, CA). Quantitative RT-
PCR reactions contained 12.5 μL 2× SYBR Green Super-
mix reagent (Bio-Rad), 10 ng cDNA, and 100 nM of
each gene-specific primer in a final volume of 25 μL. A
list of sequence-specific primers for quantitative PCR
analysis of CYP4 transcript expression, a depiction of
the transcripts recognized by primers targeted to a sub-
set of CYP4BL cDNA sequences, and additional details
on qRT-PCR conditions and statistical analysis can be
found in Additional files 4, 5 and 6.

Heterologous expression
Five C. gibbosum CYP4 sequences (CYP4BK1, CYP4BK2,
CYP4BL1, CYP4BL3, and CYP4BL4) were expressed
using a yeast heterologous expression system (see Addi-
tional file 7). Full length CYP4 sequences were amplified
with custom primers (see Additional file 8) and cloned
into the entry vector pENTR/D/TOPO (Invitrogen,
Carlsbad, CA) then transferred to the expression vector
pYESDEST52/V5-His using the TOPO cloning Kit
(Invitrogen), and transformed into the Saccharomyces
cerevisiae W(R) strain, which over-expresses the yeast
NADPH-cytochrome P450 reductase gene under the
control of a galactose-inducible promoter [45]. The W(R)
yeast was made competent using the S.c. EasyComp™
transformation kit according to the manufacturer’s
instructions (Invitrogen), and separately transformed
with each of the five C. gibbosum CYP expression clones
and the control Arabidopsis b-glucuronidase (gus) gene.
Yeast cells were grown to high density with glucose as
the main carbon source, after which galactose was added
to induce CYP expression as described in [45]. Yeast cells
were harvested from 500 mL cultures after 8 and 15 hrs
on inductive media, pelleted and used in the preparation
of microsomes.
Yeast cells were suspended in degassed TES50 buffer

(50 mM Tris-HCl, 1 mM EDTA, 0.6 M sorbitol; pH 7.4)
containing 1.0 mM dithiothreitol (DTT) and protease
inhibitor cocktail (1X) (Sigma) and mechanically
disrupted using a BeadBeater (BioSpec Products, Inc.,
Bartlesville, OK) as described in [46]. The cell lysate was
separated from the glass beads by decantation and cen-
trifuged at 750 × g for 10 min then, without stopping, at
12,000 × g for 10 min using a Beckman J2-21 centrifuge
(Fullerton, CA). The resulting microsomal pellet was
resuspended in 1 to 2 mL of TEG50 buffer (50 mM
Tris-HCl, 1 mM EDTA, 20% glycerol (by vol.), 1 mM
DTT; pH 7.4) by gentle hand homogenization using a
Potter-Elvehjem homogenizer and microsomal suspen-
sions were stored at -80°C until use. The Bradford assay
was used to determine microsomal protein concentra-
tion [47].

Preparation of digestive gland microsomes
Individual C. gibbosum digestive glands were homoge-
nized 1:4 (w/v) in ice-cold homogenization buffer
(0.1 M potassium phosphate, 1 mM EDTA, 1 mM DTT,
1.15% potassium chloride, protease inhibitor cocktail
(1X); pH 7.5) with an IKA Ultra Turrax T8 homogenizer
(Wilmington, NC) for 30 sec on ice. All subsequent
steps were carried out at 4°C. Cytosol was isolated by
centrifugation of the crude homogenate at 750 × g for
10 min then, without stopping, at 12,000 × g for 10 min
using a Beckman J2-21 centrifuge (Fullerton, CA). The
supernatant was then transferred to an ultracentrifuge
tube and centrifuged at 100,000 × g for 70 min using a
Beckman L8-60M ultracentrifuge (Fullerton, CA). The
microsomal pellet was resuspended in 0.2 to 0.8 mL of
microsomal buffer (0.1 M potassium phosphate, 1 mM
EDTA, 1 mM DTT, 20% glycerol (by vol.), pH 7.5) and
stored at -80°C until use. An aliquot of suspension was
taken for microsomal protein determination using the
Bradford assay method [47] with BSA as the standard.
Only those microsomal fractions from snails feeding on
the control diet (n = 10) and P. homomalla (n = 4) were
analyzed in this study.

