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Abstract

Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both
the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes
forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing
population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems.
Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF)
perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here
we provide an overview of important considerations related to forest restoration that can be inferred from this
BEF-perspective.

Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations,
which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a
combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring
stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios,
which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from
the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than
focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when
selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should

effects at the level of the ecosystem.

be considered during the restoration process, as these likely have prominent but until now poorly understood

The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context,
but it also highlights that much remains to be understood, especially regarding the relation between forest
functioning on the one side and genetic diversity and above-ground-below-ground species associations on the
other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the
beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.

Review

Globally, forests cover nearly one third of the land area
and contain over 80% of terrestrial biodiversity [1]. The
income of more than 1.6 billion people depends on for-
ests and sustainable management of forests can contri-
bute to sustainable development, poverty eradication
and the achievement of internationally agreed develop-
ment goals [1,2]. Despite increasing efforts for sustain-
able forest management and forest conservation [3], the
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extent of forest habitat, in particular in the tropics, con-
tinues to decrease, mainly by forest conversion to agri-
culture and land uses related to urban population
growth [4,5]. Between 1980 and 2000 more than half of
the new agricultural land across the tropics was
obtained by clearing intact forests [6,7]. Also, many dis-
turbed and secondary forests, which are increasingly
important habitat for many forest species [8,9], are
eventually cleared for agricultural purposes.

In the remaining forests and forest fragments, decreas-
ing habitat patch sizes result in increased deleterious
edge effects [10] and decreasing plant and animal popu-
lation sizes [11], which, in turn, may lower population
viability and genetic variation [12,13]. The negative
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effects of forest fragmentation and isolation are expected
to be exacerbated by other anthropogenic threats such
as fire [14,15], in particular in the light of global climatic
change [16,17]. Parallel to forest loss and forest frag-
mentation, cryptic deforestation [18,19] - the selective
logging and internal degradation of forests - alters forest
structure and plant communities, jeopardizing biodiver-
sity, regeneration capacity and vitality of forests [20].
The simultaneous reduction of both forest quantity and
quality is expected to lead to massive extinction of
many species inhabiting forest habitats [21]. For a wide
range of taxa, including trees and lianas, birds, fruit-
feeding butterflies, leaf-litter amphibians, large mam-
mals, epigeic arachnids, lizards, dung beetles and bats,
biodiversity has been shown to decline significantly over
a forest degradation gradient, from primary over second-
ary to plantation forest [22].

Loss of forest biodiversity may seriously jeopardize the
functioning of forest ecosystems (i.e. the activities, pro-
cesses or properties of forests, such as decomposition of
organic matter, soil nutrient cycling and water reten-
tion), and consequently the ability of forest to provide
ecosystem services [23]. Ecosystem services have been
defined as the benefits that people obtain from ecosys-
tems [24] and have been categorized into four broad
categories. These include provisioning services such as
food, water, timber, and fiber; regulating services that
affect climate (e.g. though carbon sequestration), polli-
nation, biological pest control, floods, disease, wastes,
and water quality; cultural services that provide recrea-
tional, aesthetic, and spiritual benefits; and supporting
services such as soil formation, photosynthesis, and
nutrient cycling [25-27].

Clearly, the role of forests as sanctuaries of biodiver-
sity and as providers of ecosystem services cannot be
overestimated. In the light of the increasing human
population, however, conserving the remaining forests
and their biodiversity, functions and services of forests
is unlikely to be sufficient [7]. To meet the increasing
demands for ecosystem services provided by forests - in
particular the many provisioning services of forests as
many people heavily rely on forests for livelihoods and
products such as timber, medicines, thatch, fiber and
meat [1] - large-scale (passive or active) forest restora-
tion is probably the only solution that will be effective
in the long term [28-30]. Establishing short-rotation sin-
gle- or multiple-species plantations on degraded soils,
restoration plantings in secondary forests or assisted
regeneration in selectively logged forest are a few exam-
ples of the wide spectrum of forest restoration
approaches [31]. They all have in common that they
consist of management interventions that aim at reco-
vering ecosystems that have been degraded, damaged or
destroyed by human activities [29,32]. Ecological
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restoration is therefore an important practice that may
increase levels of biodiversity in human-altered ecosys-
tems [33] and may mitigate the impact of climate
change [34]. To this end, restoration ecology has
adopted insights from both community and ecosystem
ecology, and more recently, from the integrated biodi-
versity-ecosystem functioning (BEF) perspective [35-37].
The main aim of this article is to discuss how forest
restoration may benefit from insights originating from
the emerging BEF framework.

