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State-dependent mortality can enhance 
behavioral unpredictability
Toshinori Okuyama* 

Abstract 

Background: Although behavioral unpredictability is widely described within-individual variability in behavior, its 
adaptive significance is little understood. Using a dynamic state variable model, this study investigated the conditions 
under which behavioral unpredictability (a component of within-individual variability) in foraging behavior is advan-
tageous. The model considers a situation in which a forager forages for a fixed period, represented by discrete time 
steps. The outcome of foraging may change the level of a state (e.g., size and fat storage) of the forager at each time 
step, and variability in the foraging outcome is assumed to be positively correlated with behavioral unpredictability. 
The probability of death at each time step is influenced by the state at the same time step. Reproduction occurs after 
all the foraging steps and is influenced by the state level of a forager at the time of reproduction. According to the 
expected utility hypothesis, the relationship (e.g., curvature) between the state and fitness will determine the role of 
behavioral unpredictability. In the model, the relationship was obtained by using the backward iteration method for 
each foraging time step.

Results: State-dependent mortality adds curvature to the relationship between the state and fitness, which makes 
the effect of behavioral unpredictability on fitness either positive or negative. This conclusion holds for any state-
dependent mortality (i.e., as long as mortality is not independent of the state factor). Given that state-dependent 
mortality is commonly described, conditions that benefit behavioral unpredictability are likely also common.

Conclusions: When mortality depends on a state that is influenced by behavior, conditions that favor behavioral 
unpredictability may become common. How behavioral unpredictability influences the variability of behavioral 
outcomes is as important as how it influences the expectation of behavioral outcomes when studying the adaptive 
significance of behavioral unpredictability.
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Background
When an animal is repeatedly observed, its behavio-
ral expressions can be highly variable. This within-indi-
vidual variability in behavior can be categorized into 
phenotypic plasticity and behavioral unpredictability 
[1–4]. Phenotypic plasticity explains within-individual 
variability observed along some environmental gradients 
such as wind velocity, predation risk and temperature 

[5]. Behavioral unpredictability (also known as “residual 
behavioral variance”) is the remaining (residual) vari-
ability after the effects of environmental and explanatory 
variables are accounted for [1–4]. Although behavioral 
unpredictability may appear as mere noise in behav-
ioral expressions, there are some patterns in expres-
sions of behavioral unpredictability. For example, in the 
stickleback, Gasterosteus aculeatus, shy individuals are 
more unpredictable than bold individuals [6]. Behavio-
ral unpredictability of nestling caring birds decreases 
with the age of nestling [2]. Furthermore, behavioral 
unpredictability can be a heritable trait [7], suggesting 
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that observed patterns in behavioral unpredictability 
may be the result of natural selection. Notwithstanding, 
the adaptive significance of behavioral unpredictability 
is little understood. A commonly used example of the 
function of behavioral unpredictability is the protean 
behavior of prey. In the ecological literature, the term 
protean is commonly interpreted as unsystematic [8] or 
unpredictable [9], and protean prey exhibit erratic escape 
trajectories (e.g., changing escape direction abruptly) 
upon encountering predators, which makes it difficult 
for predators targeting them [9–11]. However, protean 
escape behavior may be a restrictive example in which 
unpredictability is quantified in a single predator encoun-
ter (e.g., variation in the turning angle in an escape tra-
jectory) as opposed to variability in escape strategies in 
multiple predator encounters. Explanations for adaptive 
significance of behavioral unpredictability are needed for 
a wider ecological scenarios.

One possible consequence of behavioral unpredictabil-
ity is increased variability in the outcome of the behav-
ior. To illustrate this point, a simple simulation model is 
used here. The model considers the marginal value theo-
rem [12], in which foragers forage in a patchy environ-
ment. For simplicity, all patches are assumed to be equal, 
and the patch encounter rate is � . A forager’s energy 
gain g in a patch increases as its patch residence time t 
increases, which is described by g(t) = at/(b+ t) where 
a and b are parameters that influence the relationship. 