Fatty acid metabolism
Lauric acid hydroxylase activity was determined by the
method described in [48]. The reaction mixture (0.1 mL
final volume) contained 20 μL yeast microsomal protein
(1.1-4.0 mg/mL) expressing C. gibbosum CYP4s, 1.3 mM
NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL glu-
cose-6-phosphate dehydrogenase, 3.3 mM MgCl2,
0.1 mM [14C]-lauric acid in 100 mM Tris buffer
(pH 7.5). Human liver microsomes (BD Biosciences)
(1.0 mg/mL) were used as a positive control. Lauric acid
and the ω-hydroxylated metabolite were detected by
liquid scintillation counting.
Leukotriene B4 hydroxylase activity was determined by

monitoring the conversion of LTB4 at absorbance 270 nm
to its hydroxylated metabolites by recombinant CYP4
proteins or Cyphoma microsomes. The reaction mixture
(0.1 mL final volume) contained 0.2-1.0 mg/mL of snail
microsomes or 2.0 mg/mL of yeast microsomes with
1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL
glucose-6-phosphate dehydrogenase, 3.3 mM magnesium
chloride, 29.7 μM LTB4 in 100 mM KPO4. Human liver
microsomes (0.5 mg/mL) were used as a positive control.
Both the lauric acid and LTB4 hydroxylase assays were
performed by BD Biosciences Discovery Labware Division,
Woburn, MA. Additional details on both fatty acid meta-
bolism assays can be found in Additional file 9.
P450 specific content and reductase activity was mea-

sured in both yeast microsomes expressing Cyphoma
CYP4 proteins and digestive gland microsomes as
described in Additional file 9.
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Results
Identification and phylogenetic analysis of CYP4 genes
An RT-PCR based cloning approach in combination
with RACE was initially used to define the range of
CYP4 genes expressed in C. gibbosum. This search iden-
tified three partial, putative CYP4 cDNAs of approxi-
mately 396 base pairs (bp) in length that shared 41-54%
amino acid identity and were separated into three clus-
ters designated CYP4-1, CYP4-2, and CYP4-3. Specific
primers designed to each of the three CYP4 clusters
were then used in 5’ and 3’ RACE reactions to obtain
full-length sequences. In total, RACE and RT-PCR clon-
ing efforts generated 352 cDNA clones distributed
among the three clusters. Sequences within each cluster
were aligned using ClustalX and used to construct three
maximum parsimony trees to assist in the identification
of possible distinct CYP4 genes (Figure 3).
ClustalX alignments indicated that the Cyphoma

CYP4 protein sequences share amino acid identities ran-
ging from 26.3 to 99.2% (Figure 4). Phylogenetic analysis
revealed that all of the Cyphoma sequences identified
here belong to cytochrome P450 clan 4 and should be
placed within the CYP4 family. From the analyses of
tree topologies and pairwise comparisons of cDNA
sequences we inferred the existence of fifteen full-length
CYP4 cDNAs encoded by twelve distinct CYP4 loci.
The individual cDNA sequences, designated CYP4
V10v1, CYP4V10v2, CYP4BK1, CYP4BK2, CYP4 BL1v1,
CYP4BL1v2, CYP4BL1v3, CYP4BL2, CYP4BL3, CYP4
BL4, CYP4BL5, CYP4BL6, CYP4BL7, CYP4BL8, and
CYP4BL9 by the P450 nomenclature committee, have
been deposited with [GenBank accession numbers
EU546250 through EU546264]. The Cyphoma CYP4BK
and CYP4BL sequences share less than 40% amino acid
sequence identity with full-length vertebrate CYP4
members, but are included in the CYP4 family, in recog-
nition of the ancient origin of the CYP4 family and the
view that phylogenetic relationships need to be consid-
ered in assigning nomenclature [49]. Nine distinct
CYP4BL genes (one with 3 allelic variants) were inferred
in these analyses, and some of these share greater than
97% nucleotide sequence identity–the conventional cutoff
for considering two sequences to be alleles at one locus
[50]. Pairwise comparisons revealed patterns suggestive of
concerted evolution by gene conversion, providing one
possible explanation for the high sequence identity. How-
ever, we cannot rule out the possibility that there may be
fewer loci than indicated here (see Additional file 10).
Phylogenetic analysis also showed that the paralogous

sequences within the CYP4BK and CYP4BL subfamilies
fall within a larger clade containing CYP4 sequences
from other molluscs, annelids, and an echinoderm,
whose most closely related vertebrate homologs are
found within CYP4 subfamilies A, B, F, T, X, and Z

