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Abstract
Background:  We used a simple experimental design to test for the effects of microcosm scaling
on the growth and survival of the mosquito, Culex pipiens. Microcosm and mesocosm studies are
commonly used in ecology, and there is often an assumption that scaling doesn't affect experimental
outcomes. The assumption is implicit in the design; choice of mesocosms may be arbitrary or based
on convenience or cost. We tested the hypothesis that scale would influence larvae due to depth
and surface area effects. Larvae were predicted to perform poorly in microcosms that were both
deep and had small openings, due to buildup of waste products, less exchange with the
environment, and increased competition. To determine if the choice of scale affected responses to
other factors, we independently varied leaf litter quantity, whose effects on mosquitoes are well
known.

Results:  We found adverse effects of both a lower wall surface area and lower horizontal surface
area, but microcosm scale interacted with resources such that C. pipiens is affected by habitat size
only when food resources are scarce. At low resource levels mosquitoes were fewer, but larger,
in microcosms with smaller horizontal surface area and greater depth than in microcosms with
greater horizontal surface area and shallower depth. Microcosms with more vertical surface area/
volume often produced larger mosquitoes; more food may have been available since mosquitoes
browse on walls and other substrates for food.

Conclusions:  The interaction between habitat size and food abundance is consequential to
aquatic animals, and choice of scale in experiments may affect results. Varying surface area and
depth causes the scale effect, with small horizontal surface area and large depth decreasing matter
exchange with the surrounding environment. In addition, fewer resources leads to less leaf surface
area, and the effects of varying surface area will be greater under conditions of limiting resources.
This leads to smaller size, which limits fecundity and survival. Choice of container size, either by
ovipositing females or researchers, interacts with a major aspect of the ecology of animals;
obtaining resources in a resource-limited environment.
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Background
Microcosm and mesocosm studies are commonly used in

ecological studies of aquatic and terrestrial habitats [1–

3]. Microcosms and mesocosms are generally subsets of
communities and abiotic factors of particular ecosys-

tems, with restricted exchange of matter and energy [3].

These containers are by definition smaller than the or-

ganism's actual habitat, and controversy exists about the

relevance of these studies because of the scaling of simu-

lated habitats and the lack of replication and complexity

[1,3–5]. There is often an implicit, and untested, as-

sumption that scaling doesn't affect experimental out-

comes in microcosm studies [3].

Aquatic insects such as mosquitoes are often studied in

micro- and mesocosms; in fact, much of what we know

about mosquitoes has come from microcosm and labora-

tory studies [e.g., 6-14]. These types of studies may be

more relevant for those mosquitoes that breed in phyto-

telmata (i.e., plant-held waters) or artificial containers,

as these experimental units may hold as much volume as

many natural treeholes, pitcher plants, or other contain-

ers [15,16]. However, there may still be fundamental ec-

ological effects of changing habitat size for aquatic

insects living in a variety of habitats, such as phytotelma-

ta and ponds.

One species of mosquito that breeds in natural and arti-

ficial habitats of various sizes is Culex pipiens L., more
commonly known as the house mosquito [17,18]. This

culicid has a more or less global distribution, and is

found in North America, Africa, Europe, Asia, and Aus-

tralia. Although C. pipiens primarily utilizes birds as

bloodmeal hosts [19,20], it inhabits human-made con-

tainers, and is a known pest of humans [21].

Culex pipiens females oviposit, and larvae survive, in a

wide array of aquatic habitats, including gutters, bird-

baths, pools, rain barrels, treeholes, and stagnant pools

of water [18,21]. In many of these aquatic habitats, leaf

litter forms the basis of the food web. Microbes grow on

the leaf litter and other detritus, and mosquitoes such as

C. pipiens browse substrate or filter water for microbes

and detritus [23]. Because the size of C. pipiens habitat

varies, and because there is often an implicit assumption

in experimental designs that microcosm scale does not

affect experimental outcomes [3], it is a logical species to

test for scale effects.

Varying habitat size affects species and communities liv-

ing in small aquatic habitats, and many of these species

appear to be flexible in their choice of habitat [16,23–25].

However, we need to be able to distinguish between fun-

damental effects of scale, that is, how habitats of differ-
ent size affect growth and survival of individual C.

pipiens, and artifacts caused by scaling, which may be

determined as much by experimental design as by actual

differences in habitat scale [3]. Vertical, or wall, surface

area is thought to be the source of artifacts in micro- and
mesocosm experiments that are scaled down from actual

habitat size and artificially enclose the system in ques-

tion [3]. Wall area is an artifact, because as microcosms

are scaled down wall area per unit volume increases,

which may affect composition of the microbial commu-

nity and increase dominance of periphyton [3]. Deter-

mining the source of effects is critical for understanding

the ecology of scaling and for how microcosm design af-

fects experimental outcomes. If scaling of habitat affects

C. pipiens, which inhabits aquatic systems of varying

size, it might likely affect many other organisms that ei-

ther live in small aquatic habitats, or have been tested in

small-scale microcosms.