Then, the optimal patch residence time can be shown as 
t∗ =

√
�b/� . When an individual’s patch residence times 

are variable for each patch and follow a probability distri-
bution with mean t∗ and standard deviation σt , σt can be 
interpreted as behavioral unpredictability such that for-
agers with σt = 0 will always spend an exact duration of 
t∗ in each patch. Simulation results show that when the 
total foraging duration is short, behavioral unpredictabil-
ity can increase the variation in foraging success (Fig. 1) 
(the R script is available in Additional file 1). This pattern 
can emerge as a combination of environmental stochas-
tically and a finite duration in which the performance is 
evaluated. Environmental stochastically creates variable 
experiences among individuals (e.g., some foragers find 
more patches than others by chance), and this variabil-
ity may be pronounced in a short duration, which may 
be intuitively understood using a coin-flip analogy. For 
example, if we periodically flip a fair coin, flipping the 
coin 4 times (i.e., representing a short duration) and get-
ting 0 or 4 heads is not unexpected, but if we flipped it 40 
times (i.e., representing a long duration) getting 0 or 40 
heads would be practically impossible. In the patch forag-
ing example, the optimal patch residence time is different 
for each individual’s experience. For example, a forager 
that finds only one patch should stay in the patch for a 
long duration to fully utilize the patch, while a forager 
that finds many patches should spend a shorter duration 
in each patch. Behavioral unpredictability can produce 
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Fig. 1 Relationship between foraging success and behavioral unpredictability in patch residence time. Each boxplot summarizes simulation 
results from 1000 foragers. A forager’s patch search times (i.e., durations needed to find a patch) were generated from a gamma distribution with 
mean �−1 and variance σ 2

s  , and patch residence times were generated from a gamma distribution with mean t∗ =
√
�b/� and standard deviation 

σt that represents behavioral unpredictability. When foraging success is evaluated in a short duration (300 time units, right figure), behavioral 
unpredictability increases variability in behavioral outcome while having a minor effect on the expected behavioral outcome. This pattern 
disappears when foraging success is evaluated in a long duration (100,000 time units, left figure). � = 0.01, a = 100, b = 25, σ 2

s = 5
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both suitable and unsuitable behavioral responses by 
chance, which increases variability in the behavioral out-
come. When the foraging success is evaluated in a long 
duration, such a pattern can disappear (Fig. 1).

When behavioral unpredictability is associated with 
variability in behavioral outcome, behavioral unpredicta-
bility may be considered as risk-prone behavior, with risk 
representing uncertainty [13]. The sequence from behav-
ior to fitness can be shown as

where X, Y, and W represent the respective random vari-
ables. In the above patch foraging example, behavior X is 
the patch residence time, and behavioral outcome Y is the 
total amount of energy gained. As shown in the simula-
tion example, Var(X) (i.e., behavioral unpredictability) 
and Var(Y) may be positively correlated (Fig.  1). The 
relationship between behavioral outcomes and fitness is 
described by

where the lowercase letters (w and y) represent realiza-
tions of the respective random variables W and Y. On 
the basis of the expected utility hypothesis [13], which is 
largely equivalent to Jensen’s inequality, the effect of vari-
ability in the behavioral outcome Var(Y) on the expected 
fitness E(W) depends on the shape of the fitness func-
tion (Eq.  1). In particular, when �(y) is convex, Var(Y) 
has a positive influence on E(W), which may also select 
variability in behavior Var(X) when Var(Y) and Var(X) 
are positively correlated. When �(y) is concave, Var(Y) 
has a negative effect on E(W). When �(y) is linear, Var(Y) 
has no influence on E(W). As such, understanding the 
curvature of �(y) may reveal the effect of Var(Y) on fit-
ness, which can link to behavioral unpredictability when 
Var(X) and Var(Y) are correlated.