Traditional approaches to ecological restoration
The community approach

A biological community is a group of organisms that
interact and share an environment. Within a commu-
nity, organisms may compete for the same resources
(competition), profit from the presence of other organ-
isms (facilitation) [38,39] or use other organisms as a
food source (trophic interaction) [35]. In stable commu-
nities, these interactions lead to predictable, directional
changes in community structure known as ecological
succession. Succession is an important guiding principle
in the community approach to ecological restoration
[40]. The restoring forest is a dynamic ecosystem, with
changing species composition and forest structure, but
interventions and management steer the forest towards
a desired climax or pre-disturbance community struc-
ture. These interventions are usually designed to accel-
erate natural succession or to bypass intermediate
successional phases. Basically, the community approach
is focussing on restoring forest biodiversity per se. The
many studies that apply facilitation as a restoration tool
of woody communities [41] are typical examples of the
community approach to forest restoration. Planting late-
successional tree species (protégé species) under early-
successional shrubs (nurse species) has been shown to
be an effective means of restoring forests under high
abiotic stress [42,43] (Figure 1).

Insights from alternative stable states theory have also
been useful to guide restoration practices that focus on
community structure [44]. In severely degraded systems,
alternative stable states may make efforts to restore pre-
disturbance communities difficult, if not impossible [45].
In such cases, a single intervention may not suffice to
induce forest regrowth: succession fails and the commu-
nity is blocked in a low diversity/low biomass state.
Exclusion of grazing animals may be an effective means
for woodland restoration in degraded drylands, but only
when soil moisture conditions also improve. Wet pulses
caused by climatic oscillations such as the El Nino
Southern Oscillation may provide such necessary addi-
tional impulse to induce a regime shift that leads to for-
est restoration [46]. Similarly, planting and sowing of
late successional tree species (an intervention to



Aerts and Honnay BMC Ecology 2011, 11:29
http://www.biomedcentral.com/1472-6785/11/29

Figure 1 Seedling planting and ecological forest restoration.
Planting late-successional tree species under early-successional shrubs
can be an effective means of restoring forests under high abiotic stress.
Tree planting under facilitating nurse shrubs is a typical example of the
community approach to forest restoration. This figure shows the
planting of an African wild olive seedling (Olea europaea ssp. cuspidata)
under the canopy of Euclea racemosa rather than in the open space
between the present shrubs. See [43] for details. Tsegaye Gebremariam,
Raf Aerts and Bisrat Haile agreed to be photographed in the field.

overcome seed limitation) has been found effective for
the restoration of highly complex forest on bauxite
mined sites, but only after careful site preparation and
topsoil handling or replacement (interventions to over-
come survival limitation caused by soil compaction,
decreased soil porosity and infiltration capacity, and the
loss of soil biota) [47,48].
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The ecosystem approach

Restoration of species richness and community structure
over time implies increasing ecosystem complexity and
functionality [40]. In the ecosystem approach, restora-
tion of ecosystem functions such as primary production,
energy flows and nutrient cycles, is the guiding principle
on which restoration efforts are based [35]. Basically,
this approach aims at restoring suitable abiotic condi-
tions that allow (passive) recolonization of species. The
ecosystem perspective typically starts from a landscape
point of view, building on spatial heterogeneity and
broad spatial scales [49]. The connections or barriers
between neighbouring ecosystems have an effect on the
resource balances and set limits on the communities
that can be restored [50]. Reforestation of degraded sites
with trees that alter the physical and chemical character-
istics of the soil and that affect the biochemical cycles
through litter fall or root activity presents a typical
example of the ecosystem approach to forest restoration
[51,52].

