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Abstract
Background: Honey bees, Apis mellifera, face many parasites and pathogens and consequently rely
on a diverse set of individual and group-level defenses to prevent disease. One route by which
honey bees and other insects might combat disease is through the shielding effects of their
microbial symbionts. Bees carry a diverse assemblage of bacteria, very few of which appear to be
pathogenic. Here we explore the inhibitory effects of these resident bacteria against the primary
bacterial pathogen of honey bees, Paenibacillus larvae.

Results: Here we isolate, culture, and describe by 16S rRNA and protein-coding gene sequences
61 bacterial isolates from honey bee larvae, reflecting a total of 43 distinct bacterial taxa. We
culture these bacteria alongside the primary larval pathogen of honey bees, Paenibacillus larvae, and
show that many of these isolates severely inhibit the growth of this pathogen. Accordingly,
symbiotic bacteria including those described here are plausible natural antagonists toward this
widespread pathogen.

Conclusion: The results suggest a tradeoff in social insect colonies between the maintenance of
potentially beneficial bacterial symbionts and deterrence at the individual and colony level of
pathogenic species. They also provide a novel mechanism for recently described social components
behind disease resistance in insect colonies, and point toward a potential control strategy for an
important bee disease.

Background
Insects, like many eukaryotes, can be strongly affected by
the microbes they harbor. Bacterial associates of insects
are implicated in the degradation of plant materials and
other foods, regulation of pH, synthesis of vitamins and,
in relatively rare cases, induction of disease [1]. Insect-
bacteria associations range from facultative short-term
interactions to highly codependent symbioses [2]. Social
insects provide unique resources for microbial symbionts,
thanks to the high density of individuals within colonies,
sharing of food and other resources, and the coexistence

of colony members from multiple generations. Not sur-
prisingly then, symbioses between social insect species
and microbial species are common and often highly coe-
volved. Many species of termites and ants, for example,
are obligately tied to specific microbes for their nutritional
needs [3-6].

Honey bees, Apis mellifera, support a diverse microbial
biome [7]. Recent surveys from adult bees indicate the
presence of dozens of bacterial taxa, ranging from gram-
positive bacteria to alpha-, beta-, and gamma-proteobac-
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teria [7,8]. While a few of these bacterial species are clearly
pathogenic, most have never been associated with honey
bee disease and their impacts on each other and their
honey bee hosts are unknown.

Now is an ideal time to explore the diversity of insect
endosymbiotic bacteria. First, an immense library of
sequence data for 16S rRNA loci and other robust markers
allows the precise identification of many associated spe-
cies, even those that resist cultivation [9]. Over 200,000
bacterial entries exist currently for 16S rRNA, and 16S
sequences can place most surveyed bacterial taxa securely
into genera, if not species. Additionally, genomic studies
of diverse bacterial species allow new insights into the
mechanisms of maintenance and growth for these
microbes as well as their potential impacts on the health
of their insect hosts [10-12]. Finally, recent community-
level surveys of bacterial diversity across different arthro-
pods [13-18] allow a comparative approach toward
understanding roles played by bacteria during different
host life stages, and in different organs of the body.

Recently, we described four honey bee bacterial symbi-
onts with clear bacteriostatic effects against the most viru-
lent and widespread honey bee pathogen, the gram-
positive bacterium Paenibacillus larvae larvae [19]. Here,
we present a more complete survey of bacterial species iso-
lated from honey bee larvae: the life stage at which they
are most susceptible to invasion by pathogenic bacteria.
We used 16S universal bacterial primers to identify bacte-
ria and in vitro inhibition assays to quantify the abilities of
each of these isolates to inhibit P. l. larvae. We present
wide-ranging taxa capable of inhibiting this pathogen and
show considerable variation within and across colonies in
the distribution of inhibitory taxa. The results have gen-
eral implications for the expression of bacterial virulence
in insects and for the maintenance of both beneficial and
disease-associated bacteria in social insects. They also
point to new avenues for the prophylactic or therapeutic
treatment of honey bee diseases.