In the case of foraging, Eq. 1 represents how foraging 
success (y) relates to reproduction (w). Theoretical pop-
ulation models typically assume that foraging success 
(i.e., functional response) and reproduction are linearly 
related (e.g., the Lotka-Volterra model and its many vari-
ants). Empirical numerical response studies often show 
that the relationship between prey density and reproduc-
tion is concave [14–16], but it is difficult to relate these 
data to Eq. 1 because prey density does not equal forag-
ing success. When body size is considered as a surrogate 
of behavioral outcome (e.g., successful foraging outcomes 
lead to larger body sizes), the relationship between body 
size and fecundity may be linear or convex [17–20]. As 
such, Eq.  1 is likely system-specific and may take any 
form.

The relationship (Eq.  1) at the time of reproduction 
is not the only issue when applying the expected utility 

behavior X → behavioral outcome Y → fitnessW

(1)w = �(y)

hypothesis to understand the effect of behavioral unpre-
dictability on fitness. When reproduction is used as the 
surrogate of fitness w in Eq. 1, the corresponding y is the 
state at the time of reproduction. However, the same rela-
tionship may not hold at different time points (e.g., y for 
immature stages). For example, even when large individ-
uals (e.g., y representing size) are expected to have higher 
fitness than small individuals at the time of reproduction, 
small individuals may have higher expected fitness than 
large individuals when they are juveniles (e.g., large juve-
niles have low expectations of survival to reproduction 
due to size-dependent predation). Although such state-
dependent mortality has been routinely incorporated 
in previous models to study time and state-dependent 
optimal strategies [21–26], its effect on the curvature 
of the fitness function has not been considered in light 
of behavioral unpredictability. This study examined the 
effect of behavioral unpredictability on fitness by focus-
ing on the time-dependent relationship between the state 
and expected fitness (i.e., equivalent of Eq. 1 when y rep-
resents the state at various life stages) using a method of 
dynamic state variable models [23, 24].

Results
Isolated effects of state‑dependent mortality
In the absence of behavioral unpredictability and state 
level dynamics (i.e., q = 0 ), nonlinearity in the expected 
fitness �τ (y) will result regardless of the state-dependent 
mortality d(y) is nonlinear (Fig. 2) or linear (Fig. 3). Under 
this simple assumption, �τ (y) can be explicitly derived 
without the backward iteration: �τ (y) = sτ (y)�0(y) 
where sτ (y) = (1− d(y))τ is the probability that a forger 
of state y will survive τ time steps (i.e., until reproduc-
tion). From the expression, it is clear that nonlinearity in 
�τ (y) emerges because sτ (y) is nonlinear simply due to 
the multiplicative nature of survival processes.

As τ increases, the shape of the expected fitness func-
tion changes from linear to unimodal curve under Eq. 2 
(Fig. 2). The unimodal curve is locally concave around the 
mode (promote predictability), and both sides are con-
vex (promote unpredictability) if q were a flexible trait. 
This pattern is qualitatively similar to the linear mor-
tality function where the mortality increase with state 
level (Fig.  3c). Under these scenarios, individuals with 
high state levels are unlikely to survive when the time till 
reproduction τ is long. This negative effect of y on fitness 
(through survival) and the positive effect of y on fitness 
(through reproduction) creates the unimodal shape in 
the expected fitness.

Although the specific mortality functions were 
examined here, due to this simple mechanism, nonlin-
earity in �τ (y) will result as long as mortality depends 
on state (an example where mortality is independent 
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of the state is shown in Fig 3a). The same can be said 
about the parameter values. For example, the maxi-
mum state-dependent mortality was set as 0.2. This 
value depends on the actual time unit of discrete 
time step. When foraging durations are subdivided 
in shorter time units, then mortality in each time 
unit will decrease, and vice versa. However, altering 
these values will only change the rate of change (i.e., 
lower mortality will require greater τ to see equivalent 
results), and qualitative pattern will not change.