Resource quantity, in the form of leaf litter, also varies in

these habitats, and we sought to test for an interaction

between the effects of food abundance on mosquitoes,

which are well known [22], and the effects of habitat size.

This would give us a better understanding of how scaling

impacts the biology of the mosquitoes, especially as high-

er quantities of leaf litter increase growth of bacteria,

some of which might grow over the vertical surfaces of

microcosms, and consequently provide more food to

mosquito larvae. We hypothesized that there would be

detrimental effects of increasing depth and decreasing
horizontal surface area on survival and growth of C. pip-

iens. Specifically, microcosms with a lower horizontal

surface area to depth ratio will have an adverse effect on

developing mosquitoes because of lowered exchange of

gases, which may increase growth of anaerobic bacteria

that produce methane or hydrogen sulfide (CJP, unpub-

lished data), or allow accumulation of mosquito wastes.

Hydrogen sulfide, for instance, is a known toxin to ani-

mals [26], and affects growth of the eastern treehole

mosquito Aedes triseriatus (Paradise, unpublished da-

ta). Microcosms with less vertical (wall) surface area per

unit volume than others will be detrimental to mosqui-

toes, as there will be less surface area from which to

browse for microbes. Finally, we hypothesized that ef-

fects of leaf litter quantity could interact with effects of

container size, as increased leaf litter may compensate

for lower wall area per unit volume, since microbes grow,

and mosquitoes browse, on leaf litter [22]. High food

abundance appears to decrease stress and compensate

for detrimental abiotic factors [11,27,29]. Our experi-

mental design allowed us to test for both vertical and

horizontal surface area effects, which may be both natu-

ral effects of changing habitat size or artifacts of experi-

mental microcosm design [3].
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Results
The interaction between food availability and container

size was significant for all response variables except fe-

male biomass, which was affected only by main effects
(Table 1; Fig. 1a). Not surprisingly, high leaf litter quan-

tity led to larger mass, shorter larval development time

and higher survival (Figs. 1 and 2a). When the interac-

tion was present, there was no effect of scale at high food

abundance, but when food abundance was low, contain-

er size affected male and female development time and

mass of males (Figs. 1b,c,d). There were significant dif-

ferences between B (Base size – used in other experi-

ments [16]; see Materials & Methods and Table 2) and

CD (Constant Depth) microcosms for female biomass

and male and female time to maturity, such that B micro-
cosms, with more wall area per unit volume, had larger,

earlier emerging mosquitoes (Figs. 1a, c, and 1d; Table 1).

This is evidence for experimental artifacts caused by de-

creasing wall surface area per unit volume. However, dif-

ferences between CW (Constant Width) and CS

(Constant Shape – Table 2) were not evident.

Table 1: Results of two-way analyses of variance. a. two-way analyses of variance. b. Logistic regression.

a. Analysis of variance Litter Scale Litter* Scale
F df P F df P F df P

Female mass 351.9 1,15 0.0001 5.34 3, 15 0.011 1.21 3,15 0.34
Log female development 245.2 1,15 0.0001 4.55 3, 15 0.018 5.27 3,15 0.011
Male mass 516.1 1,15 0.0001 3.93 3, 15 0.03 5.12 3,15 0.012
Log male development 240.6 1,15 0.0001 4.56 3, 15 0.018 6.21 3,15 0.006

Table 2: Scale dimensions, leaf litter quantities, and mosquito abundance and density for each scale treatment.

Scale Treatment:
Parameter Base Constant Depth Constant Width Constant Scale

Depth (cm) 6.0 6.0 12.0 12.0
Width (cm) 8–9.5 17.0 8–9.5 17.0
Width:depth ratio 1.25 2.50 0.625 1.25
Horizontal SA (cm2) 70 240 70 240
Vertical SA (cm2) 205 350 410 700
Total Volume (ml) 425 1550 900 3050
High LL (g) 5 10 10 40
Low LL (g) 1 4 2 8
# of larvae 10 40 20 80
Larval density (#/i) 23.5 25.8 22.2 26.2

SA = surface area; LL = leaf litter

Table 3: Logistic regression analysis for survival. SA = surface area, G is the G-test.