Results and discussion
Species distribution
Sequenced isolates (n = 61) were placed by 16S rRNA
sequence similarity into four bacterial genera: Acineto-
bacter, Bacillus, Brevibacillus, and Stenotrophomonas. A total
of 43 16S haplotypes representing a minimum of 15 bac-
terial taxa were identified from the survey (Table 1, Fig. 2).
Most isolates fell within the genus Bacillus (n = 41). Of
these, 29 belonged to the B. cereus group and differed only
slightly at 16S. While 16S rRNA fails to confidently resolve
this species group, 26 showed best matches to B. cereus s.s.
isolates, while three were closest to B. thuringiensis. Addi-
tional resolution of this group was provided by GLyP and
PyC sequencing for a subset of isolates. These sequences

reflected a broad range of haplotypes with matches to
members on each extreme of the cereus group (Fig. 3).
Outside of the cereus group, the remaining Bacillus spp.
matched B. fusiformis, B. flexus, B. mycoides, and B. niaben-
sis (Table 1). Three additional Bacillus isolates showed
<97% sequences similarity to deposited sequences in
GenBank and as such were not reliably assignable to spe-
cies. However two of those three isolates fell in a clade
with B. fusiformis and the last isolate extended off the B.
cereus clade (Fig 2). 10 isolates were indistinguishable
from Stenotrophomonas maltophilia (Table 1). Although all
three isolates of Acinetobacter fell into one clade in the 16S
tree, BLASTN only matched one of the three isolates to a
species while the remaining were matched solely to a
genus. Seven isolates were placed into the genus Breviba-
cillus, with close matches to Br. formosus (n = 4), Br. centro-
sporus (n = 1), and Br. brevis (n = 1). The final Brevibacillus
isolate did not match particularly closely to a taxon in the
16S database. None of the genera represented in this sur-
vey matched genera found in a previous 16S survey of bac-
teria from adult honey bees [8], suggesting that bacterial
sequencing in bees will continue to identify novel taxa.

Diversity of inhibitory species
Inhibition zones, when present, ranged from a <10 mM
radius around the isolated bacteria to complete inhibition
of P. larvae across the dish. A total of 23 bacterial isolates
consistently inhibited P. larvae. Isolates that inhibited P.
larvae were evenly distributed across the sampled taxa
(Fig. 2). Out of 43 Bacillus sp. isolates, ten showed consist-
ent inhibition while seven additional isolates showed
conditional inhibition. These seven all fell into the Bacil-
lus cereus group. Of the ten Bacillus isolates with consistent
inhibition, 8 were B. cereus and two were B. fusiformis.
Thus, by the current in vitro assay, B. niabensis, B. circulans,
B. flexus, and B. mycoides isolates were not inhibitory of P.
larvae. All isolates that were matches with Brevibacillus for-
mosus consistently inhibited the pathogen, while a single
isolate placed with B. centrosporus did not inhibit. All iso-
lates tied to Stenotrophomonas maltophilia consistently
inhibited P. larvae, while two of three Acinetobacter isolates
showed inhibition.

Distribution across individual bees and colonies
More bacteria and bacterial species were isolated, per indi-
vidual, from 7-day-old larvae than from one-day larvae
(28 of 55 larvae at 7 days, 28 of 306 larvae at 24 hr, G test,
p < 0.0001; Table 2). Since larvae for both incubation
lengths were collected at the same time from the colony,
this difference does not reflect a greater chance for larvae
to be inoculated in the nest as they age. Instead, the differ-
ences presumably reflect quantitatively higher bacterial
loads in older individuals, such that these bacteria were
more readily cultured. There was no apparent difference
in species type or overall diversity between young and
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Table 1: Isolate identification, 16SrRNA best match, similarity and BLASTN e-value, and radial zone of inhibition against the bee 
pathogen Paenibacillus l. larvae.

MB ID Genbank ID Best Match % Similarity e-value Inhib.