Full model
Inclusion of behavioral unpredictability ( q ∈ {0, 1, 2, 3} ) 
as well as the optimal foraging consideration have lit-
tle effect on the shape of �τ (y) (Fig.  4). The model was 
analyzed for two cases. The first case is where behavio-
ral unpredictability does not influence expected foraging 
gain ( u = 0 , Fig. 4 top). The second case is where behav-
ioral unpredictability decreases expected foraging gain 
while increasing variability in foraging gain ( u = −0.1 , 
Fig. 4 bottom). In both cases, the dynamics of the shape 
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Fig. 2 State-dependent mortality (left) and its effect on the expected fitness (right). The red line is the terminal fitness �0(y) . The blue line is �τ (y) 
when τ = 50 . Gray lines are �τ (y) when τ is between 1 and 49. �τ (y) decreases monotonically with τ such that the τ th gray line below the red line 
is �τ (y)
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Fig. 3 Effects of state-dependent mortality on expected fitness. a State-independent: d(y) = 0.05 . b State-dependent: d(y) = 0.1− 0.002y . 
c State-dependent: d(y) = 0.002y . The red line is the terminal fitness �0(y) . The blue line is �τ (y) when τ = 50 . Gray lines are �τ (y) when τ is 
between 1 and 49. �τ (y) decreases monotonically with τ such that the τ th gray line below the red line is �τ (y)
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of fitness function is similar to the simplified example 
(comparison of Fig. 2 and Fig. 4 left column). High lev-
els of unpredictability is selected for high and low state 
levels, and 0 unpredictability (i.e., complete predictabil-
ity) is selected at intermediate state levels. As discussed 
above, this results come from the unimodal shape of the 
expected fitness function.

The negative effect behavioral unpredictability on the 
expected foraging gain (i.e., u = −0.1 ) has both posi-
tive and negative effects on the selection on behavioral 

unpredictability. The right tail of the unimodal fitness 
function (corresponding with high state levels when τ is 
sufficiently large) is convex and thus variability in forag-
ing success is selected. In the same region, the state has a 
negative effect on expected fitness (i.e., �τ (y) has a nega-
tive slope in y). When behavioral unpredictability has 
no effect on expected foraging success ( u = 0 ), it has no 
effect on expected fitness thorough the expected foraging 
gain. On the other hand, when behavioral unpredictabil-
ity has a negative effect on the expected foraging success, 
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Fig. 4 Time-dependent expected fitness (left column) and optimal behavioral unpredictability (right column). Top figures correspond with a case 
where behavioral unpredictability has no effect on the expected behavioral outcome ( u = 0 ). The bottom figures correspond with a case where 
behavioral unpredictability q has a negative effect on the expected behavioral outcome ( u = −0.1 ). The interpretation of the left column figures is 
the same as that for Figs. 2 and 3. In the right column figures, grey color is used for τ = 0 and y = 0 because τ = 0 is at reproduction and foragers 
no longer forage, and y = 0 represents deterministic death (Eq. 2)
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it has a positive effect on expected fitness through the 
expected foraging gain. Consequently, the region where 
behavioral unpredictability is selected expands when 
u = −0.1 compared to u = 0 for high state levels (Fig. 4).

The left tail of the unimodal fitness curve is also con-
vex, and the state level has a positive effect on expected 
fitness (i.e., �τ (y) has a positive slope in y) in low state 
levels. Consequently, when behavioral unpredictabil-
ity has a negative effect on expected foraging success 
( u = −0.1 ), it also has a negative effect on expected fit-
ness. As results, the region where behavioral unpredict-
ability is selected shrinks when u = −0.1 compared to 
u = 0 for low state levels (although the difference is small 
in Fig.  4). In other words, when behavioral unpredict-
ability influences both the expectation and variability of 
behavioural outcome, the net effect of behavioural unpre-
dictability on fitness is determined by the combination of 
the effects through the expectation and variability.