(Figure 5 and Additional file 11). Top scores from
BlastX searches indicate that Cyphoma CYP4BK and
CYP4BL sequences are most similar to mammalian
CYP4F sequences rather than non-mammalian CYP4F
members or other vertebrate CYP4 subfamilies. These
findings suggest the possible convergent evolution
between Cyphoma CYP4s and mammalian CYP4F
forms, or, more likely, the retention in CYP4BK and
CYP4BL of specific ancestral residues, which could indi-
cate the possibility of shared substrates between these
two groups.

Quantitative RT-PCR analysis of CYP4 expression
Quantitative RT-PCR analysis was used to investigate
the constitutive and inducible expression of CYP4 tran-
scripts in Cyphoma after dietary exposure to several gor-
gonian species with varying allelochemical profiles (n =
6 to 33 snails examined per diet; 141 snails in total).
Expression of CYP4 transcripts in digestive gland tissues
was measured using general-cyp4V, general-cyp4BK, and
general-cyp4BL primers. Attempts were made to design
gene-specific primers for individual CYP4BL sequences;
however, because of the high degree of sequence
similarity this was not possible. Instead, two additional
primer pairs specific for a subset of CYP4BL sequences,
designated CYP4BL(sub A) and CYP4BL(sub B) were devel-
oped. Primer set CYP4BL(sub A) recognizes clones within
the CYP4BL2, CYP4BL3 and CYP4BL4 clusters, while
CYP4BL(sub B) primers pairs primarily recognize clones
found in the CYP4BL1 and CYP4BL5 thru CYP4BL9
clusters (see Additional file 6). All transcript expression
data were log transformed prior to statistical analysis to
homogenize variances.
Significant differences in CYP4 transcript expression

were identified in snails in the time-zero group collected
from different reefs (MANOVA, P < 0.05; Figure 6a and
Additional file 12). In contrast, CYP4 transcript expres-
sion did not vary among snails collected from different
reefs and fed a control diet for four days (MANOVA,
P = 0.164, Figure 6b and Additional file 12). These
results demonstrate that gene expression is highly vari-
able among snails collected from different reefs, possibi-
lity reflecting the variability of gorgonian diets at each
reef location. If one considers the time-zero group as a
proxy for the natural variation of gene expression in
individuals on different reefs, then four days feeding on
a control diet is sufficient to allow gene expression to
return to some basal level, no matter the reef of origin,
once the allelochemical stimulus is removed. Therefore,
these results support the use of control-fed snails as the
true baseline, representing the non-allelochemically
induced state of CYP4 gene expression in Cyphoma.
Significant differences in CYP4 transcript expression

were detected in snails feeding on G. ventalina,
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P. americana and P. homomalla compared to those
feeding on control diets (MANOVAs, P < 0.001, see
Figure 7a and Additional file 13). However, the differ-
ences in CYP4 expression in P. americana-fed snails
were found not to be significant in ANOVA compari-
sons after P-values were adjusted using the Bonferrroni
correction (see Additional file 14). For the remaining
two gorgonian diets, G. ventalina and P. homomalla, a
significant Diet × Reef interaction was observed, indicat-
ing that CYP4 expression in snails in response to the
treatment diet was strongly influenced by the reef from
which snails were obtained (for all MANOVAs, P <
0.001; see Additional file 13). ANOVA analysis further
revealed that the significant Diet × Reef interaction
could be traced to differences in CYP4BL(sub A) tran-
script expression among reefs. Two snails collected from
N. Normans out of thirteen feeding on G. ventalina, and
one snail collected from Shark Rock out of eleven feed-
ing on P. homomalla, showed negligible expression of
CYP4BL(sub A) transcripts, accounting for the signifi-
cance of the interaction term. However, all three of
these snails did express transcripts detected by subset-
specific CYP4BL(sub B) primers at levels comparable to
other snails feeding on the same diet, indicating that
other CYP4BL subfamily transcripts were being
expressed. Furthermore, when CYP4BL transcript levels
were measured with general-cyp4BL primers in the sin-
gle anomalous snail from Shark Rock feeding on
P. homomalla, expression of CYP4BL transcripts was
comparable to other individuals feeding on P. homo-
malla, and was higher than values obtained from snails
feeding on diet controls. This finding indicates that
while overall CYP4BL expression is elevated in