BRL02-1 DQ339635 Brevibacillus formosus 98 0 23
BRL02-2 DQ339636 Brevibacillus formosus 98 0 13
BRL02-3A DQ339637 Brevibacillus brevis 97 0 9
BRL02-3B DQ339638 Brevibacillus formosus 98 0 >40
BRL02-4 DQ339639 Stenotrophomonas maltophilia 99 0 0
BRL02-5 DQ339640 Stenotrophomonas maltophilia 88 0 0
BRL02-6A DQ339641 Bacillus fusiformis 98 0 >40
BRL02-6B DQ339642 Stenotrophomonas maltophilia 99 0 >40
BRL02-7 DQ339643 Stenotrophomonas maltophilia 97 0 0
BRL02-8 DQ339644 Stenotrophomonas maltophilia 99 0 >40
BRL02-9 DQ339645 Stenotrophomonas maltophilia 98 0 >40
BRL02-11 DQ339646 Stenotrophomonas maltophilia 88 -179 0
BRL02-13 DQ339647 Bacillus niabensis 99 0 0
BRL02-14 DQ339648 Bacillus cereus 99 0 0
BRL02-16 DQ339649 Bacillus cereus 98 0 0
BRL02-17 DQ339650 Bacillus cereus 99 0 0
BRL02-19 DQ339651 Stenotrophomonas maltophilia 99 0 18
BRL02-20 DQ339652 Stenotrophomonas maltophilia 99 0 35
BRL02-21 DQ339653 Bacillus cereus 99 0 0
BRL02-22 DQ339654 Bacillus cereus 99 0 0
BRL02-23 DQ339655 Bacillus cereus 99 0 0
BRL02-24 DQ339656 Brevibacillus centrosporus 79 2E-90 0
BRL02-25 DQ339657 Bacillus cereus 98 0 0
BRL02-26 DQ339658 Bacillus cereus 99 0 0
BRL02-27 DQ339659 Bacillus cereus 100 0 A
BRL02-28 DQ339660 Bacillus cereus 99 0 A
BRL02-29 DQ339661 Bacillus cereus 99 0 0
BRL02-30 DQ339662 Bacillus cereus 91 0 0
BRL02-31 DQ339663 Bacillus cereus 99 0 12
BRL02-32 DQ339664 Bacillus cereus 99 0 0
BRL02-33 DQ339665 Bacillus cereus 98 0 0
BRL02-34 DQ339666 Bacillus fusiformis 99 0 0
BRL02-37 DQ339667 Bacillus fusiformis 98 0 >40
BRL02-38 DQ339668 Stenotrophomonas maltophilia 99 0 >40
BRL02-39 DQ339669 Bacillus cereus 99 0 0
BRL02-40 DQ339670 Bacillus cereus 99 0 0
BRL02-41 DQ339671 Bacillus cereus 99 0 0
BRL02-42A DQ339672 Acinetobacter calcoaceticus 99 0 >40
BRL02-42B DQ339673 Bacillus cereus 99 0 >40
BRL02-43 DQ339674 Bacillus cereus 98 0 0
BRL02-44 DQ339675 Bacillus cereus 99 0 0
BRL02-45 DQ339676 Bacillus fusiformis 97 0 >40
BRL02-46 DQ339677 Brevibacillus centrosporus 97 0 0
BRL02-52 DQ339678 Bacillus mycoides 98 0 0
BRL02-54 DQ339679 Bacillus cereus 99 0 0
BRL02-55 DQ339680 Bacillus cereus 99 0 0
BRL02-56 DQ339681 Acinetobacter sp. 100 0 0
BRL02-57 DQ339682 Bacillus cereus 100 0 0
BRL02-60 DQ339683 Acinetobacter sp. 100 0 >40
BRL02-61 DQ339684 Bacillus cereus 98 0 0
BRL02-62 DQ339685 Bacillus cereus 99 0 0
BRL02-64 DQ339686 Bacillus circulans 96 0 0
BRL02-65 DQ339687 Bacillus flexus 99 0 0
BRL02-66 DQ339688 Bacillus flexus 99 0 0
BRL02-67 DQ339689 Bacillus flexus 99 0 0
BRL02-68 DQ339690 Bacillus cereus 100 0 0
BRL02-69 DQ339691 Bacillus flexus 100 0 0
BRL02-70 DQ339692 Bacillus cereus 99 0 18
BRL02-71 DQ339693 Bacillus cereus 100 0 0
BRL02-76 DQ339694 Bacillus cereus 97 0 8