Constant Coefficient Log Likelihood G P

Leaf Mass 0.47 0.106 -556.0 8.69 0.003
Volume 0.51 0.0001 -558.9 2.81 0.09
Vertical SA 0.73 0.0001 -560.3 0.81 0.81
Horizontal SA -0.07 0.0042 -551.9 16.9 0.0001
Depth 1.44 -0.065 -557.2 6.30 0.012
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Figure 1
Average (+/- 1 s.e.) effects of scale and leaf litter on growth and development of Culex pipiens. a. Female biomass. b. Male bio-
mass. c. Time for female larvae to become adults. d. Time for male larvae to become adults. Dark bars are low leaf litter, and
light bars are high leaf litter treatments. For each graph, bars with the same letter above them are not significantly different. For
female biomass, the letters refer to comparisons of the scale main effect, since there was no statistical interaction, and for all
others, the letters refer to the leaf litter by scale interaction. The relative sizes of the scale treatments are shown pictorially at
the lower right.
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Figure 2
Survival effects. a. Average survival (+/- 1 s.e.) for all eight treatment combinations. White and grey, hatched bars (first and
third in each set) are emergence at low and high leaf litter, respectively, and dark and light blue bars (second and fourth in each
set) are survival at low and high leaf litter, respectively. b. Mean proportion survival for four treatments at each of two depths.
c. Mean proportion survival for four treatments at each of two horizontal surface areas. For b and c, points are offset slightly
on the x-axis to better view error bars (which = 1 s.e.). HL = high leaf litter treatments, and LL = low leaf litter treatments, and
codes for scale are as in text.
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Fundamental scale effects caused by increased volume

were also present, but only for the main effect of scale on

female biomass (Fig. 1a). B microcosms compared to CW

microcosms were never significantly different, and CD
vs. CS comparisons were only different for female bio-

mass, where mosquitoes from CS, the largest and deep-

est containers, were significantly larger. In addition,

mosquitoes reached maturity quicker and males were

larger in B/low litter microcosms than in CS/low litter

microcosms (Figs. 1b,c,d). These latter comparisons in-

clude both fundamental effects and wall area effects, but

also indicate adverse effects on mosquitoes as container

size increases.

The logistic regression analysis revealed that survival

was dependent on litter quantity, horizontal surface ar-

ea, and depth (Fig. 2; Table 3). More mosquitoes sur-

vived in high leaf litter treatments than in low leaf litter

treatments (Fig. 2a). Emergence was markedly lower

than survival in most low litter treatments, while almost

all mosquitoes that survived also emerged from high lit-

ter treatments (Fig. 2a). This is partly an artifact caused

by experimental duration. Microcosms with low horizon-

tal surface area (B and CW) had lower survival than those

with high horizontal surface area (Fig. 2c), and deeper

microcosms (CW and CS) had lower survival than shal-

lower microcosms (Fig. 2b). CD microcosms had higher

survival than B and CS, and yet the latter produced larger

females than CD (Figs. 1a and 2a).

Discussion
Petersen et al. [3] make a number of recommendations

about using artificial habitats to test ecological ques-

tions, among them the suggestion to perform scale-sen-

sitive experiments that allow an independent

understanding of volume and wall effects. In this experi-

ment, we independently varied different dimensions of

small aquatic habitats to look at how microcosm design

choices may affect experimental outcomes, and how nat-

ural changes in habitat size and shape may affect aquatic

insect larvae in a potentially resource-limited environ-

ment.

Our two habitat size hypotheses predicted: 1) an adverse

effect of a lower wall area per unit volume, a possible ar-

tifact of microcosm design (compare B to CD and CW to

CS – see Materials & Methods and Table 2), and 2) an ad-

verse effect of a lower horizontal surface area to depth ra-

tio (compare B to CW and CD to CS), which may be a

factor in experimental design or in choice of oviposition

site by females. We found more support for the former

hypothesis than the latter, but regardless, we found that

container size interacted with resources such that C. pip-

iens is affected by habitat size only when resources are
scarce. Mosquitoes in the CW microcosms, with the

smallest surface area and the greatest depth, had the

lowest survival. Both small horizontal surface area and

large depth decrease matter exchange between the con-

tainer and the surrounding environment, and increase
waste accumulation from microbes and mosquitoes [8].