P. homomalla-fed snails, certain genes within the
CYP4BL subfamily are selectively induced.
In light of this information, CYP4BL transcript expres-

sion was measured in all G. ventalina, P. homomalla
and control-fed snails with general-cyp4BL primers, and
the data were reanalyzed excluding Shark Rock reef,
which contained snails with negligible CYP4BL(sub A)

transcript expression levels. There were no significant
differences in CYP4 transcript expression between snails
feeding on control and G. ventalina diets (data not
shown). However, CYP4 transcript expression was still
significantly induced in snails feeding on P. homomalla:
CYP4BK, CYP4BL and CYP4BL(sub A) transcript expres-
sion levels were 2.7–5.1-fold greater in C. gibbosum
feeding on P. homomalla as compared to controls
(MANOVA/ANOVA, P < 0.001, 7b and Additional files
13 and 14).

Results of enzymatic assays
To further investigate the possible link between gene
induction and enhanced enzymatic activity, we exam-
ined CYP4-associated fatty acid monooxygenase activ-
ities. Digestive gland microsomes from snails consuming
a diet of P. homomalla had significantly higher LTB4

hydroxylase activity in comparison to snails feeding on
control diets. Nine out of ten snails feeding on the con-
trol diet displayed no measureable LTB4 hydroxylase
activity, while three of the four snails feeding on
P. homomalla recorded activity averaging 0.63 ± 0.47
pmol mg-1 min-1 (mean ± SE) (see Additional file 15).
To identify the CYP isoforms responsible for this activ-
ity, we performed enzymatic analysis of recombinant
yeast microsomes expressing CYP4BK1, CYP4BK2,
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CYP4BL1, CYP4BL3 or CYP4BL4. LTB4 hydoxylase
activity was present in yeast expressing CYP4BL1
and CYP4BL3 with values ranging from 0.017 - 0.299
pmol mg-1min-1 (see Additional file 16). The results of
the enzymatic analysis in combination with the tran-
script data indicate that one or more CYP4BL isoforms
that are inducible by P. homomalla possess eicosanoid
hydroxylase activity.

Analysis of substrate access channels and active site
residues
To obtain insight into the structural features of
Cyphoma CYP4 proteins that may determine their sub-
strate specificities, we performed homology modeling of

CYP4BL3 and CYP4BK1 and conducted a detailed ana-
lysis of multiple alignments of all Cyphoma CYP4 pro-
teins. The homology models revealed differences in the
substrate access channels and catalytic sites of CYP4BL3
and CYP4BK1 (see Additional file 17). The amino acid
sequence alignment indicated that 55% of the sequence
variation within the CYP4BK and CYP4BL subfamilies
falls within or near the substrate recognition sites (SRSs)
critical for defining the range of substrates metabolized
by CYPs [51] (see Additional file 18), suggesting diversi-
fication of substrate specificities among closely related
Cyphoma CYP4 proteins. Specific residues that have
been shown to be important for hydroxylation of prosta-
glandins and fatty acids are conserved in the Cyphoma
CYP4 genes; a detailed description of these can be
found in Additional file 10.