The biodiversity - ecosystem function approach to
ecological forest restoration

The study of the relation between biodiversity and eco-
system functioning is a rapidly growing field (see the
volume edited by Naeem et al. [53] for an exhaustive
state of the art). The traditional view that has dominated
ecology until the 1990’s started from the idea that spe-
cies distribution patterns resulted directly from the abio-
tic and biotic (species interactions) components
determining the environment. In the early 1990’s, how-
ever, this view was challenged, when one started to rea-
lize that species diversity also affects the abiotic
environment, and even the functioning of ecosystems
[54]. The functioning of an ecosystem incorporates pro-
cesses such as decomposition of organic matter, fixation
of carbon, nutrient and water cycling and degradation of
toxic compounds. Meta-analyses of the results of mainly
small-scale biodiversity experiments have shown that, on
average, ecosystem functions increase with increasing
species number [e.g. [55]]. The success of the idea that
biodiversity affects ecosystem properties and functions -
some have called it a paradigm shift in ecology [56] -
can be explained by the fact that it offers a comprehen-
sive framework to evaluate the consequences of biodi-
versity loss caused by human activities, and at the same
time provides a powerful incentive for biodiversity con-
servation and ecological restoration [37,57].

Naeem [35] was the first to propose that restoration
ecology may benefit from insights from the BEF frame-
work, and this idea has been further elaborated by
Wright et al. [36]. Here we build on these ideas and put
them in a forest restoration context. In contrast to more
traditional approaches, restoration based on the BEF
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perspective strongly focuses on restoring the relation-
ship between biodiversity and ecosystem functioning
[35]. In what follows we list some important considera-
tions regarding forest restoration that can be inferred
from the BEF framework. We are aware that foresters
have already adopted the BEF framework in setting up
large experiments where the effects of tree species rich-
ness on ecosystem functions are evaluated [e.g., [58,59]].
Nevertheless, we believe that forest restoration efforts
may benefit from such an overview, in particular since
ecosystem functioning and functional (bio)diversity has
received very little attention in a forest restoration con-
text so far (Figure 2).

Restoring multiple forest functions requires multiple
species

One of the major functions of forest ecosystems is car-
bon fixation [60], which is directly related to the ecosys-
tem services carbon sequestration and the provision of
fire and construction wood. There is evidence that tree
diversity has a positive effect on ecosystem production
(see Thompson et al. [61] for an overview). Based on
the largest data set ever analysed in this context to date
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(12.000 permanent forest plots in eastern Canada),
Paquette & Messier [62] reported that, after controlling
for environmental and climate differences between plots,
tree productivity was positively related to stand biodi-
versity. These results confirm earlier work in 5000 per-
manent plots in Mediterranean forests across Catalonia
(NE Spain) [63]. In a reforestation context, Piotto et al.
[64] found that mixed plantations in Costa Rica per-
formed better than monocultures for all growth vari-
ables considered, including height, diameter at breast
height, volume, and above-ground biomass. Also in nat-
ural stands of tropical forest with high environmental
and spatial variation, positive effects of tree species
diversity on tree carbon storage were found [65]. Posi-
tive effects of tree diversity on above-ground productiv-
ity are certainly not an universal pattern, however
[61,66], and above-ground biomass production and soil
carbon fixation may also respond differently to tree
diversity in plantation forests [67]. This corroborates the
result of a meta-analysis of BEF experiments where it
was found that high biodiversity treatments do not
always outperform the best performing monoculture
[55]. In a forest restoration context, where fast growing
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Figure 2 Related concepts in the scientific literature on forest restoration, biodiversity and ecosystem functioning. The relationship
between the most widely used words (30 of 2745 terms) in the abstracts of scientific literature on forest restoration, biodiversity and ecosystem
functioning (BEF). Data were obtained from Thomson Reuters Web of Science using the query Topic = (biodiversity ecosystem function®) refined
by Topic = (restoration) AND Topic = (forest*). The diagram shows that, even in the BEF literature, functional (bio)diversity has received less
attention than species richness and (plant) species diversity thus far (an interactive online version shows the number of occurrences for each word
and word pair and the contexts of each word pair and is available at http://www-958.ibm.com/v/116799).
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tree species with strong global timber markets are read-
ily available, this may suggest that monocultures are an
option. However, evidence is accumulating that focuss-
ing on one single ecosystem function often overlooks an
important aspect of biodiversity: the possibility of one
species to contribute to different ecosystem functions at
the same time [68]. Because different species often influ-
ence different ecosystem functions, focussing on one
function in isolation will strongly underestimate the bio-
diversity required for maintaining an ecosystem with
multiple functions, at multiple times and places in a
changing environment [69]. Although the evidence only
comes from grasslands and aquatic environments so far,
it convincingly shows that species redundancy is unlikely
to occur when several ecosystem functions and services
are considered in combination [68-71].