Discussion
When behavioral unpredictability is related to the vari-
ability of behavioral outcomes (e.g., Fig.  1), its effect on 
fitness depends on the relationship between behavioral 
outcomes and fitness (i.e., the curvature of �τ (y) in the 
model). This study demonstrated that the curvature of 
�τ (y) is influenced by state-dependent mortality d(y) 
through multiplicative survival processes. The mecha-
nism is simple and generally relevant to any d(y) as long 
as d(y) is not independent of state y. Classical risk-sen-
sitivity studies explain why animals are prone to engag-
ing in risky behavior when their energy state is low based 
on the expected utility hypothesis (e.g., Eq.  1 tends to 
be convex when organisms are under poor conditions) 
[13]. However, an important result of this study is that 
such selection for risky (or unpredictable) behavior is not 
restricted to organisms under poor conditions.

State factors y that are relevant to this study are those 
influenced by foraging success while influencing mortal-
ity. One possible state is starvation/satiation. However, 
its influence on mortality may be system-specific. For 
example, starvation may influence essential physiologi-
cal processes, such as thermoregulation and metabolism 
[27], which may relate to mortality. On the other hand, 
e.g., satiation impairs locomotive ability in mosquitoes 
and increases the risk of predation [28]. Fat storage used 
in the study is another potential state with associated 
benefits (e.g., energy storage, body insulation, and social 
signals) and costs (e.g., fat-dependent metabolism and 
predation risk) [29]. Size is yet another potential variable, 
with numerous examples of size-dependent predation 
where predators preferentially attack prey in a specific 
size range [30–32]. If we consider size as the state, it may 
be unlikely that size (not considering weight) decreases 

with unsuccessful foraging as assumed in the model, but 
this is not a problem because the result (i.e., emergence 
of nonlinearity) does not depend on the assumption that 
unsuccessful foraging reduces the state level (e.g., Fig. 3). 
Furthermore, empirically documented terminal fitness 
functions �0(y) are often convex when size is consid-
ered [17–19], which renders behavioral variability more 
advantageous in general when the state level y relates to 
size.

While there may be a number of state variables that are 
influenced by foraging and influence mortality, how fast a 
variable changes due to foraging success is also an impor-
tant detail. This study assumed a positive correlation 
between behavioral unpredictability and variability in 
behavioral outcomes. It also assumed that the potential 
negative effect of behavioral unpredictability on expected 
behavioral outcome is not so strong such that most suc-
cessful (and most unsuccessful) individuals come from 
ones with high unpredictability (Fig.  1). Although these 
relationships come from the simple mechanism dis-
cussed above, and the relationship can be established in 
various models such as the one used in Fig.  1, the rela-
tionship will not always hold. Even in the example used 
in Fig. 1, it depends on the foraging duration considered. 
When state variable y rapidly changes foraging success, 
the assumptions are more likely satisfied. For example, 
previous models concerning fat reserve of small birds 
used one day as the unit of fat reserve dynamics [22, 
24], which may be a short enough time period in which 
environmental stochastically can create sufficient vari-
ability (that interacts with behavioral unpredictability) 
among individuals. Similarly, the mass of female mos-
quitoes can significantly increase after one feeding bout 
[28]. On the other hand, body size (discussed above) is 
expected to be a much slower variable than body mass 
(e.g., organisms that grow through moulting). Empirical 
studies that examine the relationship between behavioral 
unpredictability and the mean and variance of behavio-
ral outcomes with various state variables will be useful. 
When the assumed correlation is empirically established, 
the approach used here can be used to build a system 
specific model to study observed patterns in behavioral 
unpredictability.

Conclusions
When considering the function of a trait including 
behavioral unpredictability, it is conventional to con-
sider how the trait improves upon the expectation of 
behavioral success. Instead, this study focused on the 
relationship between behavioral unpredictability and the 
variability (rather than expectation) of behavioral suc-
cess and showed that even when a strategy with greater 
behavioral unpredictability does not positively influence 



Page 7 of 11Okuyama  BMC Ecol           (2020) 20:34  

average foraging success, it may still be advantageous. 
The relationship between behavioral unpredictability and 
the expected foraging success is not necessarily an indi-
cator that determines the effect of behavioral unpredict-
ability on expected fitness. Given the simple mechanism, 
state-dependent mortality may be generally relevant to 
the expression of behavioral unpredictability in a wide 
variety of systems.