Discussion
This study provides the first evidence linking the induc-
tion of specific CYP transcript expression and corre-
sponding enzymatic activity in a marine consumer to
differences in gorgonian prey and, by inference, to speci-
fic differences in gorgonian chemical profiles. The diet
of the generalist C. gibbosum includes a variety of gor-
gonian families with structurally diverse allelochemical
profiles. Only snails feeding on the gorgonian Plexaura
homomalla displayed both a significant induction (2.7-
to 5.1-fold) of CYP4BK and CYP4BL transcripts and a
corresponding increase in the metabolism of the diag-
nostic eicosanoid LTB4 in comparison to individuals
feeding on a control diet devoid of gorgonian allelo-
chemicals. Our results are consistent with the possibility
that allelochemicals in P. homomalla induce Cyphoma
CYP4 enzymes that may serve to detoxify the gorgonian
allelochemicals.
Plexaura homomalla tissues contain high concentra-

tions of prostaglandins (up to 8% of the wet tissue
weight), which are unique to this genus of Caribbean
soft coral [52-54]. In mammalian systems, prostaglan-
dins behave as ‘local’ (i.e., autocrine or paracrine) lipid
mediators, acting through G-protein-coupled receptors
to stimulate the pro-inflammatory cascade after tissue
injury, sensitize neurons to pain, stimulate smooth mus-
cle contraction, regulate vasodilation, regulate tempera-
ture, and control ionic balance in the kidney [55]. In
invertebrates, prostaglandins play similar roles as modu-
lators of ion transport and regulators of immune
response and reproduction [25,56]. In marine systems,
they are most notable for their role as feeding deter-
rents; for example, ingestion of food laced with prosta-
glandins causes regurgitation and learned aversion in
reef predators [57,58].
Pawlik and Fenical (1989) traced the anti-predatory

properties of P. homomalla to the acetoxy acid, hydroxy
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Figure 6 CYP4 transcript expression is highly variable among
time-zero snails in contrast to control-fed snails. Bars represent
the relative CYP4 transcript expression (mean ± SE) in (A) time-zero
group snails (n = 31 total; Big Point (n = 6), North Normans (n = 6),
Rainbow Gardens (n = 6), Shark Rock (n = 6) and Sugar Blue Holes
(n = 7)), and (B) control snails (n = 33 total; Big Point (n = 6), North
Normans (n = 6), Rainbow Gardens (n = 9), Shark Rock (n = 6), and
Sugar Blue Holes (n = 6)). CYP4 transcript expression significantly
differed among time-zero group snails collected from different reefs
(P = 0.047, MANOVA), but did not vary among snails from different
reefs fed a control diet for four days (P = 0.164, MANOVA).
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methyl ester and hydroxy acid (0.2% of dry weight) of
PGA2 (Figure 8), yet found no evidence for a deterrent
effect of the abundant, fully-esterified form of PGA2

(averaging 1-2% dry weight) [52-54]. Chemical charac-
terization of extracts from all seven gorgonian species
used in the present study indicated that the hydroxy
acid of PGA2 was present only in P. homomalla tissue,
where it occurred at 0.06% dry weight [31]. Although
the fully-esterified form of PGA2 may not act directly as
a feeding deterrent [59], esterified prostaglandins may

function as sources of activated chemical defenses,
whereby damage to the coral may cause the innocuous
acetoxy methyl esters to undergo lipase-mediated enzy-
matic hydrolysis to the noxious hydroxy acids over a
period of several hours [52,59,60]. For less mobile pre-
dators, like C. gibbosum, the feeding-stimulated forma-
tion of the deterrent hydroxy acids of PGA2 in
P. homomalla and/or acidic hydrolysis of esterified
PGA2 forms in the low-pH gastric environment could
pose a significant threat unless these obligate predators
possessed orchestrated detoxification mechanisms cap-
able of responding to host allelochemicals.
Within the diverse P450 superfamily, family 4 mono-

oxygenases (CYP4) contain the major fatty acid
ω-hydroxylases capable of preventing lipotoxicity [24].
However, the induction of CYP transcripts as a result of
consuming P. homomalla did not extend to all Cyphoma
CYP4 forms. The transcripts induced in response to
P. homomalla dietary exposure (CYP4BL and CYP4BK)
were most closely related to vertebrate CYP4A and
CYP4F forms that are well known for their ability to
metabolize prostaglandins, including the predominant
prostaglandin (PGA2) in P. homomalla [61-64]. In most
cases, induced transcripts within the CYP4BK and
CYP4BL subfamily encode proteins that share amino
acid residues determined to be important in prostaglan-
din metabolism by vertebrate prostaglandin hydroxylases
(see Additional file 10). Moreover, CYP4V10 transcripts
were not induced, nor would this have been expected,