Small horizontal surface area and small volume may also

increase direct interactions among individual mosqui-

toes, thus increasing interference competition. However,

mosquitoes from CW microcosms were not significantly

different from other mosquitoes in size or time to matu-

rity. Differences did appear in comparisons of B to CD

microcosms, indicating possible wall effects. Our predic-

tion was that B microcosms, with more wall area per unit

volume would allow for greater growth and shorter de-

velopment time of mosquitoes, which it did at low re-

source levels, possibly by providing more substrate on

which periphyton could grow [3]. In addition, at low lit-

ter abundance there is less leaf surface area, and the ef-

fects of varying wall surface area will be greater under

conditions of limiting resources. Shorter development

time is important in ephemeral aquatic habitats such as

temporary ponds and phytotelmata, allowing adults to

escape prior to dry down in late spring or early summer

[29,30]. Short time to maturity allows the insects to es-

cape their larval habitat before it dries up, and males that

mature before females are ready to mate when females

emerge.

To test horizontal surface area effects, we can compare
CD to CS and B to CW (Table 2). Females from CS micro-

cosms were larger than females from CD microcosms, re-

gardless of resource levels. Both have the same wall area

per unit volume, but CD microcosms had more horizon-

tal surface area per unit volume than CS microcosms,

and we predicted that CD microcosms would yield larger

and faster growing larvae. The extremely large volume in

CS containers may have supported high densities of mi-

crobes in the water column and prevented leaf litter from

packing together, thus allowing more surface area for

microbial growth and less interference among mosqui-

toes browsing for food than in smaller volume containers

where leaves were more tightly packed. We observed

more tightly packed leaf litter in smaller containers with

high leaf litter quantities, but we did not measure micro-

bial growth, so this idea remains to be tested. Although

wall area per unit volume was equivalent in those two

treatments, the high volume of CS indirectly produced

more "wall" surface area. The other comparison between

B and CW microcosms yielded mosquitoes that were

similar in size and development rate. However, mosqui-

toes in B microcosms had higher survival than in CW,

which had a lower horizontal surface area to depth ratio

than B, in accordance with our second hypothesis.
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A final comparison of B to CS microcosms (Table 2) is of

interest because it represents a comparison of constant

scaling, which encapsulates both horizontal and vertical

scaling effects [3]. Here the major effect is in time to ma-
turity and male biomass, with the smaller volume con-

tainer producing larger males with shorter development

times (Fig. 1). The large CS microcosms had both less

horizontal and vertical surface area per unit volume, but

a larger horizontal surface area to depth ratio. Even

though B microcosms had a lower horizontal surface

area to depth ratio, the actual depth was only 6 cm, and

positive effects of more wall area and more horizontal

surface area per unit volume may have outweighed ad-

verse effects of depth.

The interaction we found between habitat size and food

abundance is consequential for ecology of the organisms

within, and there may be a complex relationship between

habitat size, habitat drying (which changes volume when

it occurs), and resources [30,32]. For instance, leaf litter

resources are often limiting to organisms in aquatic de-

tritus-based communities [11,15,22,32,33]. Resources in

the form of leaf litter are consumed by microbes, which

are then consumed by mosquito larvae, along with small

particulate organic matter [22]. When litter abundance

is high, microbial growth is also high (CJ Paradise, per-

sonal observation), due to both high levels of resources

and substrate for microbes to grow on. This may lead to

increased detritivore growth and decreased stress due to
deficiencies in abiotic factors, as evidenced by the mos-

quitoes in high leaf litter treatments being unaffected by

habitat size and shape. Higher growth by larvae leads to

larger size, and larger female mosquitoes have higher fe-

cundity and both males and females have higher adult

survival [7,34,35].

Growth and survival may thus be affected by habitat size,

which varies greatly among small aquatic habitats

[23,24,31,36]. There is a positive relationship between

size, or volume, of the habitat and species richness, and

between volume and growth responses of individual spe-

cies [16,23–25,31,37]. Levels of water and resources may

be important cues to ovipositing females, with resulting

impacts on individuals and communities [9,16,38,39].

Oviposition site selection is an important variable affect-

ing survival and development of non-dispersing larvae,

and large volumes may be preferred by females laying

eggs in aquatic environments due to increased stability

and decreased risk of drought [29,39]. However, alloch-

thonous plant material from surrounding terrestrial are-

as is the major input of energy resources to many

freshwater detritus-based food webs, and resource quan-

tity in these habitats is highly heterogeneous and de-

pendent on location of the habitat relative to resource
inputs [14,40]. Clearly, the choice of habitat by oviposit-

ing C pipiens females will have growth and survival con-

sequences for offspring.

Conclusions
Choice of scale in experimental design is important, even

when studying mosquitoes adapted to a wide variety of

habitats. The scale effect is likely to be caused by a com-

bination of horizontal surface area, wall area, and depth.

When food resources are low, high horizontal and verti-

cal surface area per unit volume allow for greater growth

than in conditions of low horizontal and vertical surface

area per unit volume. Larval densities used in this exper-

iment were fairly low, but competition for resources may

still have occurred when leaf litter quantities were low.