Methods
The model describes a situation in which animals forage 
for a fixed period and reproduce at the end of that period. 
It is a discrete time model dividing the prebreeding (i.e., 
foraging) period in T discrete time steps (indexed by 
t), while reproduction occurs at t = T + 1 . Reproduc-
tive success is used as the surrogate of fitness. Foraging 
success is realized in each time step ( t = 1, 2, . . . ,T  ), 
while the state y (i.e., surrogate of foraging success) of 
an individual may change accordingly at each time step. 
State y may be any variable influenced by foraging suc-
cess (e.g., starvation, fat storage, size) and takes a discrete 
value between ymin and ymax . For example, the state of 
an individual with y = ymax will not increase even after 
a successful foraging event. For the analysis, ymin = 0 , 
ymax = 50 and T = 50 are used, but results are not sen-
sitive to these values. The R script that implements the 
model is available in Additional file 2.

State‑dependent mortality
Two state-dependent mortality factors are considered: 
starvation and mass-dependent predation [22, 33]. The 
lower the state level, the higher the mortality due to star-
vation. This mortality is expressed as e−αy , α > 0 is a 
parameter that determines the relationship. The model 
also assumes that the higher the state level, the higher 
the predation risk. This mortality is described by a sim-
ple quadratic function ( βy2 ) [22]. Both e−αy and βy2 are 
the probability of death of an individual of state y in one 
time step. Combining these two factors, the probability 
of death for an individual of state y is,

assuming that the mortality factors act independently. 
In this study, the maximum mass-dependent mortality is 
set as 0.2 (i.e., β = 0.2/y2max ), and α = 0.5 (Fig. 2). These 
values were arbitrarily chosen, but general conclusions 
of the study are not altered by the specific parameter val-
ues. This study has two points: 1) the role of behavioral 
unpredictability over finite times in generating variation 
in observations and 2) the origin of nonlinearity in fitness 
functions. The latter point is demonstrated using linear 
state-dependent mortality functions because it may be 
misinterpreted that nonlinearity in fitness functions can 

(2)d(y) = 1− (1− e−αy)(1− βy2)

result only from nonlinear state-dependent mortality 
(e.g., Eq. 2).

Behavioral unpredictability
This study assumes positive correlations between behav-
ioral unpredictability and variability in foraging outcome 
and weak correlations between behavioral unpredict-
ability and expected foraging outcome (e.g., Fig. 1). That 
is, the model does not explicitly describe behavior, and 
behavioral unpredictability is expressed by the assumed 
correlations. Four levels of behavioral unpredictabil-
ity (denoted by q = 0, 1, 2, 3 ) are considered (Fig.  5). In 
Fig.  5, squares represent possible states in which col-
umns represent time, and rows indicate state y. The black 
square is the current state, and the grey squares are the 
possible state levels at the next time step, which varies by 
behavioral unpredictability, q. As q increases, variability 
in foraging outcome also increases (the specific model is 
described below). Due to environmental stochastically, 
there will be variability in behavioral outcome in the 
absence of behavioral unpredictability (Fig.  1), but this 
detail was not included in the model. Eliminating q = 0 
from the model does not change conclusions.