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339635
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339636
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339637
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339638
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339639
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339640
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339642
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339644
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339645
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339648
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339649
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339650
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339651
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339652
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339654
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339655
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339656
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339657
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339658
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339659
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339660
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339661
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339662
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339663
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339664
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339665
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339666
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339667
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339668
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339669
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339670
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339671
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339672
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339673
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339680
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339681
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339682
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339683
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339684
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339685
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339686
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339687
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339688
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339689
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339690
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339691
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339692
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339693
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ339694


BMC Ecology 2006, 6:4 http://www.biomedcentral.com/1472-6785/6/4
older larvae, nor was there a significant difference in the
likelihood that a collected bacterial species was inhibitory
toward P. larvae (likelihood ratio, p = 0.2).

There was a significant difference across sites in the fre-
quency of resident, cultivable, bacterial species. Two sites
had very low bacterial levels. One of these sites had been
established shortly before collections took place. In this
site (LID), only 4 out of 136 larvae (from 4 out of 34 col-
onies) showed bacterial growth. A second site, (Poultry)
showed similarly low rates of cultivable bacteria (2.2%, n
= 45 larvae). By contrast, measurable bacterial loads were
present in 13% (n = 63) and 24% (n = 46) of larvae from
the Parasitology and Meadow sites, respectively. Within
sites, there was significant variation across colonies in the
tendency of their larvae to harbor bacteria (nested
ANOVA, p < 0.001), and in the specific bacteria found in
certain colonies. More widespread surveys will be useful
for defining colony-level bacterial 'signatures', an impor-
tant step in determining the impacts of symbiotic bacteria
on colony health.

Conclusion
We describe wide-ranging endogenous bacterial taxa that
are capable of inhibiting an important honey bee patho-
gen and show considerable variation within and across
colonies in the distribution of these taxa. The results have
general implications for the expression of bacterial viru-
lence in insects and for the maintenance of both benefi-
cial and disease-associated bacteria in social insects. They
also point to new avenues for the prophylactic or thera-
peutic treatment of honey bee diseases. None of the gen-
era represented in this survey matched genera found in a
previous 16S survey of bacteria from adult honey bees [8],
although they do mimic, broadly, the microbial biome
measured in bee colonies to date (as reviewed by Gilliam,
[7]).

Most of the bacteria cultivated in this study belonged to
the genus Bacillus, a result that is consistent with the high
frequency of isolates placed in this genus by Gilliam and
colleagues [7]. Among the Bacillus species, the majority
fell into the Bacillus cereus group. Both 16S rRNA sequenc-

Apiary MapFigure 1
Apiary Map. Map of the apiaries in which honey bee larvae were collected. Q3, Q7, and LID larvae resided in colonies within 
the Meadow apiary. Size bar represents 0.5 km.
Page 4 of 9
(page number not for citation purposes)



BMC Ecology 2006, 6:4 http://www.biomedcentral.com/1472-6785/6/4

Page 5 of 9
(page number not for citation purposes)

16S rRNA parsimony treeFigure 2
16S rRNA parsimony tree. Maximum parsimony tree showing relationships between bacterial isolates from this study, 
other bacteria known from bees, and representative members of the major bacterial clades. Tree based on an alignment of 850 
nt from the 5' end of the 16S rRNA gene. Bacteria from this study shown as MB##, followed by site of collection. Isolates that 
showed inhibition of the honey bee pathogen P. larvae shown in bold type. Names in bold represent those isolates that inhib-
ited and isolates followed by an asterick did not inhibit consistently.