Figure 8 Structure of prostaglandin A2 (PGA2) analogs from
the gorgonian coral, Plexaura homomalla.
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Figure 7 Induction of CYP4 transcript expression in Cyphoma feeding on gorgonian diets. (A) Bars represent the relative CYP4 gene
expression (mean ± SE) in the digestive glands of snails collected from five reefs (Big Point, North Normans, Rainbow Gardens, Shark Rock and
Sugar Blue Holes) and allowed to feed on B. asbestinum (n = 13 snails), E. mammosa (n = 12), G. ventalina (n = 13), P. acerosa (n = 10), P.
americana (n = 12), P. elisabethae (n = 6), P. homomalla (n = 11) and the control diet (n = 33). (B) Bars represent the relative CYP4 transcript
expression (mean ± SE) in the digestive glands of snails collected from four reefs (Big Point, North Normans, Rainbow Gardens and Sugar Blue
Holes) and allowed to feed on a control diet (n = 27 snails) or P. homomalla (n = 9). CYP4BK, CYP4BL and CYP4BL(sub A) transcript expression
was significantly higher in snails consuming P. homomalla (P < 0.001, ANOVA) than in control-fed snails.
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since this sequence falls within the CYP4C/V clade con-
taining CYP forms whose roles have been postulated to
include hormone-stimulated fatty acid oxidation during
starvation (cockroach, CYP4C1) [65] and fatty acid
metabolism in the retina in vertebrates (reviewed in
[24]). The induction of CYP4BK and CYP4BL tran-
scripts coincided with increased metabolism of the diag-
nostic eicosanoid LTB4 in the digestive gland of snails
feeding on P. homomalla. Yeast-mediated expression of
selected full-length Cyphoma CYP4BK and CYP4BL
cDNAs demonstrated that both CYP4BL1 and CYP4BL3
proteins were capable of LTB4 hydroxylase activity.
Moreover, CYP4BL3 is included in the subset of
CYP4BL transcripts, represented by CYP4BL(subA), that
exhibited significant induction (5.1-fold) in snails feed-
ing on P. homomalla. Together, the enzymatic activity
and transcript data suggest that the CYP4BL3 protein
may be responsible for the bulk of the observed eicosa-
noid hydroxylase activity in Cyphoma digestive gland.
Collectively, these results provide the first indication
that proteins in the CYP4 family in Cyphoma likely
function in the metabolism of eicosanoids - possibly
prostaglandins - and that these proteins may play an
important role in the maintenance of specific marine
consumer-host relationships.
The structurally diverse pool of prostaglandin forms

(PGA2, PGE2, PGF2a) and their analogues found in
P. homomalla tissues [52,66-70] may have necessitated
the evolution of a variety of prostaglandin-metabolizing
CYPs, resulting in the diversity of closely related
CYP4BL transcripts identified here. Such diversity of
CYP genes is thought to be a mechanism of adaptation
in insects that consume allelochemically variable diets
[12]. For example, one recent study suggested that the
loss of host plant specialization in the insect Papilio
(insect) lineage, favoring generalists like P. glaucus, may
have evolved from only a small number of mutational
changes within the SRS-6 region of CYP6B enzymes,
allowing for the acquisition of novel catalytic activities
while still retaining the ancestral furanocoumarin-meta-
bolizing capability [71]. This gradual accumulation of
functionally significant replacements, often following a
series of gene duplications [72], has been hypothesized
as a means for enzymes to evolve in response to host
selection [71]. Many of the amino acid differences (22/
40) among members of the CYP4BL group occur within
or near the putative six SRS regions responsible for
defining the range of possible substrates for cyto-
chromes P450. Based on the location of these differ-
ences and knowledge gained from site-directed
mutagenesis studies, it is likely that these variations will
confer differences in catalytic activity and substrate
specificity among these closely related proteins. More-
over, it would be interesting to explore whether the co-