The effect of behavioral unpredictability on the 
expected foraging outcome is considered with the model 
E(Yt+1) = yt + uq where Yt+1 is the random variable rep-
resenting the state attained after one foraging time step 

Fig. 5 Models of behavioral unpredictability. Behaviioral 
unpredictability is expressed as variability in foraging outcome. 
The black square represents the current state, and grey squares 
represent possible states at the next time step for a given behavioral 
unpredictability, q. As behavioral unpredictability increases, variability 
in behavioral outcomes also increases
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when the current state is yt , and u is the effect of behavio-
ral unpredictability on expected behavioral outcome. Two 
cases are considered: u = 0 and u = −0.1 . The former rep-
resents the case where behavioral unpredictability has no 
effect on expected foraging outcome, and the latter repre-
sents the case where behavioral unpredictability negatively 
influence the expected behavioral outcome (e.g., Fig.  1). 
Behavioral unpredictability is expressed by the range of 
possible outcomes, [E(Yt+1)− q,E(Yt+1)+ q] , which 
increases with q (Fig. 5). Because state y takes discrete val-
ues, when E(Yt+1)± q are not discrete values, they are 
rounded.

The probability that the state level of an individual whose 
unpredictability level is q changes from y to z in one time 
step, Pq(z|y) , is described by a binomial distribution whose 
interpretation is conveniently modified. A binomial distri-
bution is parameterized by its size parameter N and prob-
ability parameter p such that Np and Np(1− p) are the 
mean and variance of the distribution, respectively. When 
the current state is y and q = 1 , there are three possible 
state levels at the next time step (i.e., y− 1 , y, and y+ 1 ; 
Fig. 5), and the probabilities associated with the three states 
are described by a binomial distribution with N = 2 . In 
particular, Pq=1(y+ 1|y) = Pq=1(y− 1|y) = 0.25 and 
Pq=1(y|y) = 0.5 when the expected change is 0 (i.e. u = 0 ), 
and this distribution is the same as a binomial distribu-
tion with Np = 1 and N = 2 . That is, the outcome 0 for 
the binomial distribution is set to the lowest possible state 
level in the model. Similarly, Pq=1(y− 1|y) = 0.3025 , 
Pq=1(y|y) = 0.4950 , and Pq=1(y+ 1|y) = 0.2025 when the 
state level is expected to decrease by 0.1 (i.e., u = −0.1 ), 
which is equivalent to a binomial distribution with 
Np = 0.9 and size N = 2 . For q = 2 and q = 3 , binomial 
distributions with N = 4 and N = 6 , respectively, are used. 
In addition, as described above, state dynamics is also con-
strained by ymax and ymin.

Optimal foraging and fitness
The function Fq(y, t) describes the expected reproductive 
success of an individual whose state level is y and unpre-
dictability level of q at time t,

where d(y) and Pq(z|y) are described above. F(z, t) (with-
out a subscript) is the maximum possible expected fit-
ness among the four levels of behavioral unpredictability 
such that,

(3)Fq(y, t) = (1− d(y))

ymax∑

z=ymin

Pq(z|y)F(z, t + 1)

(4)F(y, t) = max{F0(y, t), F1(y, t), F2(y, t), F3(y, t)}

and the optimal behavioral unpredictability q∗ emerges 
from Eq.  4 (e.g., q∗ = 2 when F2(y, t) is the maximum). 
When multiple strategies lead to the same expected fit-
ness, the smallest q was chosen for convenience.

The expected fitness at τ time steps prior to reproduc-
tion, F(y,T + 1− τ ) , is denoted as �τ (y) such that the 
terminal fitness is �0(y) = F(y,T + 1) . According to 
the expected utility hypothesis, the curvature of �τ (y) 
will determine the effect of behavioral unpredictabil-
ity at one-time step prior to τ . To clearly illustrate the 
effect of state-dependent mortality, the terminal fitness is 
assumed to be linear �0(y) = y/ymax . Eqs. 3 and 4 reveal 
that F(y, t) may be computed when F(y, t + 1) is known. 
Therefore, the equations immediately lead to F(y,  T) 
because F(y,T + 1) is assumed to be known. Similarly, 
once F(y, T) is known, F(y,T − 1) may be computed. By 
iterating this process, the F(y, t) for all possible combina-
tions of y and t may be computed. This method is known 
as backward iteration [24].