Therefore, it is highly unlikely that species poor planta-
tions will outperform species diverse tree assemblages for
a combination of forest ecosystem functions [28], includ-
ing above-ground biomass production, disease resistance,
carbon fixation, nectar provision, erosion control, water
capitation, N,-fixation and fruit production. It is there-
fore of special importance that reforestation efforts
clearly define the ecosystem services and functions that
the restored forest is intended to deliver. Also, it is
important to realize that ecosystem functions of restoring
forests may change over time because of changes in tree
sizes, forest structure and relative importance of func-
tional groups, even if there are no changes in tree species
composition [72]. Finally, it should be noticed that
although there is already some knowledge on the effects
of tree diversity on forest productivity, it is not known
how understory shrub diversity, and even herbaceous
species, affect forest productivity or other ecosystem
functions. This may, for example, happen through these
species’ impacts on litter decomposition, on water cap-
ture and on the diversity of soil biota [73].

Restoring stable forest functions requires multiple species
The hypothesis that larger species diversity leads to
higher stability of ecosystem functioning has been a
point of debate for half a century, and it has re-emerged
within the BEF framework [53,74,75]. The main ideas
behind the biodiversity vs. ecosystem stability concept
are functional response diversity and functional com-
pensation [61,76]. This occurs when positive changes in
the level of functioning of one species (a species becom-
ing functionally dominant) are associated with negative
changes in the functioning of other species. This com-
pensation drives the stabilization of ecosystem proper-
ties such as biomass production [77]. Basically, the
stability of the functioning of an ecosystem can be mea-
sured in three ways: i) the long term variability of an
ecosystem property through time in relation to
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background environmental variation (variance); ii) the
impact (resistance); and iii) the recovery (resilience) of
ecosystem properties to discrete disturbances [61,78]. As
it is expected that these discrete and extreme distur-
bances such as extreme climate events and pest and dis-
ease outbreaks will become more frequent under the
predicted climate change [79], it is very important to
incorporate insights from the relation between biodiver-
sity and stability of ecosystem functioning into forest
restoration projects. It is crucial to realize that, just as
the degree of species redundancy decreases when multi-
ple ecosystem functions are considered (see earlier),
there is currently strong experimental evidence that in
changing environments, more species are required to
guarantee ecosystem functioning than in constant envir-
onments [e.g., [69,80]].

Evidence for the latter comes from studies that have
related forest tree diversity with measures of stability of
forest ecosystem functioning. Lloret et al. [81] used
satellite imagery to estimate the impact of the extreme
2003 summer drought on canopy greenness of different
forests types in Spain, by quantifying the NDVI (normal-
ized difference vegetation index). NDVI correlates with
ecosystem CO, fluxes. These authors reported a positive
relation between woody species diversity and resistance
of canopy greenness against drought in forests on dry
locations, whereas no such relation was discovered in
more moist forests. Similarly, DeClerck et al. [82]
related stability in stand productivity across 64 years
with conifer diversity in the Sierra Nevada, USA. They
found a significant relation between species richness and
resilience of stand productivity after recurrent severe
droughts. Resistance to drought was, however, not
related to species diversity. These studies partly support
positive biodiversity effects on stability of biomass pro-
duction, but they also show that patterns may be com-
plex, vary across ecosystem types, and depend on the
measures that are used to quantify stability. In any case,
temporal stability of ecosystem functioning is an impor-
tant consideration for projects aiming at forest restora-
tion, especially under the current global change
scenario. Again, it is not known whether understory
shrubs and herbaceous species contribute to the stability
of forest ecosystem functioning.