The effects of container dimensions thus constrain larval

growth, possibly by decreasing exchange of materials or

reducing inputs of resources, an area of future investiga-

tion. Choice of container size, either by ovipositing fe-

males or researchers, interacts with a major aspect of the

ecology of these organisms; obtaining resources in a po-

tentially resource-limited environment.

Materials and Methods
The experimental design consisted of twenty-four micro-

cosms, each of which fell into four different scale types:

1) a "base" size (B), which has been used in microcosm

studies of treehole mosquitoes [16],[31],[33], 2) "con-

stant width" (CW), using the same size container and

doubling the depth, 3) "constant depth" (CD), using the
same depth as the base, but doubling the width, and 4)

"constant shape" (CS), which doubles both the width and

depth of the base treatment (Table 2).

By comparing B to CD and CW to CS we can assess

whether there were experimental artifacts caused by de-

creasing wall surface area per unit volume. Both pairs

have containers with the same depth, but the second con-

tainer in each pair has more total wall surface area and

less wall area per unit volume. By comparing B to CW

and CD to CS we could test for fundamental scale effects

caused by increased volume. Both pairs here have con-

tainers with the same width and have the same wall area

per unit volume. However, the second container in each

pair is deeper and has less horizontal surface area per

unit volume.

Microcosms used for B and CW treatments were 1.0 liter

polyethylene containers. Dimensions were 8 cm × 8 cm
at the microcosm bottom, widening to 9.5 cm × 9.5 cm at

the top, with a total depth of 13.8 cm. Microcosms used

for CD and CS treatments were 5.0 liter polyethylene

containers, with full width of 17 cm and a total depth of

20.5 cm. These containers were not completely square,

as the vertical comers were rounded. Actual dimensions
are shown in Table 2. The overall habitat sizes are within
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the range of natural habitats used by C. pipiens. Netting

(0.2 mm mesh) covered holes cut in the lids.

Within each scale type, half of the microcosms had high
leaf litter (about 10 g · l-1 of dried red oak (Quercus rubra

L.) leaves) and half had low leaf litter (approximately 2 g

· I-1 of dried red oak leaves; Table 2), with three replicates

of each treatment combination. These resource levels

have been shown to affect growth of treehole mosquitoes

and colonization of artificial treeholes in the field

[16,28,31,33]. Leaves were collected in January 2000,

dried for one week at 80°C, weighed to within 0.05 g of
the desired mass, and added to the appropriate micro-

cosms. The drying of leaves may mimic natural condi-

tions, as water in container habitats is ephemeral, with

containers drying and filling with precipitation inputs

[10,29,30].

After addition of leaf litter, distilled water was added to a

line that marked the appropriate depth. We allowed the

microcosms to incubate for one week while leaves were

wetted and microbes grew. We then added first instar C.

pipiens larvae obtained from Carolina Biological Supply

to each microcosm in such a way that the density of each

microcosm would be relatively constant. However, be-

cause of the slight differences in shape noted above, the

exact initial densities ranged from 22 to 26 larvae · I-1

(Table 2).

The mosquito larvae were added on 17 February 2000,

and by early March adults had begun to emerge from

high leaf litter treatments. As the adults emerged each

day, they were captured, counted, and sexed. Adults were

frozen and later dried at 100°C for 3–5 days for determi-

nation of biomass. The adults were collected daily until

25 March 2000, at which point emergence was less than

five adults per day for one week, and we ended the exper-

iment. At that point, the microcosms were searched for

remaining larvae and pupae, which were counted for de-

termination of total survival to that day.

Percentage survival, length of larval period, and total fe-

male biomass were calculated. Statistical analysis con-

sisted of two-way analyses of variance (ANOVA) on the

mean male and female biomass and time to maturity

from each microcosm, and logistic regression on propor-

tion survival. For the ANOVAs, we used the means be-

cause individual mosquito responses were not

independent, and an ANOVA model with microcosm

nested within the fixed effects of leaf litter and container

size did not work because some microcosms had no mos-

quito emergence. The Tukey procedure for comparisons

of treatment means was used when tests were significant

for interactions at or below the α of 0.0125 (=0.05/# of
ANOVAs performed = 0.05/4; [41]). Time to maturity

was log-transformed to approximate normality and re-

duce heteroscedasticity. For logistic regression, we test-

ed for relationships between survival and horizontal

surface area, volume, vertical surface area, depth, and
leaf litter quantity. We did not test proportion emergence

because more adults might have emerged from low leaf

litter treatments had the experiment been run longer,

possibly biasing those results.
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