Acinetobacter johnsonii
MB 42 A    -Meadow
MB 56  -Meadow
MB 60   -Meadow

Moraxella osloensis
Pseudomonas aeruginosa
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Enterococcus faecalis
Enterococcus faecium
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MLST sequence analysis treesFigure 3
MLST sequence analysis trees. Maximum parsimony trees representing the B. cereus group, including types for B. cereus, B. 
anthracis, and B. thuringiensis and representatives from [29]. Relationships were established using two of the six primers gener-
ally used to distinguish the three Bacillus type bacteria within this group (GlyP, and PyC; [29]. Alignments generated from a 520 
bp alignment of the GLP locus and a 520 bp alignment of the PYC locus. Isolates from honey bees shown in bold.
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ing and multi-locus sequencing (GlyP, PyC) indicate that
these isolates represent several distinct taxa from this
group, although interference with P. larvae did not fall out
with species identification. The high frequency of bees
harboring bacteria from the B. cereus group suggests a sta-
ble symbiosis between bees and this taxon, perhaps help-
ing to explain the fact that bees are more tolerant than
many other insects toward B. thuringiensis [20]. Curiously,
isolates from this group which shared both 16S haplo-
types and sequence identity at the two protein-coding
genes differ substantially in their ability to inhibit P. lar-
vae. This variation could result from undetected genetic
variation within subspecies, conditional activation of
inhibitory substances, or a role for plasmids or other
mobile elements in inhibition. Future experiments will
help resolve the causes of conditional inhibition by Bacil-
lus cereus subspecies.

There is a growing appreciation for the potentially benefi-
cial roles of bacteria in honey bee colonies. Evans and
Lopez [21] recently showed that non-pathogenic bacteria
can stimulate the innate immune response of honey bee
larvae, perhaps helping bees survive exposure to patho-
gens. Further, Reynaldi et al. [22] recently showed that
bacteria isolated from bees in Argentina are inhibitory of
the important bee fungal pathogen, Ascosphaera apis. It
will be interesting to determine whether these species, in
addition, are also inhibitory toward P. larvae, and to con-
trast the microbes associated with bees across different
continents.

Bacterial symbionts likely play roles in individual and col-
ony fitness across the social insects. Sharing of symbiotic
bacteria is notoriously important for termite nutrition,
and it is increasingly clear that both obligate and faculta-
tive symbioses are widespread in social insects. Recent evi-
dence for a socially communicable defense against
pathogens in termites [23] might indeed reflect sharing of
bacteria among termite colony members, rather than the
proposed induction of host-specific physiological
changes.

Perhaps, as is apparent in the termites and ants [24,25],
honey bees have evolved behavioral or physiological
mechanisms to enhance the transmission of beneficial
microbes, while battling those species which are patho-
genic. This would indicate a delicate balancing act for bees
and other social insects, allowing for the encouragement
of beneficial species while maintaining barriers against
exploitation by pathogens. If so, discrimination at the lev-
els of behavior and individual immune responses might
be used to bias the microbial biome within insect colonies
toward mutualists and against parasites and pathogens.
Beneficial symbionts can potentially be fed to developing
bees as a prophylactic against disease [21], and can regard-

less be used to better understand the complexity of inter-
actions between the microbial biota of bees. It will, in this
vein, also be important to look more closely at transmis-
sion mechanisms of microbes within and between bee
colonies.

Methods
Organisms
Bacteria were cultivated from a total of 341 honey bee lar-
vae collected from four apiaries near the USDA-ARS Bee
Research Laboratory, Beltsville, MD, USA from June-
August, 2003 (Fig. 1). These larvae were collected from
both mature honey bee colonies (n = 217 larvae in 51 col-
onies established at least one year prior to collection) and
from colonies that had been newly established (134 lar-
vae from 34 colonies). First-instar larvae were collected
and reared for 24 h or 7d using an aseptic artificial diet,
controlled temperature (34°C) and high humidity as
described [19]. Larvae were frozen at -80°C prior to the
cultivation and isolation of bacteria.