Focus on functional diversity rather than on taxonomic
diversity

Whereas general biodiversity measures are based on tax-
onomy in the first place (species presence or absence),
functional diversity measures relate to what organisms
effectively do in an ecosystem, quantify the distribution
of traits in a community or measure the relative magni-
tude of species similarities and differences. How to best
measure functional diversity is a much debated question,
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but Cadotte et al. [83] summarize five useful multivari-
ate functional diversity measures. Some authors have
suggested that functional diversity measures are particu-
larly suitable or even better to predict the interactions
between biodiversity and ecosystem processes [83-85].
Using a tree diversity index based on among-species
variation in seed mass, wood density and maximum
height Paquet and Messier [62] showed that this mea-
sure outperformed a taxonomically based diversity index
in explaining tree productivity. Bunker et al. [86]
demonstrated that removing certain functional groups
from a tropical forest had more important effects on the
above-ground carbon pool than randomly removing spe-
cies. Vila et al. [63], on the contrary, reported that func-
tional group richness performed worse than tree species
richness, but this was likely due to a rather rudimentary
functional group delineation. Thus, when selecting tree
species for forest restoration, these findings suggest
focusing on functional groups based on relevant plant
traits. While these traits are readily available for species
from temperate regions by now, the establishment of
plant trait databases for tropical tree species and the
centralisation of all available data in a general database
are important works in progress [87,88]. Maximizing
functional diversity can be achieved by quantifying the
functional diversity of the species mix used for restora-
tion. This can be done by delineating emergent or func-
tional groups (assemblages of species performing similar
functional roles) [e.g. [61,89]], or by using more com-
plex, continuous or non-grouping measures of func-
tional diversity [90]. The selection of relevant plant
traits remains, however, crucial with respect to the for-
est ecosystem functions to be restored. Scherer-Loren-
zen et al. [58] provide a comprehensive list of species
traits that can be used to quantify functional diversity of
tree mixtures used for reforestation of European tempe-
rate forests. Selected traits included nominal (e.g. leaf
type, crown architecture), ordinal (e.g. adult light
requirements, height growth vigour) and scale variables
(e.g. leaf N concentration, litter C:N ratio). A better
mechanistic understanding of how species traits and
their interactions affect ecosystem functioning is also
important, however, to be able to proactively analyse
different reforestation scenarios and their impact on for-
est functioning. In this context, it is important to realize
that relationships between functional traits and ecosys-
tem functions such as carbon storage in natural popula-
tions are not always transferable to tree plantations and
vice versa [57].

Effects of genetic diversity extend up to the ecosystem
level

Whereas conservation biologists have acknowledged the
negative fitness consequences of reduced genetic
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diversity for decades, forest restoration projects may still
incorporate very few genotypes [91]. There is evidence,
however, that monoclonal populations are more vulner-
able to pathogens than genetically diverse assemblages
[e.g. [92,93]]. The point that we want to make here,
however, is that the effects of stand genetic diversity can
be expected to extend far beyond the fitness of the indi-
vidual trees or stands. It is only recently that it has
become clear that variation in population genetic diver-
sity or in genotype composition can have far-reaching
ecological effects. The ecological consequences of
genetic diversity (coined ‘community genetics’) have
been demonstrated at different levels of organization,
from the population over the community to the ecosys-
tem [94-96]. For example, plant genotypic diversity and
genotype identity have been shown to affect biomass
production and community invasibility, and also the
invertebrate diversity of the higher trophic levels [97,98].
It was also shown that litter decomposition and nutrient
release differed between different Populus genotypes,
indicating that selection of tree genotypes may have pro-
found and long lasting effects on ecosystem functioning
of restored forests [99,100]. Although a discipline as
community genetics is in its infancy, there is already
some evidence to suggest that there are extended conse-
quences of plant genetic variation, up to the level of the
ecosystem properties [96]. The selection of specific gen-
otypes, and the genotypic diversity of tree assemblages,
may therefore have major implications for the function-
ing and the resilience of forests [61].