Boundary effects
Even when the expected fitness �τ (y) is linear, the con-
straints on y (i.e., ymin ≤ y ≤ ymax ) will necessarily 
impose nonlinearity in the neighborhoods of ymin and 
ymax in �τ (y) , that is, boundary effects. In Results, before 
describing the results of the full dynamic state variable 
model with behavioral unpredictability, isolated effects of 
state-dependent mortality d(y) on the curvature of �τ (y) 
are shown by assuming no state dynamics (i.e., only q = 0 
described in Fig.  5 is the possible outcome). Boundary 
effects influence �τ (y) and propagates as τ increases, 
even in the absence of state-dependent mortality (e.g., 
d(y) = 0 for all y). Because the main purpose of this study 
is to describe the effect of state-dependent mortality, 
boundary effects are first eliminated, although they are 
necessarily included in the full model. Isolated effects of 
boundary effects are described in the Appendix.

As described above, the expected state change was 
assumed to be 0 (e.g., E(Yt+1) = yt when u = 0 ). In 
addition, both positive and negative expected changes 
can result in nature depending on environmental con-
ditions. For example, harsh environmental conditions 
[34], including density-dependent competition [35], may 
result in the expected net negative rewards of foraging. 
Results assuming positive and negative expected changes 
(i.e., E(Yt+1) = yt + 1 and E(Yt+1) = yt − 1 ) are also 
shown in Appendix. These changes will strengthen the 
boundary effects because the state of foragers will more 
likely constrained by the boundaries due to the expected 
directional change, but general conclusions are not 
altered by these changes.
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Appendix
Boundary effects are briefly illustrated using the model 
described in the text. The model assumes no expected 
change in state level ( E(Yt+1) = yt ), and a static level 
of behavioral unpredictability q = 3 (foragers always 
express q = 3 ). Due to the variability in the resulting state 
(Fig. 5), state dynamics is constrained by the boundaries. 
To isolate the boundary effect, state-independent mortal-
ity was assumed ( d(y) = 0 for all y). Under these assump-
tions, �τ (y) still becomes progressively nonlinear as τ 
increases (Fig. 6). In other words, the standard assump-
tion in dynamic state variable models (i.e., state y is con-
strained by some ymin and ymax ) creates nonlinearity in 
the fitness function by itself.

When state y is expected to increase ( E(Yt+1) = yt + 1 ) 
or decreases ( E(Yt+1) = yt − 1 ), state dynamics is more 
strongly constrained by the boundaries, which enhances 
boundary effects (Fig. 7). The state-dependent mortality 
function used in the main analysis (Eq. 2) was also used 
here. When the upper boundary is more likely reached 
(i.e., E(Yt+1) = yt + 1 ), the boundary effect from the 
upper boundary is strengthened. That is, the region 
where behavioral unpredictability is selected expands 
from the upper bound (compare Fig.  7 top and Fig.  4 
top). When the lower boundary is more likely reached 
( E(Yt+1) = yt − 1 ), the region where behavioral unpre-
dictability is selected expands from the lower boundary 
(compare Fig.  7 bottom, and Fig.  4 top). However, as τ 
increases, the fitness function �τ (y) becomes largely 
linear (i.e., the probability of survival till reproduction 
is essentially 0 regardless of y). Under those conditions, 
q does not influence the expected fitness. As described 
above, when multiple strategies result in the same out-
come, the smallest q is shown for convenience. In those 
cases, q = 0 does not indicate behavioral unpredictabil-
ity is selected against (e.g., the region corresponding with 
q = 0 when τ > 20 and y < 15 in Fig. 7 bottom).

Fig. 6 Boundary effects on expected fitness, �τ (y) . The red line is 
the terminal fitness, �0(y) , and the blue line is �50(y) . Gray lines are 
�τ (y) for 1 ≤ τ ≤ 49 . d(y) = 0 for all y, and q = 3 . All other details are 
the same as those used in Figs. 2 and 3

https://doi.org/10.1186/s12898-020-00303-9
https://doi.org/10.1186/s12898-020-00303-9
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