Inhibition assays
Individual larval bees were ground in 40 ul sterile H2O at
room temperature, using a disposable pestle. A filter-
paper disk was impregnated with 20 ul from the resulting
suspension. Each disk was centered on a standard Petri
plate (100 × 15 mm) consisting of Brain-Heart Infusion
(Difco) agar media containing 0.1 mg/ml thiamine
hydrochloride as described [26]. Prior to placement of
these disks, plates had been inoculated with a lawn of
approximately 1 × 108 viable spores of P. larvae. These
spores were isolated from diseased honey bee larvae col-
lected in 2002 from a single bee colony in Berkeley, CA,
U.S.A (BRL sample 230010; [25]). After 24 h incubation
at 34°C, plates were scored for both bacterial growth and
inhibition toward P. larvae. Bacterial growth was
described as any bacteria on or contiguous to the paper
disks that was atypical for P. larvae. Inhibition was defined
as the radial distance between these paper disks and the
first line of P. larvae growth. P. larvae inhibition was only
observed in conjunction with growth of larval-derived
bacteria (e.g., there were no signs of inhibition resulting
from the larvae themselves by this assay). Inhibition was
confirmed in all cases by replating collected bacterial cul-
tures against a fresh lawn of P. larvae.

DNA extraction and sequencing
All bacterial colonies on or alongside paper disks were col-
lected with a sterile wand. Approximately 10 mg vegeta-
tive cells of each sample was suspended in 300 ul of 30%
glycerol solution then kept at -20°C. To isolate DNA, 50
ul from this suspension was mixed with 50 ul 10%
Chelex-100 (Bio-Rad, Hercules, CA), then incubated at
72°C for 10–20 minutes before being placed on ice.
Page 7 of 9
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16S rRNA genes were amplified by PCR using universal
eubacterial primers eu27.F and eu1495.R [27]; sequences
5'- gagagtttgatcctggctcag-3' and 5'- ctacggctaccttgttacga-3',
respectively). Reaction mixes included 2 ul bacterial
extract, 2 U Taq DNA polymerase with recommended
buffer (Boehringer, Indianapolis, IN), 1 mM DNTP mix, 2
mM MgCl2, and 0.2 µM of each primer. PCR was carried
out on an MJ-Research PTC-100 thermal cycler using 30
cycles of 93°C 1 min, 54°C 1 min, 72°C 1 min. Bands of
an appropriate size were confirmed by agarose gel electro-
phoresis, then PCR products were purified directly (Gene
Pure). Products were sequenced using Big Dye 2.0
(Applied Biosystems, Carlsbad, CA) end-terminal cycle
sequencing, followed by separation and analysis on an
Applied Biosystems 3130 DNA Analysis machine.
Sequencing was carried out in one direction from the 5'
(eu27.F) end.

Sequence analyses
Sequences were checked and trimmed using the software
program Sequencher (Gene Codes), then were aligned
using the CLUSTALW algorithm, invoked by Omiga 2.0
(Oxford Molecular). Alignments also included a diverse
array of bacterial species, including all of those previously
identified from bees and representative members of the
major bacterial clades. Alignments were exported to PAUP
4.0b10 (Sinauer) to generate phylogenetic hypotheses
using a heuristic maximum-parsimony algorithm. Trees
were generated for the entire data set, and for a data set
limited to species found in the genus Bacillus. Sequences
were also compared directly to all 16S rRNA sequences
deposited in GenBank [28] using BLASTN, in August,
2005.

Multilocus sequences for Bacillus isolates
A large fraction of sequenced isolates were placed into the
Bacillus cereus group by 16S rRNA similarity. To better
resolve members of this group, isolates were sequenced at
two protein-coding loci that offer informative sequence
variation within this group [29]. Glycerol uptake factor
protein (PCR and sequencing primers Glyp.F GCG TTT
GTG CTG GTG TAA GT and GlyP.R CTG CAA TCG GAA
GGA AGA AG) and Pyruvate carboxylase (primers PyC.F
GCG TTA GGT GGA AAC GAA AG and PyC.R CGC GTC
CAA GTT TAT GGA AT) genes were amplified by a three-
step PCR regime of (94 30 s, 58 30 s, 72 1 m) × 30 and
sequenced via Big-Dye N terminal sequencing as
described above. Sequences were aligned with each other
and voucher sequences from the Multilocus sequencing
database http://pubmlst.org/bcereus/ using CLUSTAL,
then were analysed by maximum parsimony using PAUP
4.0b.
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