Synchronize above- and below-ground biodiversity

The above-ground biodiversity of forests also comprises
fauna with important ecosystem services that include
pollination, pest control and seed dispersal. The ecosys-
tem services of birds, for instance, have been well docu-
mented [101] and in the light of forest restoration birds
have been shown essential for dispersing tree seeds into
restoring areas and overcoming seed dispersal and ger-
mination limitation [102,103]. Far less is known about
the role of below-ground biota and the linkages between
trees and these biota. The study of soil microbial com-
munity structure and functioning has traditionally
received little attention in ecology. But as with above-
ground biodiversity, there is evidence that below-ground
diversity has a significant impact on ecosystem function-
ing. In a series of simplified tropical forests, Lovelock
and Ewel [104] found significant positive relationships
between the diversity of arbuscular mycorrhizal fungi
(AMF) and ecosystem net primary productivity, and
between AM fungal community evenness and ecosystem
phosphorus-use efficiency. The quick development and
availability of molecular tools such as t-RFLP and next-
generation sequencing to quantify microbial diversity
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[e.g. [105,106]], together with the strong focus of the
BEF approach on the functionality of ecosystems, has
resulted in an increased interest in the role of microbial
soil community diversity in driving processes such as
organic matter decomposition and plant nutrient uptake.
Because ecological restoration is usually occurring on
highly disturbed or degraded sites, it is important that
above-ground-below-ground species linkages are perma-
nently considered during the restoration process [34],
and more specific, that there is a synchronisation
between above- and below-ground species associations
[107]. Clearly, the crucial question is whether below-
ground microbial community simply follows the intro-
duced tree and shrub species, or whether some kind of
inoculation is required [see e.g. [108]]. Among the rele-
vant soil micro-organisms, arbuscular mycorrhizal fungi
(AMF) and ectomycorrhizal fungi (ECMF) can be
expected to play a major role during restoration of
degraded sites. Many tree and shrub species associate
with AMF and ECMF, which provide nutrients in
exchange for plant carbohydrates. Recent evidence has
shown that at least ECMF are dispersal limited, and are
less abundant on isolated trees [109]. This finding may
urge for some kind of active inoculation of degraded
restoration sites. How to successfully apply soil microor-
ganisms in particular restoration projects, however, is an
almost empty research field. Whereas fundamental
insights in the role of AMF in structuring grassland
communities are growing [but see [110]], it remains lar-
gely unknown how these fungi contribute to successful
restoration and the few available reports on the effects
of large scale inoculations in grasslands did result in
contradictory conclusions (White et al. [111]vs. Smith et
al. [112]). Also, the inoculation of tree roots with
mycorrhiza has received some attention in forest
restoration projects, but the results are not straightfor-
ward [e.g., [113,114]]. This leads to the conclusion that
at present much remains to be understood about how
below-ground microbial diversity contributes to success-
ful restoration of forest functions. Newly available mole-
cular tools to quantify microbial diversity combined
with detailed measurements of forest functioning are
likely to increase our insights in how to apply below-
ground biodiversity for restoration purposes.

Restored forests are often novel ecosystems

While restored forests may deliver similar ecosystem ser-
vices and conserve levels of biodiversity comparable to
the pre-disturbance vegetation, restored forests rarely
match the composition and structure of the original for-
est cover [115]. Large changes in ecosystems will usually
result in novel systems, comprising different species,
interactions and functions [116,117]. In this context, it is

Page 7 of 10

important to realize that both the recent tendency
towards accepting perennial, global change driven
changes to the environment and the increasing applica-
tion of the BEF framework to ecological restoration may
facilitate the acceptance of using non-native species in
forest restoration. While many ecologists still consider
autochthony of species a prerequisite for their use in eco-
logical restoration [see e.g. [118]], a focus on species’
functions rather than on species’ origins is already advo-
cated by others [119] as being a “more dynamic and prag-
matic approach to the conservation and management of
species”. In this sense, the BEF approach may be at the
source of a paradigm shift in restoration ecology [120].

Conclusions

The BEF approach provides a useful framework to eval-
uate forest restoration in an ecosystem functioning con-
text. It highlights different aspects of forest restoration
that do not always receive sufficient attention in the
more traditional approaches to restoration. At the same
time the BEF framework confronts us with huge knowl-
edge gaps still present in restoration science. The
mechanistic understanding of how plant functional traits
and their mutual interactions affect ecosystem function-
ing, understanding the role of genetic diversity in eco-
system functioning, and acquiring insights in the
interactions between below-ground biodiversity and for-
est functioning and restoration success, are the most
urgent research needs.

Abbreviations
AMF: arbuscular mycorrhizal fungi; BEF: biodiversity - ecosystem functioning;
ECMF: ectomycorrhizal fungi;NDVI: normalized difference vegetation index
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