occurring specialist Cyphoma signatum, which feeds
exclusively on Plexaurella spp.–known only to contain
the eicosanoid 11R-hydroxy-5Z,8Z,12E,14Z-eicosaterae-
noic acid (11R-HETE) [73] and not prostaglandins–
possesses reduced diversity of CYP4 forms capable of
responding to foreign dietary prostaglandins.
The expansion of the CYP4BL cluster relative to the

other Cyphoma CYPs suggests that positive selection
may be acting to enhance the diversity of this subfamily,
likely through repeated gene duplication and divergence,
possibly tempered by concerted evolution involving gene
conversion among clustered CYP4 genes. In addition,
alternative splicing of transcripts or the formation of
chimeric CYPs from the splicing of pre-mRNA mole-
cules can allow for the generation of novel enzymes
with divergent catalytic functions. There is evidence for
both of these scenarios within the P450 superfamily. For
example, the human CYP4F3 gene has two inducer-spe-
cific 5’ UTR transcriptional start sites capable of con-
trolling the mutually exclusive splicing of either exon 3
or 4, generating the tissue-specific expression of catalyti-
cally distinct CYP4F3A and CYP4F3B isoforms [74]. In
addition, chimeric RNA molecules in which exons are
joined together from distinct pre-mRNAs have been
identified for both CYP2C and CYP3A members [75,76].
Formation of hybrid mRNA, especially by trans-splicing,
allows detritus or solo exons to become functional even
if they are dispersed in the genome [77]. In both cases,
exon shuffling or alternative splicing of distinct tran-
scripts provides the opportunity for novel catalytic func-
tions to emerge, further increasing the diversity of
cytochrome P450 genes. It is conceivable that one or
both of these processes has occurred in Cyphoma. How-
ever, without specific knowledge of the genomic
arrangement or exon-intron structure of Cyphoma
CYP4 genes, we cannot distinguish between these and
other possibilities. Nevertheless, the results of our stu-
dies suggest that further research on the structure of
Cyphoma CYP4 genes and the catalytic function of their
encoded proteins could provide insight into the evolu-
tion of CYP gene diversity and its role in allelochemical
tolerance.
The CYP4 proteins identified in Cyphoma digestive

gland are likely apart of a larger suite of inducible and
constitutively active detoxification enzymes involved in
the protection of this consumer from dietary intoxica-
tion. Cyclopentenone prostaglandins including PGA2

have been shown to be inducers and substrates of addi-
tional detoxification mechanisms, such as glutathione S-
transferases (GST), whose activity has previously been
linked to allelochemical tolerance in marine consumers
[31,78,79]. GSTs are highly expressed in the digestive
gland of Cyphoma [29], and a screening of gorgonian
lipophilic extracts suggests that this consumer’s

Whalen et al. BMC Ecology 2010, 10:24
http://www.biomedcentral.com/1472-6785/10/24

Page 12 of 15



gorgonian diet contains GST substrates [31]. Thus,
GSTs may contribute to the detoxification of prostaglan-
dins and other allelochemicals in Cyphoma. In addition,
glutathione conjugates of prostaglandins and other eico-
sanoids are known to be effluxed by multidrug resis-
tance-associated protein (MRP), and Cyphoma may
likewise enlist the aid of these transporters to cope with
its toxic diet [80]. It is quite possible that marine consu-
mers that regularly exploit a range of allelochemically-
rich prey may have evolved an equally diverse array of
detoxification mechanisms.

Conclusion
In summary, we provide several lines of evidence that
implicate inducible Cyphoma CYP4s in the mechanism
of adaptation to gorgonian allelochemicals. The corre-
sponding pattern of transcriptional responsiveness and
eicosanoid hydroxylase activity in the digestive gland
of snails feeding on P. homomalla coupled with simi-
larity between transcriptionally-active CYP4s and well-
characterized fatty acid hydroxylases strongly indicates
a role for the Cyphoma CYP4s in mediating the meta-
bolism of dietary eicosanoids. This work demonstrates
the utility of incorporating a pharmacological
approach in ecological studies in order to better
understand the biochemical innovations that allow
marine consumers to tolerate allelochemically-
defended prey. Moreover, identifying the molecular
underpinnings of organismal physiological response
has broad implications for understanding the role of
the environment in determining gene function in a
co-evolutionary context.
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